| Age | Commit message (Collapse) | Author |
|
Typeclasses resolution is not used anymore for lia.
Typeclasses resolution is still used by lra but only to access a
database of declared constants.
|
|
|
|
|
|
Kernel should be mostly correct, higher levels do random stuff at
times.
|
|
Z.to_euclidean_division_equations
|
|
Also fold it into `Z.div_mod_to_quot_rem`
Note that the test-suite file is a bit slow. On my machine, it is
```
real 2m32.983s
user 2m32.544s
sys 0m0.492s
```
|
|
Alas, I have not had time to work on imrpoving the performance of nia,
and there has been a request to include this tactic (which is useful on
its own) without bundling it into `zify`. So that is what we do here.
I leave the definition of it in `PreOmega` in case we want to eventually
include it in `zify`/`nia`.
|
|
Disjunctions seem to have a negative performance impact, so let's try
implications instead.
|
|
The various (micr)omega tactics now support `Z.div` and `Z.modulo`.
I briefly looked into supporting `Nat.div` and `Nat.modulo`, but the
conversions between `Z.div` and `Nat.div` are defined in `ZArith.Zdiv`,
which depends on `Omega`, which depends on `PreOmega`, which is where
`zify` is defined.
|
|
|
|
In favor of a constr_of_monomorphic_global function. When people
move to the new Coqlib interface they will also see this deprecation
message encouraging them to think about the best move.
This commit changes a few references to constr_of_global and replaces
them with a constr_of_monomorphic_global which makes it apparent that
this is not the function to call to globalize polymorphic references.
The remaining parts using constr_of_monomorphic_global are easily
identifiable using this: omega, btauto, ring, funind and auto_ind_decl
mainly (this fixes firstorder). What this means is that the symbols
registered for these tactics have to be monomorphic for now.
|
|
|
|
|
|
Lintian found some spelling errors in the Debian packaging for coq. Fix
them most places they appear in the current source. (Don't change
documentation anchor names, as that would invalidate external
deeplinks.)
This also fixes a bug in coqdoc: prior to this commit, coqdoc would
highlight `instanciate` but not `instantiate`.
|
|
We refactor the `Coqlib` API to locate objects over a namespace
`module.object.property`.
This introduces the vernacular command `Register g as n` to expose the
Coq constant `g` under the name `n` (through the `register_ref`
function). The constant can then be dynamically located using the
`lib_ref` function.
Co-authored-by: Emilio Jesús Gallego Arias <e+git@x80.org>
Co-authored-by: Maxime Dénès <mail@maximedenes.fr>
Co-authored-by: Vincent Laporte <Vincent.Laporte@fondation-inria.fr>
|
|
We remove sections paths from kernel names. This is a cleanup as most of the times this information was unused. This implies a change in the Kernel API and small user visible changes with regards to tactic qualification. In particular, the removal of "global discharge" implies a large cleanup of code.
Additionally, the change implies that some machinery in `library` and `safe_typing` must now take an `~in_section` parameter, as to provide the information whether a section is open or not.
|
|
After the introduction of `EConstr`, "normalization" has become
unnecessary, we thus deprecate the `nf_*` family of functions.
Test-suite and CI pass after the fix for #8513.
|
|
|
|
[Dune](https://github.com/ocaml/dune) is a compositional declarative
build system for OCaml. It provides automatic generation of
`version.ml`, `.merlin`, `META`, `opam`, API documentation; install
management; easy integration with external libraries, test runners,
and modular builds.
In particular, Dune uniformly handles components regardless whether
they live in, or out-of-tree. This greatly simplifies cases where a
plugin [or CoqIde] is checked out in the current working copy but then
distributed separately [and vice-versa]. Dune can thus be used as a
more flexible `coq_makefile` replacement.
For now we provide experimental support for a Dune build. In order to
build Coq + the standard library with Dune type:
```
$ make -f Makefile.dune world
```
This PR includes a preliminary, developer-only preview of Dune for
Coq. There is still ongoing work, see
https://github.com/coq/coq/issues/8052 for tracking status towards
full support.
## Technical description.
Dune works out of the box with Coq, once we have fixed some modularity
issues. The main remaining challenge was to support `.vo` files.
As Dune doesn't support custom build rules yet, to properly build
`.vo` files we provide a small helper script `tools/coq_dune.ml`. The
script will scan the Coq library directories and generate the
corresponding rules for `.v -> .vo` and `.ml4 -> .ml` builds. The
script uses `coqdep` as to correctly output the dependencies of
`.v` files. `coq_dune` is akin to `coq_makefile` and should be able to
be used to build Coq projects in the future.
Due to this pitfall, the build process has to proceed in three stages:
1) build `coqdep` and `coq_dune`; 2) generate `dune` files for
`theories` and `plugins`; 3) perform a regular build with all
targets are in scope.
## FAQ
### Why Dune?
Coq has a moderately complex build system and it is not a secret that
many developer-hours have been spent fighting with `make`.
In particular, the current `make`-based system does offer poor support
to verify that the current build rules and variables are coherent, and
requires significant manual, error-prone. Many variables must be
passed by hand, duplicated, etc... Additionally, our make system
offers poor integration with now standard OCaml ecosystem tools such
as `opam`, `ocamlfind` or `odoc`. Another critical point is build
compositionality. Coq is rich in 3rd party contributions, and a big
shortcoming of the current make system is that it cannot be used to
build these projects; requiring us to maintain a custom tool,
`coq_makefile`, with the corresponding cost.
In the past, there has been some efforts to migrate Coq to more
specialized build systems, however these stalled due to a variety of
reasons. Dune, is a declarative, OCaml-specific build tool that is on
the path to become the standard build system for the OCaml ecosystem.
Dune seems to be a good fit for Coq well: it is well-supported, fast,
compositional, and designed for large projects.
### Does Dune replace the make-based build system?
The current, make-based build system is unmodified by this PR and kept
as the default option. However, Dune has the potential
### Is this PR complete? What does it provide?
This PR is ready for developer preview and feedback. The build system
is functional, however, more work is necessary in order to make Dune
the default for Coq.
The main TODOs are tracked at https://github.com/coq/coq/issues/8052
This PR allows developers to use most of the features of Dune today:
- Modular organization of the codebase; each component is built only
against declared dependencies so components are checked for
containment more strictly.
- Hygienic builds; Dune places all artifacts under `_build`.
- Automatic generation of `.install` files, simplified OPAM workflow.
- `utop` support, `-opaque` in developer mode, etc...
- `ml4` files are handled using `coqp5`, a native-code customized
camlp5 executable which brings much faster `ml4 -> ml` processing.
### What dependencies does Dune require?
Dune doesn't depend on any 3rd party package other than the OCaml compiler.
### Some Benchs:
```
$ /usr/bin/time make DUNEOPT="-j 1000" -f Makefile.dune states
59.50user 18.81system 0:29.83elapsed 262%CPU (0avgtext+0avgdata 302996maxresident)k
0inputs+646632outputs (0major+4893811minor)pagefaults 0swaps
$ /usr/bin/time sh -c "./configure -local -native-compiler no && make -j states"
88.21user 23.65system 0:32.96elapsed 339%CPU (0avgtext+0avgdata 304992maxresident)k
0inputs+1051680outputs (0major+5300680minor)pagefaults 0swaps
```
|
|
|
|
Unused since fd7f056b155b2ebaafa3251a3c136117ebefc3e3.
|
|
|
|
|
|
- move_location to proofs/logic.
- intro_pattern_naming to Namegen.
|
|
We remove most of what was deprecated in `Term`. Now, `intf` and
`kernel` are almost deprecation-free, tho I am not very convinced
about the whole `Term -> Constr` renaming but I'm afraid there is no
way back.
Inconsistencies with the constructor policy (see #6440) remain along
the code-base and I'm afraid I don't see a plan to reconcile them.
The `Sorts` deprecation is hard to finalize, opening `Sorts` is not a
good idea as someone added a `List` module inside it.
|
|
We address the easy ones, but they should probably be all removed.
|
|
|
|
|
|
|
|
longer use camlp4.
|
|
by doing the same thing as `zify_nat` does for `nat.pred`.
This fixes #6602.
|
|
|
|
Moving at the same to a passing "env sigma" style rather than passing
"gl". Not that it is strictly necessary, but since we had to move
functions taking only a "sigma" to functions taking also a "env", we
eventually adopted the "env sigma" style. (The "gl" style would have
been as good.)
This answers wish #4717.
|
|
148)
For compatibility, this extra feature of omega could be disabled via
Unset Omega UseLocalDefs.
Caveat : for now, real let-ins inside goals or hyps aren't handled, use
some "cbv zeta" reduction if you want to get rid of them. And context
definitions whose types aren't Z or nat are ignored, some manual "unfold"
are still mandatory if expanding these definitions will help omega.
|
|
The old algorithm was relying on list membership, which is O(n). This was
nefarious for terms with many binders. We use instead sets in O(log n).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Turn some "simpl" into "compute". Also do the same for the few
"simpl (Z.of_nat ...)". This way, definition like Z.max are properly
reduced, and moreover zify isn't sensible anymore to the
"Arguments Z.of_nat : simpl never" that some user want (see also #5039).
Unfortunately, the compute we're using now still honor the "Opaque"
declarations, so a "Opaque Z.max" will block things again (see also #5374).
|
|
|
|
|
|
|
|
|
|
|
|
Reminder of (some of) the reasons for removal:
- Despite the claim in sigma.mli, it does *not* prevent evar
leaks, something like:
fun env evd ->
let (evd',ev) = new_evar env evd in
(evd,ev)
will typecheck even with Sigma-like type annotations (with a proof of
reflexivity)
- The API stayed embryonic. Even typing functions were not ported to
Sigma.
- Some unsafe combinators (Unsafe.tclEVARS) were replaced with slightly
less unsafe ones (e.g. s_enter), but those ones were not marked unsafe
at all (despite still being so).
- There was no good story for higher order functions manipulating evar
maps. Without higher order, one can most of the time get away with
reusing the same name for the updated evar map.
- Most of the code doing complex things with evar maps was using unsafe
casts to sigma. This code should be fixed, but this is an orthogonal
issue.
Of course, this was showing a nice and elegant use of GADTs, but the
cost/benefit ratio in practice did not seem good.
|
|
As per https://github.com/coq/coq/pull/716#issuecomment-305140839
Partially using
```bash
git grep --name-only 'anomaly\s*\(~label:"[^"]*"\s*\)\?\(Pp.\)\?(\(\(Pp.\)\?str\)\?\s*".*[^\.!]")' | xargs sed s'/\(anomaly\s*\(~label:"[^"]*"\s*\)\?\(Pp.\)\?(\(\(Pp.\)\?str\)\?\s*".*\s*[^\.! ]\)\s*")/\1.")/g' -i
```
and
```bash
git grep --name-only ' !"' | xargs sed s'/ !"/!"/g' -i
```
The rest were manually edited by looking at the results of
```bash
git grep anomaly | grep '\.ml' | grep -v 'anomaly\s*\(~label:"[^"]*"\s*\)\?\(Pp\.\)\?(\(\(Pp.\)\?str\)\?\s*".*\(\.\|!\)")' | grep 'anomaly\($\|[^_]\)' | less
```
|