| Age | Commit message (Collapse) | Author |
|
At first view, the fix takes care about when to use the number of
assumptions and when to also include local definitions, but I don't
know all the details of the implementation to be absolutely sure.
|
|
|
|
We store bound variable names instead of functions for both branches and
predicate, and we furthermore add the parameters in the node. Let bindings
are not taken into account and require an environment lookup for retrieval.
|
|
This allows to quickly spot the parts of the code that rely on the canonical
ordering. When possible we directly introduce the quotient-aware versions.
|
|
Persistent arrays expose a functional interface but are implemented
using an imperative data structure. The OCaml implementation is based on
Jean-Christophe Filliâtre's.
Co-authored-by: Benjamin Grégoire <Benjamin.Gregoire@inria.fr>
Co-authored-by: Gaëtan Gilbert <gaetan.gilbert@skyskimmer.net>
|
|
|
|
This is extracted from #9710, where we need the environment anyway to compute
iota rules on inductive types with let-bindings. The commit is self-contained,
so I think it could go directly in to save me a few rebases.
Furthermore, this is also related to #11707. Assuming we split cbn from the
other reduction machine, this allows to merge the "local" machine with
the general one, since after this PR they will have the same type. One less
reduction machine should make people happy.
|
|
Add headers to a few files which were missing them.
|
|
This was due to an inconsistency in handling implicit arguments in
the fields and in the constructor of a record.
|
|
|
|
We also remove trailing whitespace.
Script used:
```bash
for i in `find . -name '*.ml' -or -name '*.mli' -or -name '*.mlg'`; do expand -i "$i" | sponge "$i"; sed -e's/[[:space:]]*$//' -i.bak "$i"; done
```
|
|
Co-authored-by: Pierre Roux <pierre.roux@onera.fr>
|
|
Beware of 0. = -0. issue for primitive floats
The IEEE 754 declares that 0. and -0. are treated equal but we cannot
say that this is true with Leibniz equality.
Therefore we must patch the equality and the total comparison inside the
kernel to prevent inconsistency.
|
|
- Inline record projections by default (except for Haskell extraction).
- Extend `pp_record_proj` for record projections involving `MLmagic`.
- Remove special treatments for pretty-printing for record projections other
than `pp_record_proj`.
- `micromega.ml` had to be changed due to this change of the extraction plugin.
Acknowledgement: This work is financially supported by Peano System Inc.
on-behalf-of: @peano-system <info@peano-system.jp>
|
|
Not pretty, but it had to be done some day, as `Globnames` seems to be
on the way out.
I have taken the opportunity to reduce the number of `open` in the
codebase.
The qualified style would indeed allow us to use a bit nicer names
`GlobRef.Inductive` instead of `IndRef`, etc... once we have the
tooling to do large-scale refactoring that could be tried.
|
|
Reviewed-by: SkySkimmer
Reviewed-by: gares
|
|
|
|
We had to move the private opaque constraints out of the constant declaration
into the opaque table. The API is not very pretty yet due to a pervasive
confusion between monomorphic global constraints and polymorphic local ones,
but once we get rid of futures in the kernel this should be magically solved.
|
|
We simply pass them as arguments, now that they are not called by the
kernel anymore.
The checker definitely needs to access the opaque proofs. In order not to
touch the API at all, I added a hook there, but it could also be provided
as an additional argument, at the cost of changing all the upwards callers.
|
|
|
|
Prevent errors when under annotating binders.
|
|
Kernel should be mostly correct, higher levels do random stuff at
times.
|
|
Note currently it's impossible to define inductives in SProp because
indtypes.ml and the pretyper aren't fully plugged.
|
|
It used to simply remember the normal form of the type of the constructor.
This is somewhat problematic as this is ambiguous in presence of
let-bindings. Rather, we store this data in a fully expanded way, relying
on rel_contexts.
Probably fixes a crapload of bugs with inductive types containing
let-bindings, but it seems that not many were reported in the bugtracker.
|
|
Ack-by: SkySkimmer
Reviewed-by: Zimmi48
Reviewed-by: mattam82
Reviewed-by: maximedenes
Reviewed-by: ppedrot
|
|
This work makes it possible to take advantage of a compact
representation for integers in the entire system, as opposed to only
in some reduction machines. It is useful for heavily computational
applications, where even constructing terms is not possible without such
a representation.
Concretely, it replaces part of the retroknowledge machinery with
a primitive construction for integers in terms, and introduces a kind of
FFI which maps constants to operators (on integers). Properties of these
operators are expressed as explicit axioms, whereas they were hidden in
the retroknowledge-based approach.
This has been presented at the Coq workshop and some Coq Working Groups,
and has been used by various groups for STM trace checking,
computational analysis, etc.
Contributions by Guillaume Bertholon and Pierre Roux <Pierre.Roux@onera.fr>
Co-authored-by: Benjamin Grégoire <Benjamin.Gregoire@inria.fr>
Co-authored-by: Vincent Laporte <Vincent.Laporte@fondation-inria.fr>
|
|
The code to generate the legacy bodies is moved to its only user in
extraction.
It almost seems like we could remove it (ie no special extraction code
for primitive projection constants) but then we run into issues with
automatic unboxing eg `Record foo := { a : nat; b : a <= 5 }.` gets
extracted to `type foo = nat` and (if we remove the special code) `let
a = a`.
|
|
The upper layers still need a mapping constant -> projection, which is
provided by Recordops.
|
|
This brings more compatibility with handling of mutual primitive records
in the kernel.
|
|
This is a first step towards the acceptance of mutual record types in the
kernel.
|
|
This was completely wrong, such a term could not even be type-checked by
the kernel as it was internally using a match construct over a negative
record. They were luckily only used in upper layers, namley printing
and extraction.
Recomputing the projection body might be costly in detyping, but this only
happens when the compatibility flag is turned on, which is not the default.
Such flag is probably bound to disappear anyways.
Extraction should be fixed though so as to define directly primitive
projections, similarly to what has been done in native compute.
|
|
This field used to signal that a constant was the compatibility
eta-expansion of a primitive projections, but since a previous cleanup in
the kernel it had become useless.
|
|
Instead of having the projection data in the constant data we have it
independently in the environment.
|
|
|
|
wish #4129)
|
|
Attempt to extract the current ongoing proof (request by
Clément Pit-Claudel on coqdev, and also #4129).
Evars are handled as axioms.
|
|
This is a bit artificial since the extraction normally operates on
finished constrs (with no evars). But:
- Since we use Retyping quite a lot, switching to EConstr.t allows
to get rid of many `EConstr.Unsafe.to_constr (... (EConstr.of_constr ...))`
- This prepares the way for a possible extraction of the content
of ongoing proofs (a forthcoming `Show Extraction` command, see #4129 )
|
|
|
|
Unfortunately OCaml doesn't deprecate the constructors of a type when
the type alias is deprecated.
In this case it means that we don't get rid of the kernel dependency
unless we deprecate the constructors too.
|
|
Extending terms is notoriously difficult. We try to get more help from
the compiler by making sure such an extension will trigger non
exhaustive pattern matching warnings.
|
|
We do up to `Term` which is the main bulk of the changes.
|
|
The old algorithm was relying on list membership, which is O(n). This was
nefarious for terms with many binders. We use instead sets in O(log n).
|
|
|
|
|
|
The use of template polymorphism in constants was quite limited, as it
only applied to definitions that were exactly inductive types without any
parameter whatsoever. Furthermore, it seems that following the introduction
of polymorphic definitions, the code path enforced regular polymorphism as
soon as the type of a definition was given, which was in practice almost
always.
Removing this feature had no observable effect neither on the test-suite,
nor on any development that we monitor on Travis. I believe it is safe to
assume it was nowadays useless.
|
|
|
|
|
|
|
|
|
|
|