| Age | Commit message (Collapse) | Author |
|
This is similar to Constant and MutInd but for some reason this was was never
done. Such a patch makes the whole API more regular. We also deprecate the
legacy aliases.
|
|
This allows to quickly spot the parts of the code that rely on the canonical
ordering. When possible we directly introduce the quotient-aware versions.
|
|
|
|
Persistent arrays expose a functional interface but are implemented
using an imperative data structure. The OCaml implementation is based on
Jean-Christophe Filliâtre's.
Co-authored-by: Benjamin Grégoire <Benjamin.Gregoire@inria.fr>
Co-authored-by: Gaëtan Gilbert <gaetan.gilbert@skyskimmer.net>
|
|
|
|
Reviewed-by: ppedrot
|
|
|
|
|
|
Add headers to a few files which were missing them.
|
|
This could have been at the root of strange behaviours (read unsoundness).
|
|
|
|
This was the only part in the kernel that really relied on the contents
of the Monomorphic node.
|
|
preparation for direct discharge
|
|
We also remove trailing whitespace.
Script used:
```bash
for i in `find . -name '*.ml' -or -name '*.mli' -or -name '*.mlg'`; do expand -i "$i" | sponge "$i"; sed -e's/[[:space:]]*$//' -i.bak "$i"; done
```
|
|
This could be Prop (for compat with usual Coq), Set (for HoTT),
or actually an arbitrary "i".
Take lower bound of universes into account in pretyping/engine
Reinstate proper elaboration of SProp <= l constraints:
replacing is_small with equality with lbound is _not_ semantics preserving!
lbound = Set
Elaborate template polymorphic inductives with lower bound Prop
This will make more constraints explicit
Check univ constraints with Prop as lower bound for template inductives
Restrict template polymorphic universes to those not bounded from below
Fixes #9294
fix suggested by Matthieu
Try second fix suggested by Matthieu
Take care of modifying elaboration for record declarations as well.
Rebase and export functions for debug
Remove exported functions used while debugging
Add a new typing flag "check_template" and option "-no-template-checl"
This parameterizes the new criterion on template polymorphic inductives
to allow bypassing it (necessary for backward compatibility).
Update checker to the new typing flags structure
Switch on the new template_check flag to allow old unsafe behavior in
indTyping.
This is the only change of code really impacting the kernel, together
with the commit implementing unbounded from below and parameterization
by the lower bound on universes.
Add deprecated option `Unset Template Check` allowing to make proof
scripts work with both 8.9 and 8.10 for a while
Fix `Template Check` option name and test it
Add `Unset Template Check` to Coq89.v
Cooking of inductives and template-check tests
Cleanup test-suite file for template check / universes(template) flags
cookind tests
Move test of `Unset Template Check` to the failure/ dir, but comment it
for now
Template test-suite test explanation
Overlays for PR 9918
Overlay for paramcoq
Add overlay for fiat_parsers (-no-template-check)
Add overlay for fiat_crypto_legacy
Update fiat-crypto legacy overlay
Now it points at the version that I plan on merging; I am hoping that doing this will guard against mistakes by adding an extra check that the target tested by Coq's CI on this branch works with the change I made.
Remove overlay that should no longer be necessary
The setting in the compat file should handle it
Remove now-merged fiat-crypto-legacy overlay
Update `Print Assumptions` to reflect the typing flag for template checking
Fix About and Print Assumptions for template poly, giving info on which
variables are actually polymorphic
Fix pretty printing to print global universe levels properly
Fix printing of template polymorphic universes
Fix pretty printing for template polymorphism on no universe
Fix interaction of template check and universes(template) flag
Fix indTyping to really check if there is any point in polymorphism: the
conclusion sort should be parameterized over at least one local universe
Indtyping fixes for template polymorphic Props
Allow explicit template polymorphism again
Adapt to new indTyping interface
Handle the case of template-polymorphic on no universes
correctly (morally Type0m univ represented as Prop).
Fix check of meaningfullness of template polymorphism in the kernel.
It is now done w.r.t the min_univ, the minimal universe inferred for the
inductive/record type, independently of the user-written annotation
which must only be larger than min_univ. This preserves compatibility
with UniMath and template-polymorphism as it has been implemented up-to
now.
Comment on identity non-template-polymorphism
Remove incorrect universes(template) attributes from ssr
simpl_fun can be meaningfully template-poly, as well as
pred_key (although the use is debatable: it could just
as well be in Prop).
Move `fun_of_simpl` coercion declaration out of section to respect
uniform inheritance
Remove incorrect uses of #[universes(template)] from the stdlib
Extraction of micromega changes due to moving an ind decl out of a section
Remove incorrect uses of #[universes(template)] from plugins
Fix test-suite files, removing incorrect #[universes(template)] attributes
Remove incorrect #[universes(template)] attributes in test-suite
Fix test-suite
Remove overlays as they have been merged upstream.
|
|
(co)fixpoints) and [check_positive] (for (co)inductive types).
|
|
Reviewed-by: SkySkimmer
Reviewed-by: gares
|
|
|
|
We had to move the private opaque constraints out of the constant declaration
into the opaque table. The API is not very pretty yet due to a pervasive
confusion between monomorphic global constraints and polymorphic local ones,
but once we get rid of futures in the kernel this should be magically solved.
|
|
Prevent errors when under annotating binders.
|
|
Kernel should be mostly correct, higher levels do random stuff at
times.
|
|
It used to simply remember the normal form of the type of the constructor.
This is somewhat problematic as this is ambiguous in presence of
let-bindings. Rather, we store this data in a fully expanded way, relying
on rel_contexts.
Probably fixes a crapload of bugs with inductive types containing
let-bindings, but it seems that not many were reported in the bugtracker.
|
|
I think the usage looks cleaner this way.
|
|
This work makes it possible to take advantage of a compact
representation for integers in the entire system, as opposed to only
in some reduction machines. It is useful for heavily computational
applications, where even constructing terms is not possible without such
a representation.
Concretely, it replaces part of the retroknowledge machinery with
a primitive construction for integers in terms, and introduces a kind of
FFI which maps constants to operators (on integers). Properties of these
operators are expressed as explicit axioms, whereas they were hidden in
the retroknowledge-based approach.
This has been presented at the Coq workshop and some Coq Working Groups,
and has been used by various groups for STM trace checking,
computational analysis, etc.
Contributions by Guillaume Bertholon and Pierre Roux <Pierre.Roux@onera.fr>
Co-authored-by: Benjamin Grégoire <Benjamin.Gregoire@inria.fr>
Co-authored-by: Vincent Laporte <Vincent.Laporte@fondation-inria.fr>
|
|
|
|
|
|
|
|
The kernel no longer has to read the configure flag, its value can now
be overriden by a coqtop/coqc argument, and more generally is easier to
set from a toplevel (such as the checker).
We also add a `-bytecode-compiler` flag.
Fixes #4607
|
|
This is a partial resurrection of #6423 but only for the kernel.
IMHO, we pay a bit of price for this but it is a good safety
measure.
Only warning "4: fragile pattern matching" and "44: open hides a type"
are disabled.
We would like to enable 44 for sure once we do some alias cleanup.
|
|
|
|
We move the global declaration of that argument to the environment, and reuse
the Global module to handle this flag.
Note that the checker was not using this flag before this patch, and still
doesn't use it. This should probably be fixed in a later patch.
|
|
The upper layers still need a mapping constant -> projection, which is
provided by Recordops.
|
|
We simply exploit a type isomorphism to remove the use of dedicated algebraic
types in the kernel which are actually not necessary.
|
|
This brings more compatibility with handling of mutual primitive records
in the kernel.
|
|
This is a first step towards the acceptance of mutual record types in the
kernel.
|
|
This was completely wrong, such a term could not even be type-checked by
the kernel as it was internally using a match construct over a negative
record. They were luckily only used in upper layers, namley printing
and extraction.
Recomputing the projection body might be costly in detyping, but this only
happens when the compatibility flag is turned on, which is not the default.
Such flag is probably bound to disappear anyways.
Extraction should be fixed though so as to define directly primitive
projections, similarly to what has been done in native compute.
|
|
This field used to signal that a constant was the compatibility
eta-expansion of a primitive projections, but since a previous cleanup in
the kernel it had become useless.
|
|
Instead of having the projection data in the constant data we have it
independently in the environment.
|
|
|
|
|
|
|
|
|
|
|
|
We also have to update the checker to deserialize this additional data,
but it is not using it in type-checking yet.
|
|
Also use constant_universes_entry instead of a bool flag to indicate
polymorphism in ParameterEntry.
There are a few places where we convert back to ContextSet because
check_univ_decl returns a UContext, this could be improved.
|
|
We do up to `Term` which is the main bulk of the changes.
|
|
This will allow to merge back `Names` with `API.Names`
|
|
As explained in edf85b9, the original commit that merged the module_body
and module_type_body representations, this was delayed to a later time
assumedly due to OCaml lack of GADTs. Actually, the only thing that was
needed was polymorphic recursion, which has been around already for a
relatively long time (since 3.12).
|
|
The use of template polymorphism in constants was quite limited, as it
only applied to definitions that were exactly inductive types without any
parameter whatsoever. Furthermore, it seems that following the introduction
of polymorphic definitions, the code path enforced regular polymorphism as
soon as the type of a definition was given, which was in practice almost
always.
Removing this feature had no observable effect neither on the test-suite,
nor on any development that we monitor on Travis. I believe it is safe to
assume it was nowadays useless.
|
|
|