| Age | Commit message (Collapse) | Author |
|
As of today Coq has the `CProfile` infrastructure disabled by default,
untested, and not easily accessible.
It was decided that `CProfile` should remain not user-accessible, and
only available thus by manual editing of Coq code to switch the flag
and manually instrument functions.
We thus remove all bitrotten dead code.
|
|
We store bound variable names instead of functions for both branches and
predicate, and we furthermore add the parameters in the node. Let bindings
are not taken into account and require an environment lookup for retrieval.
|
|
See 742ef62fe8050a6865d06bd644e30cbec0e7eb02
Fix #13366
Fix #9809
|
|
projection
Reviewed-by: ejgallego
Ack-by: gares
|
|
Persistent arrays expose a functional interface but are implemented
using an imperative data structure. The OCaml implementation is based on
Jean-Christophe Filliâtre's.
Co-authored-by: Benjamin Grégoire <Benjamin.Gregoire@inria.fr>
Co-authored-by: Gaëtan Gilbert <gaetan.gilbert@skyskimmer.net>
|
|
Perhaps we should thread an evar map with the Var universes added
through to cs_pattern_of_constr but that would be significantly more invasive.
Fix #12528
|
|
|
|
This is extracted from #9710, where we need the environment anyway to compute
iota rules on inductive types with let-bindings. The commit is self-contained,
so I think it could go directly in to save me a few rebases.
Furthermore, this is also related to #11707. Assuming we split cbn from the
other reduction machine, this allows to merge the "local" machine with
the general one, since after this PR they will have the same type. One less
reduction machine should make people happy.
|
|
- Removal of exported types and functions that were unused.
- Moving ad-hoc functions that were used once in the codebase to their call site.
|
|
This module used to do retyping for the kernel in prototypes of SProp,
but was switched to only relevance inference before the merge.
|
|
Add headers to a few files which were missing them.
|
|
|
|
Rels that exist inside the environment at the time of the closure creation
are fetched in the global environment, while we only use the local list of
relevance for FRels. All the infrastructure was implicitly relying on this
kind of behaviour before the introduction of SProp.
Fixes #11150: pattern is 10x slower in Coq 8.10.0
|
|
We also remove trailing whitespace.
Script used:
```bash
for i in `find . -name '*.ml' -or -name '*.mli' -or -name '*.mlg'`; do expand -i "$i" | sponge "$i"; sed -e's/[[:space:]]*$//' -i.bak "$i"; done
```
|
|
Beware of 0. = -0. issue for primitive floats
The IEEE 754 declares that 0. and -0. are treated equal but we cannot
say that this is true with Leibniz equality.
Therefore we must patch the equality and the total comparison inside the
kernel to prevent inconsistency.
|
|
|
|
|
|
Kernel should be mostly correct, higher levels do random stuff at
times.
|
|
Note currently it's impossible to define inductives in SProp because
indtypes.ml and the pretyper aren't fully plugged.
|
|
|
|
This work makes it possible to take advantage of a compact
representation for integers in the entire system, as opposed to only
in some reduction machines. It is useful for heavily computational
applications, where even constructing terms is not possible without such
a representation.
Concretely, it replaces part of the retroknowledge machinery with
a primitive construction for integers in terms, and introduces a kind of
FFI which maps constants to operators (on integers). Properties of these
operators are expressed as explicit axioms, whereas they were hidden in
the retroknowledge-based approach.
This has been presented at the Coq workshop and some Coq Working Groups,
and has been used by various groups for STM trace checking,
computational analysis, etc.
Contributions by Guillaume Bertholon and Pierre Roux <Pierre.Roux@onera.fr>
Co-authored-by: Benjamin Grégoire <Benjamin.Gregoire@inria.fr>
Co-authored-by: Vincent Laporte <Vincent.Laporte@fondation-inria.fr>
|
|
This emphasizes that it works only on inductive types.
Also, the name is_template_polymorphic will be reused for a more
general version.
|
|
|
|
We bootstrap the circular evar_map <-> econstr dependency by moving
the internal EConstr.API module to Evd.MiniEConstr. Then we make the
Evd functions use econstr.
|
|
We forbid calling `EConstr.to_constr` on terms that are not evar-free,
as to progress towards enforcing the invariant that `Constr.t` is
evar-free. [c.f. #6308]
Due to compatibility constraints we provide an optional parameter to
`to_constr`, `abort` which can be used to overcome this restriction
until we fix all parts of the code.
Now, grepping for `~abort:false` should return the questionable
parts of the system.
Not a lot of places had to be fixed, some comments:
- problems with the interface due to `Evd/Constr` [`Evd.define` being
the prime example] do seem real!
- inductives also look bad with regards to `Constr/EConstr`.
- code in plugins needs work.
A notable user of this "feature" is `Obligations/Program` that seem to
like to generate kernel-level entries with free evars, then to scan
them and workaround this problem by generating constants.
|
|
|
|
New module introduced in OCaml 4.05 I think, can create problems when
linking with the OCaml toplevel for `Drop`.
|
|
This function returns InProp or InSet for inductive types only when
the inductive type has been explicitly truncated to Prop or
(impredicative) Set.
For instance, singleton inductive types and small (predicative)
inductive types are not truncated and hence in Type.
|
|
recursive functions.
|
|
We do up to `Term` which is the main bulk of the changes.
|
|
|
|
The use of template polymorphism in constants was quite limited, as it
only applied to definitions that were exactly inductive types without any
parameter whatsoever. Furthermore, it seems that following the introduction
of polymorphic definitions, the code path enforced regular polymorphism as
soon as the type of a definition was given, which was in practice almost
always.
Removing this feature had no observable effect neither on the test-suite,
nor on any development that we monitor on Travis. I believe it is safe to
assume it was nowadays useless.
|
|
|
|
As per https://github.com/coq/coq/pull/716#issuecomment-305140839
Partially using
```bash
git grep --name-only 'anomaly\s*\(~label:"[^"]*"\s*\)\?\(Pp.\)\?(\(\(Pp.\)\?str\)\?\s*".*[^\.!]")' | xargs sed s'/\(anomaly\s*\(~label:"[^"]*"\s*\)\?\(Pp.\)\?(\(\(Pp.\)\?str\)\?\s*".*\s*[^\.! ]\)\s*")/\1.")/g' -i
```
and
```bash
git grep --name-only ' !"' | xargs sed s'/ !"/!"/g' -i
```
The rest were manually edited by looking at the results of
```bash
git grep anomaly | grep '\.ml' | grep -v 'anomaly\s*\(~label:"[^"]*"\s*\)\?\(Pp\.\)\?(\(\(Pp.\)\?str\)\?\s*".*\(\.\|!\)")' | grep 'anomaly\($\|[^_]\)' | less
```
|
|
The transition has been done a bit brutally. I think we can still save a
lot of useless normalizations here and there by providing the right API
in EConstr. Nonetheless, this is a first step.
|
|
For now we only normalize sorts, and we leave instances for the next
commit.
|
|
This removes quite a few unsafe casts. Unluckily, I had to reintroduce
the old non-module based names for these data structures, because I could
not reproduce easily the same hierarchy in EConstr.
|
|
|
|
|
|
|
|
|
|
|
|
This allows to factorize code and prevents the unnecessary use of back and
forth conversions between the various types of terms.
Note that functions from typing may now raise errors as PretypeError rather
than TypeError, because they call the proper wrapper. I think that they were
wrongly calling the kernel because of an overlook of open modules.
|
|
|
|
|
|
|
|
mainly concerning referring to "Context.{Rel,Named}.get_{id,value,type}" functions.
If multiple modules define a function with a same name, e.g.:
Context.{Rel,Named}.get_type
those calls were prefixed with a corresponding prefix
to make sure that it is obvious which function is being called.
|
|
module)
For the moment, there is an Error module in compilers-lib/ocamlbytecomp.cm(x)a
|
|
This is a reimplementation of Hugo's PR#117.
We are trying to address the problem that the name of some reduction functions
was not saying what they were doing (e.g. whd_betadeltaiota was doing let-in
reduction). Like PR#117, we are careful that no function changed semantics
without changing the names. Porting existing ML code should be a matter of
renamings a few function calls.
Also, we introduce more precise reduction flags fMATCH, fFIX, fCOFIX
collectively denominated iota.
We renamed the following functions:
Closure.betadeltaiota -> Closure.all
Closure.betadeltaiotanolet -> Closure.allnolet
Reductionops.beta -> Closure.beta
Reductionops.zeta -> Closure.zeta
Reductionops.betaiota -> Closure.betaiota
Reductionops.betaiotazeta -> Closure.betaiotazeta
Reductionops.delta -> Closure.delta
Reductionops.betalet -> Closure.betazeta
Reductionops.betadelta -> Closure.betadeltazeta
Reductionops.betadeltaiota -> Closure.all
Reductionops.betadeltaiotanolet -> Closure.allnolet
Closure.no_red -> Closure.nored
Reductionops.nored -> Closure.nored
Reductionops.nf_betadeltaiota -> Reductionops.nf_all
Reductionops.whd_betadelta -> Reductionops.whd_betadeltazeta
Reductionops.whd_betadeltaiota -> Reductionops.whd_all
Reductionops.whd_betadeltaiota_nolet -> Reductionops.whd_allnolet
Reductionops.whd_betadelta_stack -> Reductionops.whd_betadeltazeta_stack
Reductionops.whd_betadeltaiota_stack -> Reductionops.whd_all_stack
Reductionops.whd_betadeltaiota_nolet_stack -> Reductionops.whd_allnolet_stack
Reductionops.whd_betadelta_state -> Reductionops.whd_betadeltazeta_state
Reductionops.whd_betadeltaiota_state -> Reductionops.whd_all_state
Reductionops.whd_betadeltaiota_nolet_state -> Reductionops.whd_allnolet_state
Reductionops.whd_eta -> Reductionops.shrink_eta
Tacmach.pf_whd_betadeltaiota -> Tacmach.pf_whd_all
Tacmach.New.pf_whd_betadeltaiota -> Tacmach.New.pf_whd_all
And removed the following ones:
Reductionops.whd_betaetalet
Reductionops.whd_betaetalet_stack
Reductionops.whd_betaetalet_state
Reductionops.whd_betadeltaeta_stack
Reductionops.whd_betadeltaeta_state
Reductionops.whd_betadeltaeta
Reductionops.whd_betadeltaiotaeta_stack
Reductionops.whd_betadeltaiotaeta_state
Reductionops.whd_betadeltaiotaeta
They were unused and having some reduction functions perform eta is confusing
as whd_all and nf_all don't do it.
|
|
Originally, rel-context was represented as:
Context.rel_context = Names.Name.t * Constr.t option * Constr.t
Now it is represented as:
Context.Rel.t = LocalAssum of Names.Name.t * Constr.t
| LocalDef of Names.Name.t * Constr.t * Constr.t
Originally, named-context was represented as:
Context.named_context = Names.Id.t * Constr.t option * Constr.t
Now it is represented as:
Context.Named.t = LocalAssum of Names.Id.t * Constr.t
| LocalDef of Names.Id.t * Constr.t * Constr.t
Motivation:
(1) In "tactics/hipattern.ml4" file we define "test_strict_disjunction"
function which looked like this:
let test_strict_disjunction n lc =
Array.for_all_i (fun i c ->
match (prod_assum (snd (decompose_prod_n_assum n c))) with
| [_,None,c] -> isRel c && Int.equal (destRel c) (n - i)
| _ -> false) 0 lc
Suppose that you do not know about rel-context and named-context.
(that is the case of people who just started to read the source code)
Merlin would tell you that the type of the value you are destructing
by "match" is:
'a * 'b option * Constr.t (* worst-case scenario *)
or
Named.Name.t * Constr.t option * Constr.t (* best-case scenario (?) *)
To me, this is akin to wearing an opaque veil.
It is hard to figure out the meaning of the values you are looking at.
In particular, it is hard to discover the connection between the value
we are destructing above and the datatypes and functions defined
in the "kernel/context.ml" file.
In this case, the connection is there, but it is not visible
(between the function above and the "Context" module).
------------------------------------------------------------------------
Now consider, what happens when the reader see the same function
presented in the following form:
let test_strict_disjunction n lc =
Array.for_all_i (fun i c ->
match (prod_assum (snd (decompose_prod_n_assum n c))) with
| [LocalAssum (_,c)] -> isRel c && Int.equal (destRel c) (n - i)
| _ -> false) 0 lc
If the reader haven't seen "LocalAssum" before, (s)he can use Merlin
to jump to the corresponding definition and learn more.
In this case, the connection is there, and it is directly visible
(between the function above and the "Context" module).
(2) Also, if we already have the concepts such as:
- local declaration
- local assumption
- local definition
and we describe these notions meticulously in the Reference Manual,
then it is a real pity not to reinforce the connection
of the actual code with the abstract description we published.
|