| Age | Commit message (Collapse) | Author |
|
This allows proper treatment in notations, ie fixes #13303
The "glob" representation of universes (what pretyping sees) contains
only fully interpreted (kernel) universes and unbound universe
ids (for non Strict Universe Declaration).
This means universes need to be understood at intern time, so intern
now has a new "universe binders" argument. We cannot avoid this due to
the following example:
~~~coq
Module Import M. Universe i. End M.
Definition foo@{i} := Type@{i}.
~~~
When interning `Type@{i}` we need to know that `i` is locally bound to
avoid interning it as `M.i`.
Extern has a symmetrical problem:
~~~coq
Module Import M. Universe i. End M.
Polymorphic Definition foo@{i} := Type@{M.i} -> Type@{i}.
Print foo. (* must not print Type@{i} -> Type@{i} *)
~~~
(Polymorphic as otherwise the local `i` will be called `foo.i`)
Therefore extern also takes a universe binders argument.
Note that the current implementation actually replaces local universes
with names at detype type. (Asymmetrical to pretyping which only gets
names in glob terms for dynamically declared univs, although it's
capable of understanding bound univs too)
As such extern only really needs the domain of the universe
binders (ie the set of bound universe ids), we just arbitrarily pass
the whole universe binders to avoid putting `Id.Map.domain` at every
entry point.
Note that if we want to change so that detyping does not name locally
bound univs we would need to pass the reverse universe binders (map
from levels to ids, contained in the ustate ie in the evar map) to
extern.
|
|
|
|
Persistent arrays expose a functional interface but are implemented
using an imperative data structure. The OCaml implementation is based on
Jean-Christophe Filliâtre's.
Co-authored-by: Benjamin Grégoire <Benjamin.Gregoire@inria.fr>
Co-authored-by: Gaëtan Gilbert <gaetan.gilbert@skyskimmer.net>
|
|
As part of the proof refactoring work I am doing some modifications to
`funind` and indentation of that code is driving me a bit crazy; I'd
much prefer to delegate it to an automatic tool.
|
|
- Legacy attributes can now be specified in any order.
- Legacy attribute Cumulative maps to universes(cumulative).
- Legacy attribute NonCumulative maps to universes(noncumulative).
- Legacy attribute Private maps to private(matching).
We use "private(matching)" and not "private(match)" because we cannot
use keywords within attributes.
|
|
to control uniform parameters.
This replaces the attribute.
|
|
|
|
|
|
This is the easy part of removing unsafe_type_of, as type_of_variable
doesn't return (or even take as argument) an evar map.
|
|
We also remove trailing whitespace.
Script used:
```bash
for i in `find . -name '*.ml' -or -name '*.mli' -or -name '*.mlg'`; do expand -i "$i" | sponge "$i"; sed -e's/[[:space:]]*$//' -i.bak "$i"; done
```
|
|
Beware of 0. = -0. issue for primitive floats
The IEEE 754 declares that 0. and -0. are treated equal but we cannot
say that this is true with Leibniz equality.
Therefore we must patch the equality and the total comparison inside the
kernel to prevent inconsistency.
|
|
We replace some uses of `raise (UserError ...)` with
`CErrors.user_err`, ideally we would like to make the error raising
API not depend on the exception themselves, but that's still a long
way to go.
We also rename the `Timeout` exception as to clarify purpose in the
codebase, given that it has 3 different ones as of today.
cc: #7560
|
|
We move `binder_kind` to the pretyping AST, removing the last data
type in the now orphaned file `Decl_kinds`.
This seems a better fit, as this data is not relevant to the lower
layers but only used in `Impargs`.
We also move state keeping to `Impargs`, so now implicit declaration
must include the type. We also remove a duplicated function.
|
|
We place control attributes on their own, datatype, similarly to
regular attributes.
This is a step towards fixing #10452 , as we can now decouple control
attributes from the vernac AST itself, allowing to pass them
independently.
|
|
|
|
Not pretty, but it had to be done some day, as `Globnames` seems to be
on the way out.
I have taken the opportunity to reduce the number of `open` in the
codebase.
The qualified style would indeed allow us to use a bit nicer names
`GlobRef.Inductive` instead of `IndRef`, etc... once we have the
tooling to do large-scale refactoring that could be tried.
|
|
We remove two flags that were seldom used in favor of named parameters.
|
|
This is more in-line with attributes and the rest of the API, and
makes some code significantly clearer (as in `foo true false false`,
etc...)
|
|
Conversely, Type existential variables now (explicitly) cover the Set
case.
Similarly for Prop and SProp.
|
|
We consistently use:
- UUnknown: to mean a rigid anonymous universe
(written Type in instances and Type as a sort)
[was formerly encoded as [] in Type's argument]
- UAnonymous: to mean a flexible anonymous universe
(written _ in instances and Type@{_} as a sort)
[was formerly encoded as [None] in Type's argument]
- UNamed: to mean a named universe or universe expression
(written id or qualid in instances and Type@{id} or Type@{qualid} or more
generally Type@{id+n}, Type@{qualid+n}, Type@{max(...)} as a sort)
There is a little change of syntax: "_" in a "max" list of universes
(e.g. "Type@{max(_,id+1)}" is not anymore allowed. But it was
trivially satisfiable by unifying the flexible universe with a
neighbor of the list and the syntax is anyway not documented.
There is a little change of semantics: if I do id@{Type} for an
abbreviation "id := Type", it will consider a rigid variable rather
than a flexible variable as before.
|
|
|
|
This has been a mess for quite a while, we try to improve it.
|
|
|
|
|
|
This should make https://github.com/coq/coq/pull/9129 easier.
|
|
Kernel should be mostly correct, higher levels do random stuff at
times.
|
|
Parameters had to be removed in cases_pattern_of_glob_constr.
|
|
This work makes it possible to take advantage of a compact
representation for integers in the entire system, as opposed to only
in some reduction machines. It is useful for heavily computational
applications, where even constructing terms is not possible without such
a representation.
Concretely, it replaces part of the retroknowledge machinery with
a primitive construction for integers in terms, and introduces a kind of
FFI which maps constants to operators (on integers). Properties of these
operators are expressed as explicit axioms, whereas they were hidden in
the retroknowledge-based approach.
This has been presented at the Coq workshop and some Coq Working Groups,
and has been used by various groups for STM trace checking,
computational analysis, etc.
Contributions by Guillaume Bertholon and Pierre Roux <Pierre.Roux@onera.fr>
Co-authored-by: Benjamin Grégoire <Benjamin.Gregoire@inria.fr>
Co-authored-by: Vincent Laporte <Vincent.Laporte@fondation-inria.fr>
|
|
The warning can be avoided with the attributes, (or just disable the
warning itself I guess).
|
|
Funind doesn't support polymorphism.
|
|
We refactor the `Coqlib` API to locate objects over a namespace
`module.object.property`.
This introduces the vernacular command `Register g as n` to expose the
Coq constant `g` under the name `n` (through the `register_ref`
function). The constant can then be dynamically located using the
`lib_ref` function.
Co-authored-by: Emilio Jesús Gallego Arias <e+git@x80.org>
Co-authored-by: Maxime Dénès <mail@maximedenes.fr>
Co-authored-by: Vincent Laporte <Vincent.Laporte@fondation-inria.fr>
|
|
Fixes #6764: Printing Notation regressed compared to 8.7
|
|
|
|
|
|
Don't allow notations attached to uniform inductives
|
|
- move_location to proofs/logic.
- intro_pattern_naming to Namegen.
|
|
In #6092, `global_reference` was moved to `kernel`. It makes sense to
go further and use the current kernel style for names.
This has a good effect on the dependency graph, as some core modules
don't depend on library anymore.
A question about providing equality for the GloRef module remains, as
there are two different notions of equality for constants. In that
sense, `KerPair` seems suspicious and at some point it should be
looked at.
|
|
|
|
We continue with the work of #402 and #6745 and update most of the
remaining parts of the AST:
- module declarations
- intro patterns
- top-level sentences
Now, parsed documents should be full annotated by `CAst` nodes.
|
|
This commit was motivated by true spurious conversions arising in my
`to_constr` debug branch.
The changes here need careful review as the tradeoffs are subtle and
still a lot of clean up remains to be done in `vernac/*`.
We have opted for penalize [minimally] the few users coming from true
`Constr`-land, but I am sure we can tweak code in a much better way.
In particular, it is not clear if internalization should take an
`evar_map` even in the cases where it is not triggered, see the
changes under `plugins` for a good example.
Also, the new return type of `Pretyping.understand` should undergo
careful review.
We don't touch `Impargs` as it is not clear how to proceed, however,
the current type of `compute_implicits_gen` looks very suspicious as
it is called often with free evars.
Some TODOs are:
- impargs was calling whd_all, the Econstr equivalent can be either
+ Reductionops.whd_all [which does refolding and no sharing]
+ Reductionops.clos_whd_flags with all as a flag.
|
|
We follow the suggestions in #402 and turn uses of `Loc.located` in
`vernac` into `CAst.t`. The impact should be low as this change mostly
affects top-level vernaculars.
With this change, we are even closer to automatically map a text
document to its AST in a programmatic way.
|
|
The motivations are:
- To reflect the concrete syntax more closely.
- To factorize the different places where "contexts" are internalized:
before this patch, there is a different treatment of `Definition f
'(x,y) := x+y` and `Definition f := fun '(x,y) => x+y`, and a hack
to interpret `Definition f `pat := c : t`. With the patch, the fix
to avoid seeing a variable named `pat` works for both `fun 'x =>
...` and `Definition f 'x := ...`.
The drawbacks are:
- Counterpart to reflecting the concrete syntax more closerly, there
are more redundancies in the syntax. For instance, the case `CLetIn
(na,b,t,c)` can appears also in the form `CProdN (CLocalDef
(na,b,t)::rest,d)` and `CLambdaN (CLocalDef (na,b,t)::rest,d)`.
- Changes in the API, hence adaptation of plugins referring to `constr_expr` needed.
|
|
There is no way today to distinguish primitive projections from
compatibility constants, at least in the case of a record without
parameters.
We remedy to this by always using the r.(p) syntax when printing
primitive projections, even with Set Printing All.
The input syntax r.(p) is still elaborated to GApp, so that we can preserve
the compatibility layer. Hopefully we can make up a plan to get rid of that
layer, but it will require fixing a few problems.
|
|
|
|
Unfortunately OCaml doesn't deprecate the constructors of a type when
the type alias is deprecated.
In this case it means that we don't get rid of the kernel dependency
unless we deprecate the constructors too.
|
|
Virtually all classifications of vernacular commands (the STM
classifier, "filtered commands", "navigation commands", etc.) were
broken in presence of control vernaculars like Time, Timeout, Fail.
Funny examples of bugs include Time Abort All in coqtop or Time Set Ltac
Debug in CoqIDE.
This change introduces a type separation between vernacular controls and
vernacular commands, together with an "under_control" combinator.
|
|
Over the time, `Command` grew organically and it has become now one of
the most complex files in the codebase; however, its functionality is
well separated into 4 key components that have little to do with each
other.
We thus split the file, and also document the interfaces. Some parts
of `Command` export tricky internals to use by other plugins, and it
is common that plugin writers tend to get confused, so we are more
explicit about these parts now.
This patch depends on #6413.
|
|
We mirror the structure of EConstr and move the destructors from `Term`
to `Constr`.
This is a step towards having a single module for `Constr`.
|
|
We'd like to handle proofs functionally we thus recommend not to use
printing functions without an explicit context.
We also adapt most of the code, making more explicit where the
printing environment is coming from.
An open task is to refactor some code so we gradually make the
`Pfedit.get_current_context ()` disappear.
|
|
We do up to `Term` which is the main bulk of the changes.
|