aboutsummaryrefslogtreecommitdiff
path: root/theories/Numbers/Integer/NatPairs
AgeCommit message (Collapse)Author
2020-03-18Update headers in the whole code base.Théo Zimmermann
Add headers to a few files which were missing them.
2019-06-17Update ml-style headers to new year.Théo Zimmermann
2018-09-10Adapting standard library to the introduction of "Declare Scope".Hugo Herbelin
Removing in passing two Local which are no-ops in practice.
2018-02-27Update headers following #6543.Théo Zimmermann
2017-07-04Bump year in headers.Pierre-Marie Pédrot
2016-01-20Update copyright headers.Maxime Dénès
2015-01-12Update headers.Maxime Dénès
2014-07-09Arith: full integration of the "Numbers" modular frameworkPierre Letouzey
- The earlier proof-of-concept file NPeano (which instantiates the "Numbers" framework for nat) becomes now the entry point in the Arith lib, and gets renamed PeanoNat. It still provides an inner module "Nat" which sums up everything about type nat (functions, predicates and properties of them). This inner module Nat is usable as soon as you Require Import Arith, or just Arith_base, or simply PeanoNat. - Definitions of operations over type nat are now grouped in a new file Init/Nat.v. This file is meant to be used without "Import", hence providing for instance Nat.add or Nat.sqrt as soon as coqtop starts (but no proofs about them). - The definitions that used to be in Init/Peano.v (pred, plus, minus, mult) are now compatibility notations (for Nat.pred, Nat.add, Nat.sub, Nat.mul where here Nat is Init/Nat.v). - This Coq.Init.Nat module (with only pure definitions) is Include'd in the aforementioned Coq.Arith.PeanoNat.Nat. You might see Init.Nat sometimes instead of just Nat (for instance when doing "Print plus"). Normally it should be ok to just ignore these "Init" since Init.Nat is included in the full PeanoNat.Nat. I'm investigating if it's possible to get rid of these "Init" prefixes. - Concerning predicates, orders le and lt are still defined in Init/Peano.v, with their notations "<=" and "<". Properties in PeanoNat.Nat directly refer to these predicates in Peano. For instantation reasons, PeanoNat.Nat also contains a Nat.le and Nat.lt (defined via "Definition le := Peano.le", we cannot yet include an Inductive to implement a Parameter), but these aliased predicates won't probably be very convenient to use. - Technical remark: I've split the previous property functor NProp in two parts (NBasicProp and NExtraProp), it helps a lot for building PeanoNat.Nat incrementally. Roughly speaking, we have the following schema: Module Nat. Include Coq.Init.Nat. (* definition of operations : add ... sqrt ... *) ... (** proofs of specifications for basic ops such as + * - *) Include NBasicProp. (** generic properties of these basic ops *) ... (** proofs of specifications for advanced ops (pow sqrt log2...) that may rely on proofs for + * - *) Include NExtraProp. (** all remaining properties *) End Nat. - All other files in directory Arith are now taking advantage of PeanoNat : they are now filled with compatibility notations (when earlier lemmas have exact counterpart in the Nat module) or lemmas with one-line proofs based on the Nat module. All hints for database "arith" remain declared in these old-style file (such as Plus.v, Lt.v, etc). All the old-style files are still Require'd (or not) by Arith.v, just as before. - Compatibility should be almost complete. For instance in the stdlib, the only adaptations were due to .ml code referring to some Coq constant name such as Coq.Init.Peano.pred, which doesn't live well with the new compatibility notations.
2012-08-08Updating headers.herbelin
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@15715 85f007b7-540e-0410-9357-904b9bb8a0f7
2012-07-05ZArith + other : favor the use of modern names instead of compat notationsletouzey
- For instance, refl_equal --> eq_refl - Npos, Zpos, Zneg now admit more uniform qualified aliases N.pos, Z.pos, Z.neg. - A new module BinInt.Pos2Z with results about injections from positive to Z - A result about Z.pow pushed in the generic layer - Zmult_le_compat_{r,l} --> Z.mul_le_mono_nonneg_{r,l} - Using tactic Z.le_elim instead of Zle_lt_or_eq - Some cleanup in ring, field, micromega (use of "Equivalence", "Proper" ...) - Some adaptions in QArith (for instance changed Qpower.Qpower_decomp) - In ZMake and ZMake, functor parameters are now named NN and ZZ instead of N and Z for avoiding confusions git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@15515 85f007b7-540e-0410-9357-904b9bb8a0f7
2011-01-04f_equiv : a clone of f_equal that handles setoid equivalencesletouzey
For example, if we know that [f] is a morphism for [E1==>E2==>E], then the goal [E (f x y) (f x' y')] will be transformed by [f_equiv] into the subgoals [E1 x x'] and [E2 y y']. This way, we can remove most of the explicit use of the morphism instances in Numbers (lemmas foo_wd for each operator foo). git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13763 85f007b7-540e-0410-9357-904b9bb8a0f7
2011-01-03Numbers: some improvements in proofsletouzey
- a ltac solve_proper which generalizes solve_predicate_wd and co - using le_elim is nicer that (apply le_lteq; destruct ...) - "apply ->" can now be "apply" most of the time. Benefit: NumPrelude is now almost empty git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13762 85f007b7-540e-0410-9357-904b9bb8a0f7
2010-10-14Numbers : also axiomatize constants 1 and 2.letouzey
Initially, I was using notation 1 := (S 0) and so on. But then, when implementing by NArith or ZArith, some lemmas statements were filled with Nsucc's and Zsucc's instead of 1 and 2's. Concerning BigN, things are rather complicated: zero, one, two aren't inlined during the functor application creating BigN. This is deliberate, at least for the other operations like BigN.add. And anyway, since zero, one, two are defined too early in NMake, we don't have 0%bigN in the body of BigN.zero but something complex that reduce to 0%bigN, same for one and two. Fortunately, apply or rewrite of generic lemmas seem to work, even if there's BigZ.zero on one side and 0 on the other... git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13555 85f007b7-540e-0410-9357-904b9bb8a0f7
2010-10-14Numbers: new functions pow, even, odd + many reorganisationsletouzey
- Simplification of functor names, e.g. ZFooProp instead of ZFooPropFunct - The axiomatisations of the different fonctions are now in {N,Z}Axioms.v apart for Z division (three separate flavours in there own files). Content of {N,Z}AxiomsSig is extended, old version is {N,Z}AxiomsMiniSig. - In NAxioms, the recursion field isn't that useful, since we axiomatize other functions and not define them (apart in the toy NDefOps.v). We leave recursion there, but in a separate NAxiomsFullSig. - On Z, the pow function is specified to behave as Zpower : a^(-1)=0 - In BigN/BigZ, (power:t->N->t) is now pow_N, while pow is t->t->t These pow could be more clever (we convert 2nd arg to N and use pow_N). Default "^" is now (pow:t->t->t). BigN/BigZ ring is adapted accordingly - In BigN, is_even is now even, its spec is changed to use Zeven_bool. We add an odd. In BigZ, we add even and odd. - In ZBinary (implem of ZAxioms by ZArith), we create an efficient Zpow to implement pow. This Zpow should replace the current linear Zpower someday. - In NPeano (implem of NAxioms by Arith), we create pow, even, odd functions, and we modify the div and mod functions for them to be linear, structural, tail-recursive. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13546 85f007b7-540e-0410-9357-904b9bb8a0f7
2010-07-24Updated all headers for 8.3 and trunkherbelin
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13323 85f007b7-540e-0410-9357-904b9bb8a0f7
2010-04-29Remove the svn-specific $Id$ annotationsletouzey
- Many of them were broken, some of them after Pierre B's rework of mli for ocamldoc, but not only (many bad annotation, many files with no svn property about Id, etc) - Useless for those of us that work with git-svn (and a fortiori in a forthcoming git-only setting) - Even in svn, they seem to be of little interest git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@12972 85f007b7-540e-0410-9357-904b9bb8a0f7
2010-01-07Numbers: separation of funs, notations, axioms. Notations via module, ↵letouzey
without scope. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@12639 85f007b7-540e-0410-9357-904b9bb8a0f7
2009-11-10Simplification of Numbers, mainly thanks to Includeletouzey
- No more nesting of Module and Module Type, we rather use Include. - Instead of in-name-qualification like NZeq, we use uniform short names + modular qualification like N.eq when necessary. - Many simplification of proofs, by some autorewrite for instance - In NZOrder, we instantiate an "order" tactic. - Some requirements in NZAxioms were superfluous: compatibility of le, min and max could be derived from the rest. - NMul removed, since it was containing only an ad-hoc result for ZNatPairs, that we've inlined in the proof of mul_wd there. - Zdomain removed (was already not compiled), idea of a module with eq and eqb reused in DecidableType.BooleanEqualityType. - ZBinDefs don't contain any definition now, migrate it to ZBinary. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@12489 85f007b7-540e-0410-9357-904b9bb8a0f7
2009-11-06Numbers: more (syntactic) changes toward new style of type classesletouzey
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@12475 85f007b7-540e-0410-9357-904b9bb8a0f7
2009-11-03Numbers: start using Classes stuff, Equivalence, Proper, Instance, etcletouzey
TODO: finish removing the "Add Relation", "Add Morphism" fun_* fun2_* TODO: now that we have Include, flatten the hierarchy... git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@12464 85f007b7-540e-0410-9357-904b9bb8a0f7
2008-12-12Uniformity with the rest of the StdLib : _symm --> _symletouzey
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@11675 85f007b7-540e-0410-9357-904b9bb8a0f7
2008-06-03In abstract parts of theories/Numbers, plus/times becomes add/mul, letouzey
for increased consistency with bignums parts (commit part II: names of files + additional translation minus --> sub) git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@11040 85f007b7-540e-0410-9357-904b9bb8a0f7
2008-06-02In abstract parts of theories/Numbers, plus/times becomes add/mul, letouzey
for increased consistency with bignums parts (commit part I: content of files) git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@11039 85f007b7-540e-0410-9357-904b9bb8a0f7
2008-05-22switch theories/Numbers from Set to Type (both the abstract and the bignum ↵letouzey
part). git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@10964 85f007b7-540e-0410-9357-904b9bb8a0f7
2008-05-15Coq headers + $ in theories/Numbers filesletouzey
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@10934 85f007b7-540e-0410-9357-904b9bb8a0f7
2008-03-07Fix bug #1704 (ordering of condition goals for (setoid)rewrite). As partmsozeau
of the fix I added an optional "by" annotation for rewrite to solve said conditions in the same tactic call. Most of the theories have been updated, only FSets is missing, Pierre will take care of it. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@10634 85f007b7-540e-0410-9357-904b9bb8a0f7
2007-11-14Update on Numbers; renamed ZOrder.v to ZLt to remove clash with ↵emakarov
ZArith/Zorder on MacOS. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@10323 85f007b7-540e-0410-9357-904b9bb8a0f7
2007-11-07Replaced BinNat with a new version that is based on ↵emakarov
theories/Numbers/Natural/Binary/NBinDefs. Most of the entities in the new BinNat are notations for the development in Numbers. Also added min and max to the new natural numbers and integers. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@10298 85f007b7-540e-0410-9357-904b9bb8a0f7
2007-10-23Added Numbers/Natural/Abstract/NIso.v that proves that any two models of ↵emakarov
natural numbers are isomorphic. Added NatScope and IntScope for abstract developments. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@10247 85f007b7-540e-0410-9357-904b9bb8a0f7
2007-10-16Added transitivity and irreflexivity of <, as well as < -elimination for ↵emakarov
binary positive numbers. Added directory contribs/micromega with the generalization of Frédéric Besson's micromega tactic for an arbitrary ordered ring. So far no tactic has been defined. One has to apply the theorems and find the certificate, which is necessary to solve inequations, manually. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@10226 85f007b7-540e-0410-9357-904b9bb8a0f7
2007-10-04Added the proof (in Numbers/Integers/TreeMod) that tree-like representation ↵emakarov
of integers due to Gregoire and Théry satisfies the axioms of integers without order. This refers to integers modulo n, i.e., those that fit trees of certain size, not to BigZ. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@10178 85f007b7-540e-0410-9357-904b9bb8a0f7
2007-10-02The following now compiles: abstract integers with plus, minus and times, ↵emakarov
binary implementation and integers as pairs of natural numbers git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@10167 85f007b7-540e-0410-9357-904b9bb8a0f7
2007-10-01Added the compilation of theories/Numbers to Makefile.common. The following ↵emakarov
things compile: abstract natural numbers and integers with plus, times, minus, and order; Peano and binary implementations for natural numbers. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@10161 85f007b7-540e-0410-9357-904b9bb8a0f7
2007-09-25An update on theories/Numbers.emakarov
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@10142 85f007b7-540e-0410-9357-904b9bb8a0f7
2007-09-21Update on theories/Numbersemakarov
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@10133 85f007b7-540e-0410-9357-904b9bb8a0f7
2007-09-13Update before joining all signatures into one.emakarov
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@10119 85f007b7-540e-0410-9357-904b9bb8a0f7
2007-08-13An update on axiomatic number classes.emakarov
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@10075 85f007b7-540e-0410-9357-904b9bb8a0f7
2007-07-24An update on axiomatization of numbers.emakarov
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@10041 85f007b7-540e-0410-9357-904b9bb8a0f7
2007-07-13An update on axiomatization of number classes.emakarov
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@10002 85f007b7-540e-0410-9357-904b9bb8a0f7
2007-07-06Update of theories/Numbers directory.emakarov
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@9955 85f007b7-540e-0410-9357-904b9bb8a0f7
2007-07-05Update on numbers.emakarov
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@9947 85f007b7-540e-0410-9357-904b9bb8a0f7
2007-06-29Added the directory theories/Numbers where axiomatizations and ↵emakarov
implementations (unary, binary, etc.) of different number classes (natural, integer, rational, real, complex, etc.) will be stored.Currently there are axiomatized natural numbers with two implementations and axiomatized integers. Modified Makefile accordingly but dod not include the new files in THEORIESVO yet. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@9916 85f007b7-540e-0410-9357-904b9bb8a0f7