| Age | Commit message (Collapse) | Author |
|
Add headers to a few files which were missing them.
|
|
|
|
Removing in passing two Local which are no-ops in practice.
|
|
|
|
|
|
|
|
|
|
- The earlier proof-of-concept file NPeano (which instantiates
the "Numbers" framework for nat) becomes now the entry point
in the Arith lib, and gets renamed PeanoNat. It still provides
an inner module "Nat" which sums up everything about type nat
(functions, predicates and properties of them).
This inner module Nat is usable as soon as you Require Import Arith,
or just Arith_base, or simply PeanoNat.
- Definitions of operations over type nat are now grouped in a new
file Init/Nat.v. This file is meant to be used without "Import",
hence providing for instance Nat.add or Nat.sqrt as soon as coqtop
starts (but no proofs about them).
- The definitions that used to be in Init/Peano.v (pred, plus, minus, mult)
are now compatibility notations (for Nat.pred, Nat.add, Nat.sub, Nat.mul
where here Nat is Init/Nat.v).
- This Coq.Init.Nat module (with only pure definitions) is Include'd
in the aforementioned Coq.Arith.PeanoNat.Nat. You might see Init.Nat
sometimes instead of just Nat (for instance when doing "Print plus").
Normally it should be ok to just ignore these "Init" since
Init.Nat is included in the full PeanoNat.Nat. I'm investigating if
it's possible to get rid of these "Init" prefixes.
- Concerning predicates, orders le and lt are still defined in Init/Peano.v,
with their notations "<=" and "<". Properties in PeanoNat.Nat directly
refer to these predicates in Peano. For instantation reasons, PeanoNat.Nat
also contains a Nat.le and Nat.lt (defined via "Definition le := Peano.le",
we cannot yet include an Inductive to implement a Parameter), but these
aliased predicates won't probably be very convenient to use.
- Technical remark: I've split the previous property functor NProp in
two parts (NBasicProp and NExtraProp), it helps a lot for building
PeanoNat.Nat incrementally. Roughly speaking, we have the following schema:
Module Nat.
Include Coq.Init.Nat. (* definition of operations : add ... sqrt ... *)
... (** proofs of specifications for basic ops such as + * - *)
Include NBasicProp. (** generic properties of these basic ops *)
... (** proofs of specifications for advanced ops (pow sqrt log2...)
that may rely on proofs for + * - *)
Include NExtraProp. (** all remaining properties *)
End Nat.
- All other files in directory Arith are now taking advantage of PeanoNat :
they are now filled with compatibility notations (when earlier lemmas
have exact counterpart in the Nat module) or lemmas with one-line proofs
based on the Nat module. All hints for database "arith" remain declared
in these old-style file (such as Plus.v, Lt.v, etc). All the old-style
files are still Require'd (or not) by Arith.v, just as before.
- Compatibility should be almost complete. For instance in the stdlib,
the only adaptations were due to .ml code referring to some Coq constant
name such as Coq.Init.Peano.pred, which doesn't live well with the
new compatibility notations.
|
|
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@15715 85f007b7-540e-0410-9357-904b9bb8a0f7
|
|
- For instance, refl_equal --> eq_refl
- Npos, Zpos, Zneg now admit more uniform qualified aliases
N.pos, Z.pos, Z.neg.
- A new module BinInt.Pos2Z with results about injections from
positive to Z
- A result about Z.pow pushed in the generic layer
- Zmult_le_compat_{r,l} --> Z.mul_le_mono_nonneg_{r,l}
- Using tactic Z.le_elim instead of Zle_lt_or_eq
- Some cleanup in ring, field, micromega
(use of "Equivalence", "Proper" ...)
- Some adaptions in QArith (for instance changed Qpower.Qpower_decomp)
- In ZMake and ZMake, functor parameters are now named NN and ZZ
instead of N and Z for avoiding confusions
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@15515 85f007b7-540e-0410-9357-904b9bb8a0f7
|
|
For example, if we know that [f] is a morphism for [E1==>E2==>E],
then the goal [E (f x y) (f x' y')] will be transformed by [f_equiv]
into the subgoals [E1 x x'] and [E2 y y'].
This way, we can remove most of the explicit use of the morphism
instances in Numbers (lemmas foo_wd for each operator foo).
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13763 85f007b7-540e-0410-9357-904b9bb8a0f7
|
|
- a ltac solve_proper which generalizes solve_predicate_wd and co
- using le_elim is nicer that (apply le_lteq; destruct ...)
- "apply ->" can now be "apply" most of the time.
Benefit: NumPrelude is now almost empty
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13762 85f007b7-540e-0410-9357-904b9bb8a0f7
|
|
Initially, I was using notation 1 := (S 0) and so on. But then, when
implementing by NArith or ZArith, some lemmas statements were filled
with Nsucc's and Zsucc's instead of 1 and 2's.
Concerning BigN, things are rather complicated: zero, one, two
aren't inlined during the functor application creating BigN.
This is deliberate, at least for the other operations like BigN.add.
And anyway, since zero, one, two are defined too early in NMake,
we don't have 0%bigN in the body of BigN.zero but something complex that
reduce to 0%bigN, same for one and two. Fortunately, apply or
rewrite of generic lemmas seem to work, even if there's BigZ.zero
on one side and 0 on the other...
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13555 85f007b7-540e-0410-9357-904b9bb8a0f7
|
|
- Simplification of functor names, e.g. ZFooProp instead of ZFooPropFunct
- The axiomatisations of the different fonctions are now in {N,Z}Axioms.v
apart for Z division (three separate flavours in there own files).
Content of {N,Z}AxiomsSig is extended, old version is {N,Z}AxiomsMiniSig.
- In NAxioms, the recursion field isn't that useful, since we axiomatize
other functions and not define them (apart in the toy NDefOps.v).
We leave recursion there, but in a separate NAxiomsFullSig.
- On Z, the pow function is specified to behave as Zpower : a^(-1)=0
- In BigN/BigZ, (power:t->N->t) is now pow_N, while pow is t->t->t
These pow could be more clever (we convert 2nd arg to N and use pow_N).
Default "^" is now (pow:t->t->t). BigN/BigZ ring is adapted accordingly
- In BigN, is_even is now even, its spec is changed to use Zeven_bool.
We add an odd. In BigZ, we add even and odd.
- In ZBinary (implem of ZAxioms by ZArith), we create an efficient Zpow
to implement pow. This Zpow should replace the current linear Zpower
someday.
- In NPeano (implem of NAxioms by Arith), we create pow, even, odd functions,
and we modify the div and mod functions for them to be linear, structural,
tail-recursive.
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13546 85f007b7-540e-0410-9357-904b9bb8a0f7
|
|
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13323 85f007b7-540e-0410-9357-904b9bb8a0f7
|
|
- Many of them were broken, some of them after Pierre B's rework
of mli for ocamldoc, but not only (many bad annotation, many files
with no svn property about Id, etc)
- Useless for those of us that work with git-svn (and a fortiori
in a forthcoming git-only setting)
- Even in svn, they seem to be of little interest
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@12972 85f007b7-540e-0410-9357-904b9bb8a0f7
|
|
without scope.
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@12639 85f007b7-540e-0410-9357-904b9bb8a0f7
|
|
- No more nesting of Module and Module Type, we rather use Include.
- Instead of in-name-qualification like NZeq, we use uniform
short names + modular qualification like N.eq when necessary.
- Many simplification of proofs, by some autorewrite for instance
- In NZOrder, we instantiate an "order" tactic.
- Some requirements in NZAxioms were superfluous: compatibility
of le, min and max could be derived from the rest.
- NMul removed, since it was containing only an ad-hoc result for
ZNatPairs, that we've inlined in the proof of mul_wd there.
- Zdomain removed (was already not compiled), idea of a module
with eq and eqb reused in DecidableType.BooleanEqualityType.
- ZBinDefs don't contain any definition now, migrate it to ZBinary.
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@12489 85f007b7-540e-0410-9357-904b9bb8a0f7
|
|
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@12475 85f007b7-540e-0410-9357-904b9bb8a0f7
|
|
TODO: finish removing the "Add Relation", "Add Morphism" fun_* fun2_*
TODO: now that we have Include, flatten the hierarchy...
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@12464 85f007b7-540e-0410-9357-904b9bb8a0f7
|
|
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@11675 85f007b7-540e-0410-9357-904b9bb8a0f7
|
|
for increased consistency with bignums parts
(commit part II: names of files + additional translation minus --> sub)
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@11040 85f007b7-540e-0410-9357-904b9bb8a0f7
|
|
for increased consistency with bignums parts
(commit part I: content of files)
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@11039 85f007b7-540e-0410-9357-904b9bb8a0f7
|
|
part).
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@10964 85f007b7-540e-0410-9357-904b9bb8a0f7
|
|
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@10934 85f007b7-540e-0410-9357-904b9bb8a0f7
|
|
of the fix I added an optional "by" annotation for rewrite to solve said
conditions in the same tactic call. Most of the theories have been
updated, only FSets is missing, Pierre will take care of it.
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@10634 85f007b7-540e-0410-9357-904b9bb8a0f7
|
|
ZArith/Zorder on MacOS.
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@10323 85f007b7-540e-0410-9357-904b9bb8a0f7
|
|
theories/Numbers/Natural/Binary/NBinDefs. Most of the entities in the new BinNat are notations for the development in Numbers. Also added min and max to the new natural numbers and integers.
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@10298 85f007b7-540e-0410-9357-904b9bb8a0f7
|
|
natural numbers are isomorphic. Added NatScope and IntScope for abstract developments.
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@10247 85f007b7-540e-0410-9357-904b9bb8a0f7
|
|
binary positive numbers.
Added directory contribs/micromega with the generalization of Frédéric Besson's micromega tactic for an arbitrary ordered ring. So far no tactic has been defined. One has to apply the theorems and find the certificate, which is necessary to solve inequations, manually.
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@10226 85f007b7-540e-0410-9357-904b9bb8a0f7
|
|
of integers due to Gregoire and Théry satisfies the axioms of integers without order. This refers to integers modulo n, i.e., those that fit trees of certain size, not to BigZ.
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@10178 85f007b7-540e-0410-9357-904b9bb8a0f7
|
|
binary implementation and integers as pairs of natural numbers
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@10167 85f007b7-540e-0410-9357-904b9bb8a0f7
|
|
things compile: abstract natural numbers and integers with plus, times, minus, and order; Peano and binary implementations for natural numbers.
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@10161 85f007b7-540e-0410-9357-904b9bb8a0f7
|
|
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@10142 85f007b7-540e-0410-9357-904b9bb8a0f7
|
|
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@10133 85f007b7-540e-0410-9357-904b9bb8a0f7
|
|
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@10119 85f007b7-540e-0410-9357-904b9bb8a0f7
|
|
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@10075 85f007b7-540e-0410-9357-904b9bb8a0f7
|
|
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@10041 85f007b7-540e-0410-9357-904b9bb8a0f7
|
|
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@10002 85f007b7-540e-0410-9357-904b9bb8a0f7
|
|
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@9955 85f007b7-540e-0410-9357-904b9bb8a0f7
|
|
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@9947 85f007b7-540e-0410-9357-904b9bb8a0f7
|
|
implementations (unary, binary, etc.) of different number classes (natural, integer, rational, real, complex, etc.) will be stored.Currently there are axiomatized natural numbers with two implementations and axiomatized integers. Modified Makefile accordingly but dod not include the new files in THEORIESVO yet.
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@9916 85f007b7-540e-0410-9357-904b9bb8a0f7
|