| Age | Commit message (Collapse) | Author |
|
|
|
- Remove obviously redundant constraints
- Perform (partial) Fourier elimination to detect (easy) cutting-planes
Closes #13227
|
|
|
|
|
|
IMHO it is a bit more logical, WDYT?
|
|
Add headers to a few files which were missing them.
|
|
Only significant change is in gcd / lcm which now are typed in `Z.t`
|
|
- The cutting plane has been (sometimes) improved to generate stronger
cuts.
- There is now some support for profiling the Simplex
see documentation for Show Lia Profile.
|
|
PR #9725 fixes completness bugs introduces some inefficiency. The
current PR intends to fix the inefficiency while retaining
completness. The fix removes a pre-processing step and instead relies
on a more elaborate proof format introducing positivity constraints on
the fly.
Solve bootstrapping issues: RMicromega <-> Rbase <-> lia.
Fixes #11063 and fixes #11242 and fixes #11270
|
|
|
|
The changes are large due to `Pervasives` deprecation:
- the `Pervasives` module has been deprecated in favor of `Stdlib`, we
have opted for introducing a few wrapping functions in `Util` and
just unqualified the rest of occurrences. We avoid the shims as in
the previous attempt.
- a bug regarding partial application have been fixed.
- some formatting functions have been deprecated, but previous
versions don't include a replacement, thus the warning has been
disabled.
We may want to clean up things a bit more, in particular
w.r.t. modules once we can move to OCaml 4.07 as the minimum required
version.
Note that there is a clash between 4.08.0 modules `Option` and `Int`
and Coq's ones. It is not clear if we should resolve that clash or
not, see PR #10469 for more discussion.
On the good side, OCaml 4.08.0 does provide a few interesting
functionalities, including nice new warnings useful for devs.
|
|
|
|
- Improved reification for Micromega (support for #8764)
- Fixes #9268: Do not take universes into account in lia reification
Improve #9291 by threading the evar_map during reification.
Universes are unified.
- Remove (potentially cyclic) dependency over lra for Rle_abs
- Towards a complete simplex-based lia
fixes #9615
Lia is now exclusively using cutting plane proofs.
For this to always work, all the variables need to be positive.
Therefore, lia is pre-processing the goal for each variable x
it introduces the constraints x = y - z , y>=0 , z >= 0
for some fresh variable y and z.
For scalability, nia is currently NOT performing this pre-processing.
- Lia is using the FSet library
manual merge of commit #230899e87c51c12b2f21b6fedc414d099a1425e4
to work around a "leaked" hint breaking compatibility of eauto
|
|
This is a pre-requisite to use automated formatting tools such as
`ocamlformat`, also, there were quite a few places where the comments
had basically no effect, thus it was confusing for the developer.
p.s: Reading some comments was a lot of fun :)
|
|
- Simplex based linear prover
Unset Simplex to get Fourier elimination
For lia and nia, do not enumerate but generate cutting planes.
- Better non-linear support
Factorisation of the non-linear pre-processing
Careful handling of equation x=e, x is only eliminated if x is used linearly
- More opaque interfaces
(Linear solvers Simplex and Mfourier are independent)
- Set Dump Arith "file" so that lia,nia calls generate Coq goals
in filexxx.v. Used to collect benchmarks and regressions.
- Rationalise the test-suite
example.v only tests psatz Z
example_nia.v only tests lia, nia
In both files, the tests are in essence the same.
In particular, if a test is solved by psatz but not by nia,
we finish the goal by an explicit Abort.
There are additional tests in example_nia.v which require specific
integer reasoning out of scope of psatz.
|