| Age | Commit message (Collapse) | Author |
|
Current backtraces for tactics leave a bit to desire, for example
given the program:
```coq
Lemma u n : n + 0 = n.
rewrite plus_O_n.
```
the backtrace stops at:
```
Found no subterm matching "0 + ?M160" in the current goal.
Called from file "proofs/proof.ml", line 381, characters 4-42
Called from file "tactics/pfedit.ml", line 102, characters 31-58
Called from file "plugins/ltac/g_ltac.mlg", line 378, characters 8-84
```
Backtrace information `?info` is as of today optional in some tactics,
such as `tclZERO`, it doesn't cost a lot however to reify backtrace
information indeed in `tclZERO` and provide backtraces for all tactic
errors. The cost should be small if we are not in debug mode.
The backtrace for the failed rewrite is now:
```
Found no subterm matching "0 + ?M160" in the current goal.
Raised at file "pretyping/unification.ml", line 1827, characters 14-73
Called from file "pretyping/unification.ml", line 1929, characters 17-53
Called from file "pretyping/unification.ml", line 1948, characters 22-72
Called from file "pretyping/unification.ml", line 2020, characters 14-56
Re-raised at file "pretyping/unification.ml", line 2021, characters 66-73
Called from file "proofs/clenv.ml", line 254, characters 12-58
Called from file "proofs/clenvtac.ml", line 95, characters 16-53
Called from file "engine/proofview.ml", line 1110, characters 40-46
Called from file "engine/proofview.ml", line 1115, characters 10-34
Re-raised at file "clib/exninfo.ml", line 82, characters 4-38
Called from file "proofs/proof.ml", line 381, characters 4-42
Called from file "tactics/pfedit.ml", line 102, characters 31-58
Called from file "plugins/ltac/g_ltac.mlg", line 378, characters 8-84
```
which IMO is much better.
|
|
Add headers to a few files which were missing them.
|
|
|
|
We also remove trailing whitespace.
Script used:
```bash
for i in `find . -name '*.ml' -or -name '*.mli' -or -name '*.mlg'`; do expand -i "$i" | sponge "$i"; sed -e's/[[:space:]]*$//' -i.bak "$i"; done
```
|
|
|
|
|
|
Kernel should be mostly correct, higher levels do random stuff at
times.
|
|
We refactor the `Coqlib` API to locate objects over a namespace
`module.object.property`.
This introduces the vernacular command `Register g as n` to expose the
Coq constant `g` under the name `n` (through the `register_ref`
function). The constant can then be dynamically located using the
`lib_ref` function.
Co-authored-by: Emilio Jesús Gallego Arias <e+git@x80.org>
Co-authored-by: Maxime Dénès <mail@maximedenes.fr>
Co-authored-by: Vincent Laporte <Vincent.Laporte@fondation-inria.fr>
|
|
- move_location to proofs/logic.
- intro_pattern_naming to Namegen.
|
|
We remove most of what was deprecated in `Term`. Now, `intf` and
`kernel` are almost deprecation-free, tho I am not very convinced
about the whole `Term -> Constr` renaming but I'm afraid there is no
way back.
Inconsistencies with the constructor policy (see #6440) remain along
the code-base and I'm afraid I don't see a plan to reconcile them.
The `Sorts` deprecation is hard to finalize, opening `Sorts` is not a
good idea as someone added a `List` module inside it.
|
|
|
|
|
|
|
|
In current code, `Proofview.Goal.t` uses a phantom type to indicate
whether the goal was properly substituted wrt current `evar_map` or
not.
After the introduction of `EConstr`, this distinction should have
become unnecessary, thus we remove the phantom parameter from
`'a Proofview.Goal.t`. This may introduce some minor incompatibilities
at the typing level. Code-wise, things should remain the same.
We thus deprecate `assume`. In a next commit, we will remove
normalization as much as possible from the code.
|
|
|
|
Reminder of (some of) the reasons for removal:
- Despite the claim in sigma.mli, it does *not* prevent evar
leaks, something like:
fun env evd ->
let (evd',ev) = new_evar env evd in
(evd,ev)
will typecheck even with Sigma-like type annotations (with a proof of
reflexivity)
- The API stayed embryonic. Even typing functions were not ported to
Sigma.
- Some unsafe combinators (Unsafe.tclEVARS) were replaced with slightly
less unsafe ones (e.g. s_enter), but those ones were not marked unsafe
at all (despite still being so).
- There was no good story for higher order functions manipulating evar
maps. Without higher order, one can most of the time get away with
reusing the same name for the updated evar map.
- Most of the code doing complex things with evar maps was using unsafe
casts to sigma. This code should be fixed, but this is an orthogonal
issue.
Of course, this was showing a nice and elegant use of GADTs, but the
cost/benefit ratio in practice did not seem good.
|
|
|
|
We move Coqlib to library in preparation for the late binding of
Gallina-level references. Placing `Coqlib` in `library/` is convenient
as some components such as pretyping need to depend on it.
By moving we lose the ability to locate references by syntactic
abbreviations, but IMHO it makes to require ML code to refer to
a true constant instead of an abbreviation/notation.
Unfortunately this change means that we break the `Coqlib`
API (providing a compatibility function is not possible), however we
do so for a good reason.
The main changes are:
- move `Coqlib` to `library/`.
- remove reference -> term from `Coqlib`. In particular, clients will
have different needs with regards to universes/evar_maps, so we
force them to call the (not very safe) `Universes.constr_of_global`
explicitly so the users are marked.
- move late binding of impossible case from `Termops` to
`pretying/Evarconv`. Remove hook.
- `Coqlib.find_reference` doesn't support syntactic abbreviations
anymore.
- remove duplication of `Coqlib` code in `Program`.
- remove duplication of `Coqlib` code in `Ltac.Rewrite`.
- A special note about bug 5066 and commit 6e87877 . This case
illustrates the danger of duplication in the code base; the solution
chosen there was to transform the not-found anomaly into an error
message, however the general policy was far from clear. The long
term solution is indeed make `find_reference` emit `Not_found` and
let the client handle the error maybe non-fatally. (so they can test
for constants.
|
|
Now it is a private field, locations are optional.
|
|
Now they are useless because all of the primitives are (should?) be
evar-insensitive.
|
|
This removes quite a few unsafe casts. Unluckily, I had to reintroduce
the old non-module based names for these data structures, because I could
not reproduce easily the same hierarchy in EConstr.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
This allows to factorize code and prevents the unnecessary use of back and
forth conversions between the various types of terms.
Note that functions from typing may now raise errors as PretypeError rather
than TypeError, because they call the proper wrapper. I think that they were
wrongly calling the kernel because of an overlook of open modules.
|
|
|
|
|
|
|
|
|
|
~True.
Found 1 incompatibility in tested contribs and 3 times the same
pattern of incompatibility in the standard library. In all cases, it
is an improvement in the form of the script.
New behavior deactivated when version is <= 8.5.
|
|
mainly concerning referring to "Context.{Rel,Named}.get_{id,value,type}" functions.
If multiple modules define a function with a same name, e.g.:
Context.{Rel,Named}.get_type
those calls were prefixed with a corresponding prefix
to make sure that it is obvious which function is being called.
|
|
This is a reimplementation of Hugo's PR#117.
We are trying to address the problem that the name of some reduction functions
was not saying what they were doing (e.g. whd_betadeltaiota was doing let-in
reduction). Like PR#117, we are careful that no function changed semantics
without changing the names. Porting existing ML code should be a matter of
renamings a few function calls.
Also, we introduce more precise reduction flags fMATCH, fFIX, fCOFIX
collectively denominated iota.
We renamed the following functions:
Closure.betadeltaiota -> Closure.all
Closure.betadeltaiotanolet -> Closure.allnolet
Reductionops.beta -> Closure.beta
Reductionops.zeta -> Closure.zeta
Reductionops.betaiota -> Closure.betaiota
Reductionops.betaiotazeta -> Closure.betaiotazeta
Reductionops.delta -> Closure.delta
Reductionops.betalet -> Closure.betazeta
Reductionops.betadelta -> Closure.betadeltazeta
Reductionops.betadeltaiota -> Closure.all
Reductionops.betadeltaiotanolet -> Closure.allnolet
Closure.no_red -> Closure.nored
Reductionops.nored -> Closure.nored
Reductionops.nf_betadeltaiota -> Reductionops.nf_all
Reductionops.whd_betadelta -> Reductionops.whd_betadeltazeta
Reductionops.whd_betadeltaiota -> Reductionops.whd_all
Reductionops.whd_betadeltaiota_nolet -> Reductionops.whd_allnolet
Reductionops.whd_betadelta_stack -> Reductionops.whd_betadeltazeta_stack
Reductionops.whd_betadeltaiota_stack -> Reductionops.whd_all_stack
Reductionops.whd_betadeltaiota_nolet_stack -> Reductionops.whd_allnolet_stack
Reductionops.whd_betadelta_state -> Reductionops.whd_betadeltazeta_state
Reductionops.whd_betadeltaiota_state -> Reductionops.whd_all_state
Reductionops.whd_betadeltaiota_nolet_state -> Reductionops.whd_allnolet_state
Reductionops.whd_eta -> Reductionops.shrink_eta
Tacmach.pf_whd_betadeltaiota -> Tacmach.pf_whd_all
Tacmach.New.pf_whd_betadeltaiota -> Tacmach.New.pf_whd_all
And removed the following ones:
Reductionops.whd_betaetalet
Reductionops.whd_betaetalet_stack
Reductionops.whd_betaetalet_state
Reductionops.whd_betadeltaeta_stack
Reductionops.whd_betadeltaeta_state
Reductionops.whd_betadeltaeta
Reductionops.whd_betadeltaiotaeta_stack
Reductionops.whd_betadeltaiotaeta_state
Reductionops.whd_betadeltaiotaeta
They were unused and having some reduction functions perform eta is confusing
as whd_all and nf_all don't do it.
|
|
|
|
Originally, rel-context was represented as:
Context.rel_context = Names.Name.t * Constr.t option * Constr.t
Now it is represented as:
Context.Rel.t = LocalAssum of Names.Name.t * Constr.t
| LocalDef of Names.Name.t * Constr.t * Constr.t
Originally, named-context was represented as:
Context.named_context = Names.Id.t * Constr.t option * Constr.t
Now it is represented as:
Context.Named.t = LocalAssum of Names.Id.t * Constr.t
| LocalDef of Names.Id.t * Constr.t * Constr.t
Motivation:
(1) In "tactics/hipattern.ml4" file we define "test_strict_disjunction"
function which looked like this:
let test_strict_disjunction n lc =
Array.for_all_i (fun i c ->
match (prod_assum (snd (decompose_prod_n_assum n c))) with
| [_,None,c] -> isRel c && Int.equal (destRel c) (n - i)
| _ -> false) 0 lc
Suppose that you do not know about rel-context and named-context.
(that is the case of people who just started to read the source code)
Merlin would tell you that the type of the value you are destructing
by "match" is:
'a * 'b option * Constr.t (* worst-case scenario *)
or
Named.Name.t * Constr.t option * Constr.t (* best-case scenario (?) *)
To me, this is akin to wearing an opaque veil.
It is hard to figure out the meaning of the values you are looking at.
In particular, it is hard to discover the connection between the value
we are destructing above and the datatypes and functions defined
in the "kernel/context.ml" file.
In this case, the connection is there, but it is not visible
(between the function above and the "Context" module).
------------------------------------------------------------------------
Now consider, what happens when the reader see the same function
presented in the following form:
let test_strict_disjunction n lc =
Array.for_all_i (fun i c ->
match (prod_assum (snd (decompose_prod_n_assum n c))) with
| [LocalAssum (_,c)] -> isRel c && Int.equal (destRel c) (n - i)
| _ -> false) 0 lc
If the reader haven't seen "LocalAssum" before, (s)he can use Merlin
to jump to the corresponding definition and learn more.
In this case, the connection is there, and it is directly visible
(between the function above and the "Context" module).
(2) Also, if we already have the concepts such as:
- local declaration
- local assumption
- local definition
and we describe these notions meticulously in the Reference Manual,
then it is a real pity not to reinforce the connection
of the actual code with the abstract description we published.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Some functions from pretyping/typing.ml and their derivatives were potential
source of evarmap leaks, as they dropped their resulting evarmap. This commit
clarifies the situation by renaming them according to a unsafe_* scheme. Their
sound variant is likewise renamed to their old name. The following renamings
were made.
- Typing.type_of -> unsafe_type_of
- Typing.e_type_of -> type_of
- A new e_type_of function that matches the e_ prefix policy
- Tacmach.pf_type_of -> pf_unsafe_type_of
- A new safe pf_type_of function.
All uses of unsafe_* functions should be eventually eliminated.
|
|
|
|
|
|
|