| Age | Commit message (Collapse) | Author |
|
fix unexpectedly broken MSetGenTree.v
add changelog entry
|
|
By default Coq stdlib warnings raise an error, so this is really required.
|
|
Add headers to a few files which were missing them.
|
|
This could be Prop (for compat with usual Coq), Set (for HoTT),
or actually an arbitrary "i".
Take lower bound of universes into account in pretyping/engine
Reinstate proper elaboration of SProp <= l constraints:
replacing is_small with equality with lbound is _not_ semantics preserving!
lbound = Set
Elaborate template polymorphic inductives with lower bound Prop
This will make more constraints explicit
Check univ constraints with Prop as lower bound for template inductives
Restrict template polymorphic universes to those not bounded from below
Fixes #9294
fix suggested by Matthieu
Try second fix suggested by Matthieu
Take care of modifying elaboration for record declarations as well.
Rebase and export functions for debug
Remove exported functions used while debugging
Add a new typing flag "check_template" and option "-no-template-checl"
This parameterizes the new criterion on template polymorphic inductives
to allow bypassing it (necessary for backward compatibility).
Update checker to the new typing flags structure
Switch on the new template_check flag to allow old unsafe behavior in
indTyping.
This is the only change of code really impacting the kernel, together
with the commit implementing unbounded from below and parameterization
by the lower bound on universes.
Add deprecated option `Unset Template Check` allowing to make proof
scripts work with both 8.9 and 8.10 for a while
Fix `Template Check` option name and test it
Add `Unset Template Check` to Coq89.v
Cooking of inductives and template-check tests
Cleanup test-suite file for template check / universes(template) flags
cookind tests
Move test of `Unset Template Check` to the failure/ dir, but comment it
for now
Template test-suite test explanation
Overlays for PR 9918
Overlay for paramcoq
Add overlay for fiat_parsers (-no-template-check)
Add overlay for fiat_crypto_legacy
Update fiat-crypto legacy overlay
Now it points at the version that I plan on merging; I am hoping that doing this will guard against mistakes by adding an extra check that the target tested by Coq's CI on this branch works with the change I made.
Remove overlay that should no longer be necessary
The setting in the compat file should handle it
Remove now-merged fiat-crypto-legacy overlay
Update `Print Assumptions` to reflect the typing flag for template checking
Fix About and Print Assumptions for template poly, giving info on which
variables are actually polymorphic
Fix pretty printing to print global universe levels properly
Fix printing of template polymorphic universes
Fix pretty printing for template polymorphism on no universe
Fix interaction of template check and universes(template) flag
Fix indTyping to really check if there is any point in polymorphism: the
conclusion sort should be parameterized over at least one local universe
Indtyping fixes for template polymorphic Props
Allow explicit template polymorphism again
Adapt to new indTyping interface
Handle the case of template-polymorphic on no universes
correctly (morally Type0m univ represented as Prop).
Fix check of meaningfullness of template polymorphism in the kernel.
It is now done w.r.t the min_univ, the minimal universe inferred for the
inductive/record type, independently of the user-written annotation
which must only be larger than min_univ. This preserves compatibility
with UniMath and template-polymorphism as it has been implemented up-to
now.
Comment on identity non-template-polymorphism
Remove incorrect universes(template) attributes from ssr
simpl_fun can be meaningfully template-poly, as well as
pred_key (although the use is debatable: it could just
as well be in Prop).
Move `fun_of_simpl` coercion declaration out of section to respect
uniform inheritance
Remove incorrect uses of #[universes(template)] from the stdlib
Extraction of micromega changes due to moving an ind decl out of a section
Remove incorrect uses of #[universes(template)] from plugins
Fix test-suite files, removing incorrect #[universes(template)] attributes
Remove incorrect #[universes(template)] attributes in test-suite
Fix test-suite
Remove overlays as they have been merged upstream.
|
|
|
|
|
|
|
|
Previously, hints added without a specified database where implicitly
put in the "core" database, which was discouraged by the user manual
(because of the lack of modularity of this approach).
|
|
|
|
|
|
|
|
|
|
The user now has to manually load them, respectively via:
Require Extraction
Require Import FunInd
The "Import" in the case of FunInd is to ensure that the
tactics functional induction and functional inversion are indeed
in scope.
Note that the Recdef.v file is still there as well (it contains
complements used when doing Function with measures), and it also
triggers a load of FunInd.v.
This change is correctly documented in the refman, and the test-suite
has been adapted.
|
|
This reverts commit 3a2753bedf43a8c7306b1b3fc9cb37aafb78ad7a.
|
|
"exists c1, c2".
|
|
|
|
(but deactivated still).
Set Keyed Unification to activate the option, which changes
subterm selection to _always_ use full conversion _after_ finding a
subterm whose head/key matches the key of the term we're looking for.
This applies to rewrite and higher-order unification in
apply/elim/destruct.
Most proof scripts already abide by these semantics. For those that
don't, it's usually only a matter of using:
Declare Equivalent Keys f g.
This make keyed unification consider f and g to match as keys.
This takes care of most cases of abbreviations: typically Def foo :=
bar and rewriting with a bar-headed lhs in a goal mentioning foo works
once they're set equivalent.
For canonical structures, these hints should be automatically declared.
For non-global-reference headed terms, the key is the constructor name
(Sort, Prod...). Evars and metas are no keys.
INCOMPATIBILITIES:
In FMapFullAVL, a Function definition doesn't go through with keyed
unification on.
|
|
- The earlier proof-of-concept file NPeano (which instantiates
the "Numbers" framework for nat) becomes now the entry point
in the Arith lib, and gets renamed PeanoNat. It still provides
an inner module "Nat" which sums up everything about type nat
(functions, predicates and properties of them).
This inner module Nat is usable as soon as you Require Import Arith,
or just Arith_base, or simply PeanoNat.
- Definitions of operations over type nat are now grouped in a new
file Init/Nat.v. This file is meant to be used without "Import",
hence providing for instance Nat.add or Nat.sqrt as soon as coqtop
starts (but no proofs about them).
- The definitions that used to be in Init/Peano.v (pred, plus, minus, mult)
are now compatibility notations (for Nat.pred, Nat.add, Nat.sub, Nat.mul
where here Nat is Init/Nat.v).
- This Coq.Init.Nat module (with only pure definitions) is Include'd
in the aforementioned Coq.Arith.PeanoNat.Nat. You might see Init.Nat
sometimes instead of just Nat (for instance when doing "Print plus").
Normally it should be ok to just ignore these "Init" since
Init.Nat is included in the full PeanoNat.Nat. I'm investigating if
it's possible to get rid of these "Init" prefixes.
- Concerning predicates, orders le and lt are still defined in Init/Peano.v,
with their notations "<=" and "<". Properties in PeanoNat.Nat directly
refer to these predicates in Peano. For instantation reasons, PeanoNat.Nat
also contains a Nat.le and Nat.lt (defined via "Definition le := Peano.le",
we cannot yet include an Inductive to implement a Parameter), but these
aliased predicates won't probably be very convenient to use.
- Technical remark: I've split the previous property functor NProp in
two parts (NBasicProp and NExtraProp), it helps a lot for building
PeanoNat.Nat incrementally. Roughly speaking, we have the following schema:
Module Nat.
Include Coq.Init.Nat. (* definition of operations : add ... sqrt ... *)
... (** proofs of specifications for basic ops such as + * - *)
Include NBasicProp. (** generic properties of these basic ops *)
... (** proofs of specifications for advanced ops (pow sqrt log2...)
that may rely on proofs for + * - *)
Include NExtraProp. (** all remaining properties *)
End Nat.
- All other files in directory Arith are now taking advantage of PeanoNat :
they are now filled with compatibility notations (when earlier lemmas
have exact counterpart in the Nat module) or lemmas with one-line proofs
based on the Nat module. All hints for database "arith" remain declared
in these old-style file (such as Plus.v, Lt.v, etc). All the old-style
files are still Require'd (or not) by Arith.v, just as before.
- Compatibility should be almost complete. For instance in the stdlib,
the only adaptations were due to .ml code referring to some Coq constant
name such as Coq.Init.Peano.pred, which doesn't live well with the
new compatibility notations.
|
|
|
|
- Enforce that no u <= Prop/Set can be added for u introduced by the user in Evd.process_constraints.
(Needs to be enforced in the kernel as well, but that's the main entry point).
- Fix a test-suite script and remove a regression comment, it's just as before now.
|
|
latent universes. Now the universes in the type of a definition/lemma
are eagerly added to the environment so that later proofs can be checked
independently of the original (delegated) proof body.
- Fixed firstorder, ring to work correctly with universe polymorphism.
- Changed constr_of_global to raise an anomaly if side effects would be lost by
turning a polymorphic constant into a constr.
- Fix a non-termination issue in solve_evar_evar.
-
|
|
... no need to Unset them manually
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@16631 85f007b7-540e-0410-9357-904b9bb8a0f7
|
|
instead of a general constr: this is the most common case and does
not loose generality (one can simply define constrs before Hint Resolving
them). Benefits:
- Natural semantics for typeclasses, not class resolution needed at
Hint Resolve time, meaning less trouble for users as well.
- Ability to [Hint Remove] any hint so declared.
- Simplifies the implementation as well.
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@15930 85f007b7-540e-0410-9357-904b9bb8a0f7
|
|
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@15838 85f007b7-540e-0410-9357-904b9bb8a0f7
|
|
Initial contribution by Andrew Appel, many ulterior modifications
by myself.
Interest: red-black trees maintain logarithmic depths as AVL,
but they do not rely on integer height annotations as AVL,
allowing interesting performance when computing in Coq or after
standard extraction. More on this topic in the article by A. Appel.
The common parts of MSetAVL and MSetRBT are shared in a new file
MSetGenTree which include the definition of tree and functions
such as mem fold elements compare subset.
Note that the height of AVL trees is now the first arg of the
Node constructor instead of the last one.
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@15168 85f007b7-540e-0410-9357-904b9bb8a0f7
|