| Age | Commit message (Collapse) | Author |
|
Currently, `.v` under the `Coq.` prefix are found in both `theories`
and `plugins`. Usually these two directories are merged by special
loadpath code that allows double-binding of the prefix.
This adds some complexity to the build and loadpath system; and in
particular, it prevents from handling the `Coq.*` prefix in the
simple, `-R theories Coq` standard way.
We thus move all `.v` files to theories, leaving `plugins` as an
OCaml-only directory, and modify accordingly the loadpath / build
infrastructure.
Note that in general `plugins/foo/Foo.v` was not self-contained, in
the sense that it depended on files in `theories` and files in
`theories` depended on it; moreover, Coq saw all these files as
belonging to the same namespace so it didn't really care where they
lived.
This could also imply a performance gain as we now effectively
traverse less directories when locating a library.
See also discussion in #10003
|
|
This could be Prop (for compat with usual Coq), Set (for HoTT),
or actually an arbitrary "i".
Take lower bound of universes into account in pretyping/engine
Reinstate proper elaboration of SProp <= l constraints:
replacing is_small with equality with lbound is _not_ semantics preserving!
lbound = Set
Elaborate template polymorphic inductives with lower bound Prop
This will make more constraints explicit
Check univ constraints with Prop as lower bound for template inductives
Restrict template polymorphic universes to those not bounded from below
Fixes #9294
fix suggested by Matthieu
Try second fix suggested by Matthieu
Take care of modifying elaboration for record declarations as well.
Rebase and export functions for debug
Remove exported functions used while debugging
Add a new typing flag "check_template" and option "-no-template-checl"
This parameterizes the new criterion on template polymorphic inductives
to allow bypassing it (necessary for backward compatibility).
Update checker to the new typing flags structure
Switch on the new template_check flag to allow old unsafe behavior in
indTyping.
This is the only change of code really impacting the kernel, together
with the commit implementing unbounded from below and parameterization
by the lower bound on universes.
Add deprecated option `Unset Template Check` allowing to make proof
scripts work with both 8.9 and 8.10 for a while
Fix `Template Check` option name and test it
Add `Unset Template Check` to Coq89.v
Cooking of inductives and template-check tests
Cleanup test-suite file for template check / universes(template) flags
cookind tests
Move test of `Unset Template Check` to the failure/ dir, but comment it
for now
Template test-suite test explanation
Overlays for PR 9918
Overlay for paramcoq
Add overlay for fiat_parsers (-no-template-check)
Add overlay for fiat_crypto_legacy
Update fiat-crypto legacy overlay
Now it points at the version that I plan on merging; I am hoping that doing this will guard against mistakes by adding an extra check that the target tested by Coq's CI on this branch works with the change I made.
Remove overlay that should no longer be necessary
The setting in the compat file should handle it
Remove now-merged fiat-crypto-legacy overlay
Update `Print Assumptions` to reflect the typing flag for template checking
Fix About and Print Assumptions for template poly, giving info on which
variables are actually polymorphic
Fix pretty printing to print global universe levels properly
Fix printing of template polymorphic universes
Fix pretty printing for template polymorphism on no universe
Fix interaction of template check and universes(template) flag
Fix indTyping to really check if there is any point in polymorphism: the
conclusion sort should be parameterized over at least one local universe
Indtyping fixes for template polymorphic Props
Allow explicit template polymorphism again
Adapt to new indTyping interface
Handle the case of template-polymorphic on no universes
correctly (morally Type0m univ represented as Prop).
Fix check of meaningfullness of template polymorphism in the kernel.
It is now done w.r.t the min_univ, the minimal universe inferred for the
inductive/record type, independently of the user-written annotation
which must only be larger than min_univ. This preserves compatibility
with UniMath and template-polymorphism as it has been implemented up-to
now.
Comment on identity non-template-polymorphism
Remove incorrect universes(template) attributes from ssr
simpl_fun can be meaningfully template-poly, as well as
pred_key (although the use is debatable: it could just
as well be in Prop).
Move `fun_of_simpl` coercion declaration out of section to respect
uniform inheritance
Remove incorrect uses of #[universes(template)] from the stdlib
Extraction of micromega changes due to moving an ind decl out of a section
Remove incorrect uses of #[universes(template)] from plugins
Fix test-suite files, removing incorrect #[universes(template)] attributes
Remove incorrect #[universes(template)] attributes in test-suite
Fix test-suite
Remove overlays as they have been merged upstream.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
conclusion, and results of
unifying the lemma with subterms. Using Retyping.get_type_of instead results in 3x
speedup in Ncring_polynom.
|
|
The problem occurs when a customized ring/field structure
declared with a so-called "morphism" (see 24.5 in the manual) tactic
allowing to reify (numerical) constants efficiently.
When declaring a ring/field structure, the user can provide a cast
function phi in order to express numerical constants in another type than
the carrier of the ring. This is useful for instance when the ring is
abstract (like the type R of reals) and one needs to express constants
to large to be parsed in unary representation (for instance using a
phi : Z -> R).
Formerly, the completeness of the tactic required (phi 1) (resp. (phi 0))
to be convertible to 1 (resp. 0), which is not the case when phi is
opaque. This was not documented untill recently
but I moreover think this is also not desirable
since the user can have good reasons to work with such an opaque case phi.
Hence this commit:
- adds two constructors to PExpr and FExpr for a correct reification
- unplugs the optimizations in reification: optimizing reification
is much less efficient than using a cast known to the tactic.
TODO : It would probably be worth declaring IZR as a cast in the ring/field
tactics provided for Reals in the std lib.
The completeness of the tactic formerly relied on the fact that
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@16730 85f007b7-540e-0410-9357-904b9bb8a0f7
|
|
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@16129 85f007b7-540e-0410-9357-904b9bb8a0f7
|
|
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@15715 85f007b7-540e-0410-9357-904b9bb8a0f7
|
|
- For instance, refl_equal --> eq_refl
- Npos, Zpos, Zneg now admit more uniform qualified aliases
N.pos, Z.pos, Z.neg.
- A new module BinInt.Pos2Z with results about injections from
positive to Z
- A result about Z.pow pushed in the generic layer
- Zmult_le_compat_{r,l} --> Z.mul_le_mono_nonneg_{r,l}
- Using tactic Z.le_elim instead of Zle_lt_or_eq
- Some cleanup in ring, field, micromega
(use of "Equivalence", "Proper" ...)
- Some adaptions in QArith (for instance changed Qpower.Qpower_decomp)
- In ZMake and ZMake, functor parameters are now named NN and ZZ
instead of N and Z for avoiding confusions
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@15515 85f007b7-540e-0410-9357-904b9bb8a0f7
|
|
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@15431 85f007b7-540e-0410-9357-904b9bb8a0f7
|
|
how the names of an ltac expression are globalized - allowing the
expression to be a constr and in some initial context - and when and
how this ltac expression is interpreted - now expecting a pure tactic
in a different context).
This incidentally found a Ltac bug in Ncring_polynom!
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@14676 85f007b7-540e-0410-9357-904b9bb8a0f7
|
|
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@14298 85f007b7-540e-0410-9357-904b9bb8a0f7
|