| Age | Commit message (Collapse) | Author |
|
Towards #5154 (but insufficient)
|
|
|
|
Fixes #3166.
|
|
We store bound variable names instead of functions for both branches and
predicate, and we furthermore add the parameters in the node. Let bindings
are not taken into account and require an environment lookup for retrieval.
|
|
We reuse the standard code path for term interpretation instead of trying
to mangle it.
|
|
|
|
Persistent arrays expose a functional interface but are implemented
using an imperative data structure. The OCaml implementation is based on
Jean-Christophe Filliâtre's.
Co-authored-by: Benjamin Grégoire <Benjamin.Gregoire@inria.fr>
Co-authored-by: Gaëtan Gilbert <gaetan.gilbert@skyskimmer.net>
|
|
|
|
Instead of costly linear reallocations, we share as much as possible of the
prefixes of the various environment subcomponents.
|
|
Add headers to a few files which were missing them.
|
|
Reviewed-by: SkySkimmer
Reviewed-by: gares
|
|
Instead of various termops and globnames aliases.
|
|
It was virtually unused except in ssr, and there is no reason to clutter
the kernel with irrelevant code.
Fixes #9390: What is the purpose of the function "kind_of_type"?
|
|
Beware of 0. = -0. issue for primitive floats
The IEEE 754 declares that 0. and -0. are treated equal but we cannot
say that this is true with Leibniz equality.
Therefore we must patch the equality and the total comparison inside the
kernel to prevent inconsistency.
|
|
|
|
Kernel should be mostly correct, higher levels do random stuff at
times.
|
|
Note currently it's impossible to define inductives in SProp because
indtypes.ml and the pretyper aren't fully plugged.
|
|
This work makes it possible to take advantage of a compact
representation for integers in the entire system, as opposed to only
in some reduction machines. It is useful for heavily computational
applications, where even constructing terms is not possible without such
a representation.
Concretely, it replaces part of the retroknowledge machinery with
a primitive construction for integers in terms, and introduces a kind of
FFI which maps constants to operators (on integers). Properties of these
operators are expressed as explicit axioms, whereas they were hidden in
the retroknowledge-based approach.
This has been presented at the Coq workshop and some Coq Working Groups,
and has been used by various groups for STM trace checking,
computational analysis, etc.
Contributions by Guillaume Bertholon and Pierre Roux <Pierre.Roux@onera.fr>
Co-authored-by: Benjamin Grégoire <Benjamin.Gregoire@inria.fr>
Co-authored-by: Vincent Laporte <Vincent.Laporte@fondation-inria.fr>
|
|
|
|
Fixes #8224, fixes #8427 .
|
|
|
|
|
|
More precisely: the lambda-let-expanded canonical form of branches and
return predicate is considered as part of the structure of a "match"
and is preserved.
|
|
This shall eventually allow to use contexts of declarations in the
definition of the "Case" constructor.
Basically, this means that Constr now includes Context and that the
"t" types of Context which were specialized on constr are not defined
in Constr (unfortunately using a heavy boilerplate).
|
|
Apparently it was not useful. I don't remember what I was thinking
when I added it.
|
|
|
|
|
|
In #6092, `global_reference` was moved to `kernel`. It makes sense to
go further and use the current kernel style for names.
This has a good effect on the dependency graph, as some core modules
don't depend on library anymore.
A question about providing equality for the GloRef module remains, as
there are two different notions of equality for constants. In that
sense, `KerPair` seems suspicious and at some point it should be
looked at.
|
|
We bootstrap the circular evar_map <-> econstr dependency by moving
the internal EConstr.API module to Evd.MiniEConstr. Then we make the
Evd functions use econstr.
|
|
contains evars
|
|
We forbid calling `EConstr.to_constr` on terms that are not evar-free,
as to progress towards enforcing the invariant that `Constr.t` is
evar-free. [c.f. #6308]
Due to compatibility constraints we provide an optional parameter to
`to_constr`, `abort` which can be used to overcome this restriction
until we fix all parts of the code.
Now, grepping for `~abort:false` should return the questionable
parts of the system.
Not a lot of places had to be fixed, some comments:
- problems with the interface due to `Evd/Constr` [`Evd.define` being
the prime example] do seem real!
- inductives also look bad with regards to `Constr/EConstr`.
- code in plugins needs work.
A notable user of this "feature" is `Obligations/Program` that seem to
like to generate kernel-level entries with free evars, then to scan
them and workaround this problem by generating constants.
|
|
|
|
When comparing 2 irrelevant universes [u] and [v] we add a "weak
constraint" [UWeak(u,v)] to the UState. Then at minimization time a
weak constraint between unrelated universes where one is flexible
causes them to be unified.
|
|
|
|
Previously [fun x : Ind@{i} => x : Ind@{j}] with Ind some cumulative
inductive would try to generate a constraint [i = j] and use
cumulativity only if this resulted in an inconsistency. This is
confusingly different from the behaviour with [Type] and means
cumulativity can only be used to lift between universes related by
strict inequalities. (This isn't a kernel restriction so there might
be some workaround to send the kernel the right constraints, but
not in a nice way.)
See modified test for more details of what is now possible.
Technical notes:
When universe constraints were inferred by comparing the shape of
terms without reduction, cumulativity was not used and so too-strict
equality constraints were generated. Then in order to use cumulativity
we had to make this comparison fail to fall back to full conversion.
When unifiying 2 instances of a cumulative inductive type, if there
are any Irrelevant universes we try to unify them if they are
flexible.
|
|
|
|
|
|
|
|
|
|
These are also convenient from `vernac` [to be used in future PRs].
|
|
We fix quite a few types, and perform some cleanup wrt to the
evar_map, in particular we prefer to thread it now as otherwise
it may become trickier to check when we are using the correct one.
Thanks to @SkySkimmer for lots of comments and bug-finding.
|
|
|
|
|
|
In the test we do [let X : Type@{i} := Set in ...] with Set
abstracted. The constraint [Set < i] was lost in the abstract.
Universes of a monomorphic reference [c] are considered to appear in
the term [c].
|
|
- Regularly declared for for polymorphic constants
- Declared globally for monomorphic constants.
E.g mono@{i} := Type@{i} is printed as
mono@{mono.i} := Type@{mono.i}.
There can be a name clash if there's a module and a constant of the
same name. It is detected and is an error if the constant is first
but is not detected and the name for the constant not
registered (??) if the constant comes second.
Accept VarRef when registering universe binders
Fix two problems found by Gaëtan where binders were not registered properly
Simplify API substantially by not passing around a substructure of an
already carrier-around structure in interpretation/declaration code of
constants and proofs
Fix an issue of the stronger restrict universe context + no evd leak
This is uncovered by not having an evd leak in interp_definition, and
the stronger restrict_universe_context. This patch could be backported
to 8.7, it could also be triggered by the previous restrict_context I
think.
|
|
We do up to `Term` which is the main bulk of the changes.
|
|
This will allow to merge back `Names` with `API.Names`
|
|
|
|
Reminder of (some of) the reasons for removal:
- Despite the claim in sigma.mli, it does *not* prevent evar
leaks, something like:
fun env evd ->
let (evd',ev) = new_evar env evd in
(evd,ev)
will typecheck even with Sigma-like type annotations (with a proof of
reflexivity)
- The API stayed embryonic. Even typing functions were not ported to
Sigma.
- Some unsafe combinators (Unsafe.tclEVARS) were replaced with slightly
less unsafe ones (e.g. s_enter), but those ones were not marked unsafe
at all (despite still being so).
- There was no good story for higher order functions manipulating evar
maps. Without higher order, one can most of the time get away with
reusing the same name for the updated evar map.
- Most of the code doing complex things with evar maps was using unsafe
casts to sigma. This code should be fixed, but this is an orthogonal
issue.
Of course, this was showing a nice and elegant use of GADTs, but the
cost/benefit ratio in practice did not seem good.
|
|
short econstr-cleaning of record.ml
|