aboutsummaryrefslogtreecommitdiff
path: root/theories/Numbers/Integer/Abstract/ZPow.v
AgeCommit message (Collapse)Author
2020-10-08Modify Numbers/Integer/Abstract/ZPow.v to compile with -mangle-namesJasper Hugunin
2020-03-18Update headers in the whole code base.Théo Zimmermann
Add headers to a few files which were missing them.
2019-06-17Update ml-style headers to new year.Théo Zimmermann
2018-02-27Update headers following #6543.Théo Zimmermann
2017-07-04Bump year in headers.Pierre-Marie Pédrot
2016-01-20Update copyright headers.Maxime Dénès
2015-01-12Update headers.Maxime Dénès
2012-08-08Updating headers.herbelin
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@15715 85f007b7-540e-0410-9357-904b9bb8a0f7
2012-07-05ZArith + other : favor the use of modern names instead of compat notationsletouzey
- For instance, refl_equal --> eq_refl - Npos, Zpos, Zneg now admit more uniform qualified aliases N.pos, Z.pos, Z.neg. - A new module BinInt.Pos2Z with results about injections from positive to Z - A result about Z.pow pushed in the generic layer - Zmult_le_compat_{r,l} --> Z.mul_le_mono_nonneg_{r,l} - Using tactic Z.le_elim instead of Zle_lt_or_eq - Some cleanup in ring, field, micromega (use of "Equivalence", "Proper" ...) - Some adaptions in QArith (for instance changed Qpower.Qpower_decomp) - In ZMake and ZMake, functor parameters are now named NN and ZZ instead of N and Z for avoiding confusions git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@15515 85f007b7-540e-0410-9357-904b9bb8a0f7
2011-01-03Numbers: some improvements in proofsletouzey
- a ltac solve_proper which generalizes solve_predicate_wd and co - using le_elim is nicer that (apply le_lteq; destruct ...) - "apply ->" can now be "apply" most of the time. Benefit: NumPrelude is now almost empty git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13762 85f007b7-540e-0410-9357-904b9bb8a0f7
2010-12-06Numbers and bitwise functions.letouzey
See NatInt/NZBits.v for the common axiomatization of bitwise functions over naturals / integers. Some specs aren't pretty, but easier to prove, see alternate statements in property functors {N,Z}Bits. Negative numbers are considered via the two's complement convention. We provide implementations for N (in Ndigits.v), for nat (quite dummy, just for completeness), for Z (new file Zdigits_def), for BigN (for the moment partly by converting to N, to be improved soon) and for BigZ. NOTA: For BigN.shiftl and BigN.shiftr, the two arguments are now in the reversed order (for consistency with the rest of the world): for instance BigN.shiftl 1 10 is 2^10. NOTA2: Zeven.Zdiv2 is _not_ doing (Zdiv _ 2), but rather (Zquot _ 2) on negative numbers. For the moment I've kept it intact, and have just added a Zdiv2' which is truly equivalent to (Zdiv _ 2). To reorganize someday ? git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13689 85f007b7-540e-0410-9357-904b9bb8a0f7
2010-11-02Numbers: specs about sqrt and pow of neg numbers, even in NZletouzey
These additional specs are useless (but trivially provable) for N. They are quite convenient when deriving properties in NZ. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13603 85f007b7-540e-0410-9357-904b9bb8a0f7
2010-11-02Numbers: NZPowProp as a Module Type, some module variable renamingletouzey
We temporary use a hack to convert a module type into a module Module M := T is refused, so we force an include via Module M := Nop <+ T where Nop is an empty module. To be fixed later more beautifully... git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13602 85f007b7-540e-0410-9357-904b9bb8a0f7
2010-10-14Numbers : also axiomatize constants 1 and 2.letouzey
Initially, I was using notation 1 := (S 0) and so on. But then, when implementing by NArith or ZArith, some lemmas statements were filled with Nsucc's and Zsucc's instead of 1 and 2's. Concerning BigN, things are rather complicated: zero, one, two aren't inlined during the functor application creating BigN. This is deliberate, at least for the other operations like BigN.add. And anyway, since zero, one, two are defined too early in NMake, we don't have 0%bigN in the body of BigN.zero but something complex that reduce to 0%bigN, same for one and two. Fortunately, apply or rewrite of generic lemmas seem to work, even if there's BigZ.zero on one side and 0 on the other... git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13555 85f007b7-540e-0410-9357-904b9bb8a0f7
2010-10-14Numbers: new functions pow, even, odd + many reorganisationsletouzey
- Simplification of functor names, e.g. ZFooProp instead of ZFooPropFunct - The axiomatisations of the different fonctions are now in {N,Z}Axioms.v apart for Z division (three separate flavours in there own files). Content of {N,Z}AxiomsSig is extended, old version is {N,Z}AxiomsMiniSig. - In NAxioms, the recursion field isn't that useful, since we axiomatize other functions and not define them (apart in the toy NDefOps.v). We leave recursion there, but in a separate NAxiomsFullSig. - On Z, the pow function is specified to behave as Zpower : a^(-1)=0 - In BigN/BigZ, (power:t->N->t) is now pow_N, while pow is t->t->t These pow could be more clever (we convert 2nd arg to N and use pow_N). Default "^" is now (pow:t->t->t). BigN/BigZ ring is adapted accordingly - In BigN, is_even is now even, its spec is changed to use Zeven_bool. We add an odd. In BigZ, we add even and odd. - In ZBinary (implem of ZAxioms by ZArith), we create an efficient Zpow to implement pow. This Zpow should replace the current linear Zpower someday. - In NPeano (implem of NAxioms by Arith), we create pow, even, odd functions, and we modify the div and mod functions for them to be linear, structural, tail-recursive. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13546 85f007b7-540e-0410-9357-904b9bb8a0f7