aboutsummaryrefslogtreecommitdiff
path: root/theories/Program/FunctionalExtensionality.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Program/FunctionalExtensionality.v')
-rw-r--r--theories/Program/FunctionalExtensionality.v65
1 files changed, 65 insertions, 0 deletions
diff --git a/theories/Program/FunctionalExtensionality.v b/theories/Program/FunctionalExtensionality.v
new file mode 100644
index 0000000000..c6e5a64fb3
--- /dev/null
+++ b/theories/Program/FunctionalExtensionality.v
@@ -0,0 +1,65 @@
+Require Import Coq.Program.Utils.
+Require Import Coq.Program.FixSub.
+
+(** The converse of functional equality. *)
+
+Lemma equal_f : forall A B : Type, forall (f g : A -> B),
+ f = g -> forall x, f x = g x.
+Proof.
+ intros.
+ rewrite H.
+ auto.
+Qed.
+
+(** Statements of functional equality for simple and dependent functions. *)
+
+Axiom fun_extensionality : forall A B (f g : A -> B),
+ (forall x, f x = g x) -> f = g.
+
+Axiom fun_extensionality_dep : forall A, forall B : (A -> Type), forall (f g : forall x : A, B x),
+ (forall x, f x = g x) -> f = g.
+
+Hint Resolve fun_extensionality fun_extensionality_dep : program.
+
+(** The two following lemmas allow to unfold a well-founded fixpoint definition without
+ restriction using the functional extensionality axiom. *)
+
+(** For a function defined with Program using a well-founded order. *)
+
+Lemma fix_sub_eq_ext :
+ forall (A : Set) (R : A -> A -> Prop) (Rwf : well_founded R)
+ (P : A -> Set)
+ (F_sub : forall x : A, (forall {y : A | R y x}, P (`y)) -> P x),
+ forall x : A,
+ Fix_sub A R Rwf P F_sub x =
+ F_sub x (fun {y : A | R y x}=> Fix A R Rwf P F_sub (`y)).
+Proof.
+ intros ; apply Fix_eq ; auto.
+ intros.
+ assert(f = g).
+ apply (fun_extensionality_dep _ _ _ _ H).
+ rewrite H0 ; auto.
+Qed.
+
+(** For a function defined with Program using a measure. *)
+
+Lemma fix_sub_measure_eq_ext :
+ forall (A : Type) (f : A -> nat) (P : A -> Type)
+ (F_sub : forall x : A, (forall {y : A | f y < f x}, P (`y)) -> P x),
+ forall x : A,
+ Fix_measure_sub A f P F_sub x =
+ F_sub x (fun {y : A | f y < f x}=> Fix_measure_sub A f P F_sub (`y)).
+Proof.
+ intros ; apply Fix_measure_eq ; auto.
+ intros.
+ assert(f0 = g).
+ apply (fun_extensionality_dep _ _ _ _ H).
+ rewrite H0 ; auto.
+Qed.
+
+Ltac apply_ext :=
+ match goal with
+ [ |- ?x = ?y ] => apply (@fun_extensionality _ _ x y)
+ end.
+
+