| Age | Commit message (Collapse) | Author |
|
This removes the need for the remote counter.
|
|
Signed primitive integers defined on top of the existing unsigned ones
with two's complement.
The module Sint63 includes the theory of signed primitive integers that
differs from the unsigned case.
Additions to the kernel:
les (signed <=), lts (signed <), compares (signed compare),
divs (signed division), rems (signed remainder),
asr (arithmetic shift right)
(The s suffix is not used when importing the Sint63 module.)
The printing and parsing of primitive ints was updated and the
int63_syntax_plugin was removed (we use Number Notation instead).
A primitive int is parsed / printed as unsigned or signed depending on
the scope. In the default (Set Printing All) case, it is printed in
hexadecimal.
|
|
|
|
We store bound variable names instead of functions for both branches and
predicate, and we furthermore add the parameters in the node. Let bindings
are not taken into account and require an environment lookup for retrieval.
|
|
Instead we store that data in the native code that was generated in adapt
the compilation scheme accordingly. Less indirections and less imperative
tinkering makes the code safer.
The global symbol table was originally introduced in #10359 as a way not to
depend on the Global module in the generated code. By storing all the
native-related information in the cmxs file itself, this PR also makes other
changes easier, such as e.g. #13287.
|
|
Persistent arrays expose a functional interface but are implemented
using an imperative data structure. The OCaml implementation is based on
Jean-Christophe Filliâtre's.
Co-authored-by: Benjamin Grégoire <Benjamin.Gregoire@inria.fr>
Co-authored-by: Gaëtan Gilbert <gaetan.gilbert@skyskimmer.net>
|
|
|
|
|
|
Reviewed-by: ppedrot
|
|
|
|
|
|
|
|
Add headers to a few files which were missing them.
|
|
This could have been at the root of strange behaviours (read unsoundness).
|
|
|
|
This was the only part in the kernel that really relied on the contents
of the Monomorphic node.
|
|
Reviewed-by: SkySkimmer
|
|
|
|
preparation for direct discharge
|
|
We also remove trailing whitespace.
Script used:
```bash
for i in `find . -name '*.ml' -or -name '*.mli' -or -name '*.mlg'`; do expand -i "$i" | sponge "$i"; sed -e's/[[:space:]]*$//' -i.bak "$i"; done
```
|
|
* Add a related test-suite in compare.v (generated by a bash script)
Co-authored-by: Pierre Roux <pierre.roux@onera.fr>
|
|
|
|
|
|
|
|
`Import` does not actually need to register an object, only `Export`
does. So we specialize and rename the object into `ExportObject`.
|
|
Libraries are now handled like other modules.
|
|
This could be Prop (for compat with usual Coq), Set (for HoTT),
or actually an arbitrary "i".
Take lower bound of universes into account in pretyping/engine
Reinstate proper elaboration of SProp <= l constraints:
replacing is_small with equality with lbound is _not_ semantics preserving!
lbound = Set
Elaborate template polymorphic inductives with lower bound Prop
This will make more constraints explicit
Check univ constraints with Prop as lower bound for template inductives
Restrict template polymorphic universes to those not bounded from below
Fixes #9294
fix suggested by Matthieu
Try second fix suggested by Matthieu
Take care of modifying elaboration for record declarations as well.
Rebase and export functions for debug
Remove exported functions used while debugging
Add a new typing flag "check_template" and option "-no-template-checl"
This parameterizes the new criterion on template polymorphic inductives
to allow bypassing it (necessary for backward compatibility).
Update checker to the new typing flags structure
Switch on the new template_check flag to allow old unsafe behavior in
indTyping.
This is the only change of code really impacting the kernel, together
with the commit implementing unbounded from below and parameterization
by the lower bound on universes.
Add deprecated option `Unset Template Check` allowing to make proof
scripts work with both 8.9 and 8.10 for a while
Fix `Template Check` option name and test it
Add `Unset Template Check` to Coq89.v
Cooking of inductives and template-check tests
Cleanup test-suite file for template check / universes(template) flags
cookind tests
Move test of `Unset Template Check` to the failure/ dir, but comment it
for now
Template test-suite test explanation
Overlays for PR 9918
Overlay for paramcoq
Add overlay for fiat_parsers (-no-template-check)
Add overlay for fiat_crypto_legacy
Update fiat-crypto legacy overlay
Now it points at the version that I plan on merging; I am hoping that doing this will guard against mistakes by adding an extra check that the target tested by Coq's CI on this branch works with the change I made.
Remove overlay that should no longer be necessary
The setting in the compat file should handle it
Remove now-merged fiat-crypto-legacy overlay
Update `Print Assumptions` to reflect the typing flag for template checking
Fix About and Print Assumptions for template poly, giving info on which
variables are actually polymorphic
Fix pretty printing to print global universe levels properly
Fix printing of template polymorphic universes
Fix pretty printing for template polymorphism on no universe
Fix interaction of template check and universes(template) flag
Fix indTyping to really check if there is any point in polymorphism: the
conclusion sort should be parameterized over at least one local universe
Indtyping fixes for template polymorphic Props
Allow explicit template polymorphism again
Adapt to new indTyping interface
Handle the case of template-polymorphic on no universes
correctly (morally Type0m univ represented as Prop).
Fix check of meaningfullness of template polymorphism in the kernel.
It is now done w.r.t the min_univ, the minimal universe inferred for the
inductive/record type, independently of the user-written annotation
which must only be larger than min_univ. This preserves compatibility
with UniMath and template-polymorphism as it has been implemented up-to
now.
Comment on identity non-template-polymorphism
Remove incorrect universes(template) attributes from ssr
simpl_fun can be meaningfully template-poly, as well as
pred_key (although the use is debatable: it could just
as well be in Prop).
Move `fun_of_simpl` coercion declaration out of section to respect
uniform inheritance
Remove incorrect uses of #[universes(template)] from the stdlib
Extraction of micromega changes due to moving an ind decl out of a section
Remove incorrect uses of #[universes(template)] from plugins
Fix test-suite files, removing incorrect #[universes(template)] attributes
Remove incorrect #[universes(template)] attributes in test-suite
Fix test-suite
Remove overlays as they have been merged upstream.
|
|
(co)fixpoints) and [check_positive] (for (co)inductive types).
|
|
We make a few libobject constructions (Module, Module Type,
Include,...) first-class and rephrase their handling in direct style (removing
the inversion of control). This makes it easier to define iterators over
objects without hacks like inspecting the tags of dynamic objects.
|
|
Reviewed-by: SkySkimmer
Reviewed-by: gares
|
|
|
|
This enforces more invariants statically.
|
|
We had to move the private opaque constraints out of the constant declaration
into the opaque table. The API is not very pretty yet due to a pervasive
confusion between monomorphic global constraints and polymorphic local ones,
but once we get rid of futures in the kernel this should be magically solved.
|
|
This will allow an easier removal of the discharge segment in a later
commit.
|
|
Instead we do that on a by-need basis by reusing the section info already
stored in the opaque proof.
|
|
Reviewed-by: SkySkimmer
Reviewed-by: gares
|
|
This was virtually dead code. The only place really accessing this data was the
user pretty-printer, but actually the tables were not installed for vanilla vo
files.
In practice, that meant that the only case where an access to this table could
have been triggered would have been to print a term coming from a vio file,
or a vo file generated via vio2vo. In all other cases, the printer would not
have displayed the internal universes. While the latter might be considered
a bug, I am instead convinced that this notion of user-facing internal universes
needs to be handled by another mechanism, the current one making little sense.
The fact it was broken all along without anybody noticing proves my point.
|
|
|
|
Before, we would store futures, but it was actually ensured by the
upper layers that they were either evaluated or stored by the STM
somewhere else. We simply replace this type with an option, thus
removing the Future.computation type from vo/vio files.
This also enhances debug printing, as the latter is unable to properly
print futures.
|
|
Kernel should be mostly correct, higher levels do random stuff at
times.
|
|
Note currently it's impossible to define inductives in SProp because
indtypes.ml and the pretyper aren't fully plugged.
|
|
It used to simply remember the normal form of the type of the constructor.
This is somewhat problematic as this is ambiguous in presence of
let-bindings. Rather, we store this data in a fully expanded way, relying
on rel_contexts.
Probably fixes a crapload of bugs with inductive types containing
let-bindings, but it seems that not many were reported in the bugtracker.
|
|
I think the usage looks cleaner this way.
|
|
This work makes it possible to take advantage of a compact
representation for integers in the entire system, as opposed to only
in some reduction machines. It is useful for heavily computational
applications, where even constructing terms is not possible without such
a representation.
Concretely, it replaces part of the retroknowledge machinery with
a primitive construction for integers in terms, and introduces a kind of
FFI which maps constants to operators (on integers). Properties of these
operators are expressed as explicit axioms, whereas they were hidden in
the retroknowledge-based approach.
This has been presented at the Coq workshop and some Coq Working Groups,
and has been used by various groups for STM trace checking,
computational analysis, etc.
Contributions by Guillaume Bertholon and Pierre Roux <Pierre.Roux@onera.fr>
Co-authored-by: Benjamin Grégoire <Benjamin.Gregoire@inria.fr>
Co-authored-by: Vincent Laporte <Vincent.Laporte@fondation-inria.fr>
|
|
|
|
Rename Univ.Level.{Qualid -> UGlobal}, remove Univ.Level.Id.
Remove the ability to split the argument of `Univ.Level.Level` into a
dirpath*int pair (except by going through string hacks like
detyping/pretyping(/funind) does).
Id.of_string_soft to turn unnamed universes into qualid is pushed up
to detyping. (TODO some followup PR clean up more)
This makes it pointless to have an opaque type for ints in
Univ.Level: it would only be used as argument to
Univ.Level.UGlobal.make, ie
~~~
open Univ.Level
let x = UGlobal.make dp (Id.make n)
(* vs *)
let x = UGlobal.make dp n
~~~
Remaining places which create levels from ints are various hacks (eg
the dummy in inductive.ml, the Type.n universes in ugraph
sort_universes) and univgen.
UnivGen does have an opaque type for ints used as univ ids since they
get manipulated by the stm.
NB: build breaks due to ocamldep issue if UGlobal is named Global instead.
|
|
Remote counters were trying to build universe levels (as opposed to
simple integers), but did not have access to the right dirpath at
construction time. We fix it by constructing the level only at use time,
and we introduce some abstractions for qualified and unqualified level
names.
|
|
|
|
|
|
|