| Age | Commit message (Collapse) | Author |
|
We store bound variable names instead of functions for both branches and
predicate, and we furthermore add the parameters in the node. Let bindings
are not taken into account and require an environment lookup for retrieval.
|
|
It was generating a completely nonsense case branch, but for some reason
the proof still went trough.
|
|
|
|
|
|
|
|
|
|
In our quest to unify all the declaration paths, an important step
is to account for the state pertaining to `Program` declarations.
Whereas regular proofs keep are kept in a stack-like structure;
obligations for constants defined by `Program` are stored in a global
map which is manipulated by almost regular open/close proof primitives.
We make this manipulation explicit by handling the program state
functionally, in a similar way than we already do for lemmas.
This requires to extend the proof DSL a bit; but IMO changes are
acceptable given the gain.
Most of the PR is routine; only remarkable change is that the hook is
called explicitly in `finish_admitted` as it had to learn about the
different types of proof_endings.
Note that we could have gone deeper and use the type system to refine
the core proof type; IMO it is still too preliminary so it is better
to do this step as an intermediate one towards a deeper unification.
|
|
Persistent arrays expose a functional interface but are implemented
using an imperative data structure. The OCaml implementation is based on
Jean-Christophe Filliâtre's.
Co-authored-by: Benjamin Grégoire <Benjamin.Gregoire@inria.fr>
Co-authored-by: Gaëtan Gilbert <gaetan.gilbert@skyskimmer.net>
|
|
|
|
This is needed in rewriter as to avoid hack; indeed it makes sense to
propagate this information to the callers of save.
|
|
We unify information about constants so it is shared among all the
paths [interactive, NI, obligations].
IMHO the current setup looks pretty good, with information split into
a per-constant record `CInfo.t` and variables affecting mutual
definitions at once, which live in `Info.t`.
Main information outside our `Info` record is `opaque`, which is
provided at different moments in several cases.
There are a few nits regarding interactive proofs, which will go away
in the next commits.
|
|
This is in preparation for the next commit which will clean-up the
current API flow in `Declare`.
|
|
|
|
|
|
The module is now a stub. We choose to be explicit on the parameters
for now, this will improve in next commits with the refactoring of
proof / constant information.
|
|
At this point the record in lemmas was just a stub; next commit will
stop exposing the internals of mutual information, and pave the way
for the refactoring of `Info.t` handling in the Declare interface.
|
|
Reviewed-by: ejgallego
|
|
The API in `DeclareDef` should become the recommended API in `Declare`.
This greatly reduces the exposure of internals; we still have a large
offender in `Lemmas` but that will be taken care of in the next
commit; effectively removing quite some chunks from `declare.mli`.
This PR originally introduced a dependency cycle due to:
- `Declare`: uses `Vernacexpr.decl_notation list`
- `Vernacexpr`: uses `ComHint.hint_expr`
- `ComHint`: uses `Declare.declare_constant`
This is a real cycle in the sense that `ComHint` would have also move
to `DeclareDef` in the medium term.
There were quite a few ways to solve it, we have chosen to
move the hints ast to `Vernacexpr` as it is not very invasive
and seems consistent with the current style.
Alternatives, which could be considered at a later stage are for
example moving the notations AST to `Metasyntax`, having `Declare` not
to depend on `Vernacexpr` [which seems actually a good thing to do in
the medium term], reworking notation support more deeply...
|
|
|
|
This still needs API cleanup but we defer it to the moment we are
ready to make the internals private.
|
|
We place creation and saving of interactive proofs in the same module;
this will allow to make `proof_entry` private, improving invariants
and control over clients, and to reduce the API [for example next
commit will move abstract declaration into this module, removing the
exported ad-hoc `build_constant_by_tactic`]
Next step will be to unify all the common code in the interactive /
non-interactive case; but we need to tweak the handling of obligations
first.
|
|
As part of the proof refactoring work I am doing some modifications to
`funind` and indentation of that code is driving me a bit crazy; I'd
much prefer to delegate it to an automatic tool.
|
|
Add headers to a few files which were missing them.
|
|
|
|
|
|
This is the easy part of removing unsafe_type_of, as type_of_variable
doesn't return (or even take as argument) an evar map.
|
|
Beware of 0. = -0. issue for primitive floats
The IEEE 754 declares that 0. and -0. are treated equal but we cannot
say that this is true with Leibniz equality.
Therefore we must patch the equality and the total comparison inside the
kernel to prevent inconsistency.
|
|
|
|
We remove calls of `Lemmas.Info.make` that where using the default
parameters, as this is mostly dead code now.
This brings into question quite a few things, in particular, the
uneven support of `scope` attributes by different commands / plugins.
We don't attempt to solve that yet, hopefully the ongoing constant
saving path refactoring will be able to take care of these
inconsistencies.
|
|
|
|
We also attempt a version that may work with `Proofview.tactic` , may
need more work.
|
|
Reviewed-by: SkySkimmer
Ack-by: ppedrot
|
|
The current code does some "opacification" for `Let`s, however that's
pretty fragile in general and not all codepaths do respect it.
We need to decide what to do.
|
|
Not pretty, but it had to be done some day, as `Globnames` seems to be
on the way out.
I have taken the opportunity to reduce the number of `open` in the
codebase.
The qualified style would indeed allow us to use a bit nicer names
`GlobRef.Inductive` instead of `IndRef`, etc... once we have the
tooling to do large-scale refactoring that could be tried.
|
|
We remove the special error printing pre-processing in favor of just
calling the standard printers.
Error printing has been a bit complex for a while due to an incomplete
migration to a new printing scheme based on registering exception
printers; this PR should alleviate that by completing the registration
approach.
After this cleanup, it should not be ever necessary for normal
functions to worry a lot about catching errors and re-raising them,
unless they have some very special needs.
This change also allows to consolidate the `explainErr` and `himsg`
modules into one, removing the need to export the error printing
functions. Ideally we would make the contents of `himsg` more
localized, but this can be done in a gradual way.
|
|
We can use logical kind for the same purpose, which is mainly
dumpglob, so `goal_object_kind` was never matched against, making this
transformation safe.
|
|
They are clearly not at the same importance level, thus we use a named
parameter and isolate the kinds as to allow further improvements and
refactoring.
|
|
We move the bulk of `Decl_kinds` to a better place [namely
`interp/decls`] and refactor the use of this information quite a bit.
The information seems to be used almost only for `Dumpglob`, so it
certainly should end there to achieve a cleaner core.
Note the previous commits, as well as the annotations regarding the
dubious use of the "variable" data managed by the `Decls` file.
IMO this needs more work, but this should be a good start.
|
|
Ack-by: ejgallego
Reviewed-by: ppedrot
|
|
We move special vernac-qed handling to a special function, making the
regular vernacular interpretation path uniform.
This is an important step as it paves the way up to export the vernac
DSL to clients, as there are no special vernacs anymore in the regular
interp path, except for Load, which should be handled separately due
to silly reasons, as morally it is a `VtNoProof` command.
|
|
We turn the hook parameter into a record, making more explicit the
capture of data in hooks as they only take one parameter now
This is a fine-tuning but provides some small advantages, and allows
us to tweak the hook type with less breakage.
|
|
This datatype does belong to this layer.
|
|
We split `{goal,declaration,assumption}_kind` into their
components. This makes sense as each part of this triple is handled by
a different layer, namely:
- `polymorphic` status: necessary for the lower engine layers;
- `locality`: only used in `vernac` top-level constants
- `kind`: merely used for cosmetic purposes [could indeed be removed /
pushed upwards]
We also profit from this refactoring to add some named parameters to
the top-level definition API which is quite parameter-hungry.
More refactoring is possible and will come in further commits, in
particular this is a step towards unifying the definition / lemma save path.
|
|
This information is already present on `Proof.t`, so we extract it
form there.
Moreover, this information is essential to the lower-level proof, as
opposed to the "kind" information which is only relevant to the vernac
layer; we will move it thus to its proper layer in subsequent commits.
|
|
Lemmas.info was a bit out of hand, as well as the parameters to the
`start_*` family. Most of the info is not needed and should hopefully
remain constrained to special cases, most callers only set the hook,
and obligations should be better served by a `start_obligation`
function soon.
|
|
This allows to desynchronize the kernel-facing API from the proof-facing one.
|
|
obligation ones.
Ack-by: ejgallego
Ack-by: gares
Reviewed-by: ppedrot
|
|
|
|
This way both `Lemmas` and `DeclareObl` can depend on it, removing one
more difficulty on the unification of terminators.
|
|
|