aboutsummaryrefslogtreecommitdiff
path: root/theories/Numbers/Integer/Abstract
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/Integer/Abstract')
-rw-r--r--theories/Numbers/Integer/Abstract/ZAxioms.v52
-rw-r--r--theories/Numbers/Integer/Abstract/ZDivEucl.v69
-rw-r--r--theories/Numbers/Integer/Abstract/ZDivFloor.v78
-rw-r--r--theories/Numbers/Integer/Abstract/ZDivTrunc.v573
-rw-r--r--theories/Numbers/Integer/Abstract/ZGcd.v6
-rw-r--r--theories/Numbers/Integer/Abstract/ZLcm.v436
-rw-r--r--theories/Numbers/Integer/Abstract/ZProperties.v6
7 files changed, 884 insertions, 336 deletions
diff --git a/theories/Numbers/Integer/Abstract/ZAxioms.v b/theories/Numbers/Integer/Abstract/ZAxioms.v
index 754c0b3d19..89fa8e1707 100644
--- a/theories/Numbers/Integer/Abstract/ZAxioms.v
+++ b/theories/Numbers/Integer/Abstract/ZAxioms.v
@@ -9,7 +9,7 @@
(************************************************************************)
Require Export NZAxioms.
-Require Import NZPow NZSqrt NZLog NZGcd.
+Require Import NZPow NZSqrt NZLog NZGcd NZDiv.
(** We obtain integers by postulating that successor of predecessor
is identity. *)
@@ -70,16 +70,56 @@ Module Type Parity (Import Z : ZAxiomsMiniSig').
Axiom odd_spec : forall n, odd n = true <-> Odd n.
End Parity.
+(** Divisions *)
+
+(** First, the usual Coq convention of Truncated-Toward-Bottom
+ (a.k.a Floor). We simply extend the NZ signature. *)
+
+Module Type ZDivSpecific (Import A:ZAxiomsMiniSig')(Import B : DivMod' A).
+ Axiom mod_pos_bound : forall a b, 0 < b -> 0 <= a mod b < b.
+ Axiom mod_neg_bound : forall a b, b < 0 -> b < a mod b <= 0.
+End ZDivSpecific.
+
+Module Type ZDiv (Z:ZAxiomsMiniSig) := NZDiv.NZDiv Z <+ ZDivSpecific Z.
+Module Type ZDiv' (Z:ZAxiomsMiniSig) := NZDiv.NZDiv' Z <+ ZDivSpecific Z.
+
+(** Then, the Truncated-Toward-Zero convention.
+ For not colliding with Floor operations, we use different names
+*)
+
+Module Type QuotRem (Import A : Typ).
+ Parameters Inline quot remainder : t -> t -> t.
+End QuotRem.
+
+Module Type QuotRemNotation (A : Typ)(Import B : QuotRem A).
+ Infix "÷" := quot (at level 40, left associativity).
+ Infix "rem" := remainder (at level 40, no associativity).
+End QuotRemNotation.
+
+Module Type QuotRem' (A : Typ) := QuotRem A <+ QuotRemNotation A.
+
+Module Type QuotRemSpec (Import A : ZAxiomsMiniSig')(Import B : QuotRem' A).
+ Declare Instance quot_wd : Proper (eq==>eq==>eq) quot.
+ Declare Instance rem_wd : Proper (eq==>eq==>eq) remainder.
+ Axiom quot_rem : forall a b, b ~= 0 -> a == b*(a÷b) + (a rem b).
+ Axiom rem_bound_pos : forall a b, 0<=a -> 0<b -> 0 <= a rem b < b.
+ Axiom rem_opp_l : forall a b, b ~= 0 -> (-a) rem b == - (a rem b).
+ Axiom rem_opp_r : forall a b, b ~= 0 -> a rem (-b) == a rem b.
+End QuotRemSpec.
+
+Module Type ZQuot (Z:ZAxiomsMiniSig) := QuotRem Z <+ QuotRemSpec Z.
+Module Type ZQuot' (Z:ZAxiomsMiniSig) := QuotRem' Z <+ QuotRemSpec Z.
+
(** For pow sqrt log2 gcd, the NZ axiomatizations are enough. *)
(** Let's group everything *)
Module Type ZAxiomsSig :=
ZAxiomsMiniSig <+ HasCompare <+ HasAbs <+ HasSgn <+ Parity
- <+ NZPow.NZPow <+ NZSqrt.NZSqrt <+ NZLog.NZLog2 <+ NZGcd.NZGcd.
+ <+ NZPow.NZPow <+ NZSqrt.NZSqrt <+ NZLog.NZLog2 <+ NZGcd.NZGcd
+ <+ ZDiv <+ ZQuot.
+
Module Type ZAxiomsSig' :=
ZAxiomsMiniSig' <+ HasCompare <+ HasAbs <+ HasSgn <+ Parity
- <+ NZPow.NZPow' <+ NZSqrt.NZSqrt' <+ NZLog.NZLog2 <+ NZGcd.NZGcd'.
-
-
-(** Division is left apart, since many different flavours are available *)
+ <+ NZPow.NZPow' <+ NZSqrt.NZSqrt' <+ NZLog.NZLog2 <+ NZGcd.NZGcd'
+ <+ ZDiv' <+ ZQuot'.
diff --git a/theories/Numbers/Integer/Abstract/ZDivEucl.v b/theories/Numbers/Integer/Abstract/ZDivEucl.v
index 129785bada..0700039720 100644
--- a/theories/Numbers/Integer/Abstract/ZDivEucl.v
+++ b/theories/Numbers/Integer/Abstract/ZDivEucl.v
@@ -6,6 +6,8 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
+Require Import ZAxioms ZMulOrder ZSgnAbs NZDiv.
+
(** * Euclidean Division for integers, Euclid convention
We use here the "usual" formulation of the Euclid Theorem
@@ -19,37 +21,29 @@
Vol. 14, No.2, pp. 127-144, April 1992.
See files [ZDivTrunc] and [ZDivFloor] for others conventions.
-*)
-
-Require Import ZAxioms ZProperties NZDiv.
-
-Module Type ZDivSpecific (Import Z : ZAxiomsSig')(Import DM : DivMod' Z).
- Axiom mod_always_pos : forall a b, 0 <= a mod b < abs b.
-End ZDivSpecific.
-Module Type ZDiv (Z:ZAxiomsSig)
- := DivMod Z <+ NZDivCommon Z <+ ZDivSpecific Z.
+ We simply extend NZDiv with a bound for modulo that holds
+ regardless of the sign of a and b. This new specification
+ subsume mod_bound_pos, which nonetheless stays there for
+ subtyping. Note also that ZAxiomSig now already contain
+ a div and a modulo (that follow the Floor convention).
+ We just ignore them here.
+*)
-Module Type ZDivSig := ZAxiomsSig <+ ZDiv.
-Module Type ZDivSig' := ZAxiomsSig' <+ ZDiv <+ DivModNotation.
+Module Type EuclidSpec (Import A : ZAxiomsSig')(Import B : DivMod' A).
+ Axiom mod_always_pos : forall a b, b ~= 0 -> 0 <= a mod b < abs b.
+End EuclidSpec.
-Module ZDivProp (Import Z : ZDivSig')(Import ZP : ZProp Z).
+Module Type ZEuclid (Z:ZAxiomsSig) := NZDiv.NZDiv Z <+ EuclidSpec Z.
+Module Type ZEuclid' (Z:ZAxiomsSig) := NZDiv.NZDiv' Z <+ EuclidSpec Z.
-(** We benefit from what already exists for NZ *)
+Module ZEuclidProp
+ (Import A : ZAxiomsSig')
+ (Import B : ZMulOrderProp A)
+ (Import C : ZSgnAbsProp A B)
+ (Import D : ZEuclid' A).
- Module ZD <: NZDiv Z.
- Definition div := div.
- Definition modulo := modulo.
- Definition div_wd := div_wd.
- Definition mod_wd := mod_wd.
- Definition div_mod := div_mod.
- Lemma mod_bound : forall a b, 0<=a -> 0<b -> 0 <= a mod b < b.
- Proof.
- intros. rewrite <- (abs_eq b) at 3 by now apply lt_le_incl.
- apply mod_always_pos.
- Qed.
- End ZD.
- Module Import NZDivP := Nop <+ NZDivProp Z ZD ZP.
+ Module Import NZDivP := Nop <+ NZDivProp A D B.
(** Another formulation of the main equation *)
@@ -117,7 +111,7 @@ Lemma div_opp_r : forall a b, b~=0 -> a/(-b) == -(a/b).
Proof.
intros. symmetry.
apply div_unique with (a mod b).
-rewrite abs_opp; apply mod_always_pos.
+rewrite abs_opp; now apply mod_always_pos.
rewrite mul_opp_opp; now apply div_mod.
Qed.
@@ -125,7 +119,7 @@ Lemma mod_opp_r : forall a b, b~=0 -> a mod (-b) == a mod b.
Proof.
intros. symmetry.
apply mod_unique with (-(a/b)).
-rewrite abs_opp; apply mod_always_pos.
+rewrite abs_opp; now apply mod_always_pos.
rewrite mul_opp_opp; now apply div_mod.
Qed.
@@ -296,7 +290,7 @@ intros a b Hb.
split.
intros EQ.
rewrite (div_mod a b Hb), EQ; nzsimpl.
-apply mod_always_pos.
+now apply mod_always_pos.
intros. pos_or_neg b.
apply div_small.
now rewrite <- (abs_eq b).
@@ -365,7 +359,7 @@ intros.
nzsimpl.
rewrite (div_mod a b) at 1; try order.
rewrite <- add_lt_mono_l.
-destruct (mod_always_pos a b).
+destruct (mod_always_pos a b). order.
rewrite abs_eq in *; order.
Qed.
@@ -375,7 +369,7 @@ intros a b Hb.
rewrite mul_pred_r, <- add_opp_r.
rewrite (div_mod a b) at 1; try order.
rewrite <- add_lt_mono_l.
-destruct (mod_always_pos a b).
+destruct (mod_always_pos a b). order.
rewrite <- opp_pos_neg in Hb. rewrite abs_neq' in *; order.
Qed.
@@ -469,7 +463,7 @@ apply div_unique with ((a mod b)*c).
(* ineqs *)
rewrite abs_mul, (abs_eq c) by order.
rewrite <-(mul_0_l c), <-mul_lt_mono_pos_r, <-mul_le_mono_pos_r by trivial.
-apply mod_always_pos.
+now apply mod_always_pos.
(* equation *)
rewrite (div_mod a b) at 1 by order.
rewrite mul_add_distr_r.
@@ -566,7 +560,7 @@ Proof.
apply div_unique with (b*((a/b) mod c) + a mod b).
(* begin 0<= ... <abs(b*c) *)
rewrite abs_mul.
- destruct (mod_always_pos (a/b) c), (mod_always_pos a b).
+ destruct (mod_always_pos (a/b) c), (mod_always_pos a b); try order.
split.
apply add_nonneg_nonneg; trivial.
apply mul_nonneg_nonneg; order.
@@ -590,16 +584,15 @@ Proof. exact div_mul_le. Qed.
(** mod is related to divisibility *)
Lemma mod_divides : forall a b, b~=0 ->
- (a mod b == 0 <-> exists c, a == b*c).
+ (a mod b == 0 <-> (b|a)).
Proof.
intros a b Hb. split.
-intros Hab. exists (a/b). rewrite (div_mod a b Hb) at 1.
+intros Hab. exists (a/b). rewrite (div_mod a b Hb) at 2.
rewrite Hab; now nzsimpl.
intros (c,Hc).
-rewrite Hc, mul_comm.
+rewrite <- Hc, mul_comm.
now apply mod_mul.
Qed.
-
-End ZDivProp.
+End ZEuclidProp.
diff --git a/theories/Numbers/Integer/Abstract/ZDivFloor.v b/theories/Numbers/Integer/Abstract/ZDivFloor.v
index fd962024cc..5f52f046fd 100644
--- a/theories/Numbers/Integer/Abstract/ZDivFloor.v
+++ b/theories/Numbers/Integer/Abstract/ZDivFloor.v
@@ -6,6 +6,8 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
+Require Import ZAxioms ZMulOrder ZSgnAbs NZDiv.
+
(** * Euclidean Division for integers (Floor convention)
We use here the convention known as Floor, or Round-Toward-Bottom,
@@ -24,33 +26,13 @@
See files [ZDivTrunc] and [ZDivEucl] for others conventions.
*)
-Require Import ZAxioms ZProperties NZDiv.
-
-Module Type ZDivSpecific (Import Z:ZAxiomsSig')(Import DM : DivMod' Z).
- Axiom mod_pos_bound : forall a b, 0 < b -> 0 <= a mod b < b.
- Axiom mod_neg_bound : forall a b, b < 0 -> b < a mod b <= 0.
-End ZDivSpecific.
-
-Module Type ZDiv (Z:ZAxiomsSig)
- := DivMod Z <+ NZDivCommon Z <+ ZDivSpecific Z.
-
-Module Type ZDivSig := ZAxiomsSig <+ ZDiv.
-Module Type ZDivSig' := ZAxiomsSig' <+ ZDiv <+ DivModNotation.
-
-Module ZDivProp (Import Z : ZDivSig')(Import ZP : ZProp Z).
+Module Type ZDivProp
+ (Import A : ZAxiomsSig')
+ (Import B : ZMulOrderProp A)
+ (Import C : ZSgnAbsProp A B).
(** We benefit from what already exists for NZ *)
-
- Module ZD <: NZDiv Z.
- Definition div := div.
- Definition modulo := modulo.
- Definition div_wd := div_wd.
- Definition mod_wd := mod_wd.
- Definition div_mod := div_mod.
- Lemma mod_bound : forall a b, 0<=a -> 0<b -> 0 <= a mod b < b.
- Proof. intros. now apply mod_pos_bound. Qed.
- End ZD.
- Module Import NZDivP := Nop <+ NZDivProp Z ZD ZP.
+Module Import NZDivP := Nop <+ NZDivProp A A B.
(** Another formulation of the main equation *)
@@ -62,6 +44,18 @@ rewrite <- add_move_l.
symmetry. now apply div_mod.
Qed.
+(** We have a general bound for absolute values *)
+
+Lemma mod_bound_abs :
+ forall a b, b~=0 -> abs (a mod b) < abs b.
+Proof.
+intros.
+destruct (abs_spec b) as [(LE,EQ)|(LE,EQ)]; rewrite EQ.
+destruct (mod_pos_bound a b). order. now rewrite abs_eq.
+destruct (mod_neg_bound a b). order. rewrite abs_neq; trivial.
+now rewrite <- opp_lt_mono.
+Qed.
+
(** Uniqueness theorems *)
Theorem div_mod_unique : forall b q1 q2 r1 r2 : t,
@@ -230,11 +224,26 @@ rewrite mod_opp_opp, mod_opp_l_nz by trivial.
now rewrite opp_sub_distr, add_comm, add_opp_r.
Qed.
-(** The sign of [a mod b] is the one of [b] *)
+(** The sign of [a mod b] is the one of [b] (when it isn't null) *)
-(* TODO: a proper sgn function and theory *)
+Lemma mod_sign_nz : forall a b, b~=0 -> a mod b ~= 0 ->
+ sgn (a mod b) == sgn b.
+Proof.
+intros a b Hb H. destruct (lt_ge_cases 0 b) as [Hb'|Hb'].
+destruct (mod_pos_bound a b Hb'). rewrite 2 sgn_pos; order.
+destruct (mod_neg_bound a b). order. rewrite 2 sgn_neg; order.
+Qed.
+
+Lemma mod_sign : forall a b, b~=0 -> sgn (a mod b) ~= -sgn b.
+Proof.
+intros a b Hb H.
+destruct (eq_decidable (a mod b) 0) as [EQ|NEQ].
+apply Hb, sgn_null_iff, opp_inj. now rewrite <- H, opp_0, EQ, sgn_0.
+apply Hb, sgn_null_iff. apply eq_mul_0_l with 2; try order'. nzsimpl'.
+apply add_move_0_l. rewrite <- H. symmetry. now apply mod_sign_nz.
+Qed.
-Lemma mod_sign : forall a b, b~=0 -> (0 <= (a mod b) * b).
+Lemma mod_sign_mul : forall a b, b~=0 -> 0 <= (a mod b) * b.
Proof.
intros. destruct (lt_ge_cases 0 b).
apply mul_nonneg_nonneg; destruct (mod_pos_bound a b); order.
@@ -615,18 +624,5 @@ Theorem div_mul_le:
forall a b c, 0<=a -> 0<b -> 0<=c -> c*(a/b) <= (c*a)/b.
Proof. exact div_mul_le. Qed.
-(** mod is related to divisibility *)
-
-Lemma mod_divides : forall a b, b~=0 ->
- (a mod b == 0 <-> exists c, a == b*c).
-Proof.
-intros a b Hb. split.
-intros Hab. exists (a/b). rewrite (div_mod a b Hb) at 1.
- rewrite Hab. now nzsimpl.
-intros (c,Hc).
-rewrite Hc, mul_comm.
-now apply mod_mul.
-Qed.
-
End ZDivProp.
diff --git a/theories/Numbers/Integer/Abstract/ZDivTrunc.v b/theories/Numbers/Integer/Abstract/ZDivTrunc.v
index 4ca692d007..37a0057edb 100644
--- a/theories/Numbers/Integer/Abstract/ZDivTrunc.v
+++ b/theories/Numbers/Integer/Abstract/ZDivTrunc.v
@@ -6,6 +6,8 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
+Require Import ZAxioms ZMulOrder ZSgnAbs NZDiv.
+
(** * Euclidean Division for integers (Trunc convention)
We use here the convention known as Trunc, or Round-Toward-Zero,
@@ -24,25 +26,23 @@
See files [ZDivFloor] and [ZDivEucl] for others conventions.
*)
-Require Import ZAxioms ZProperties NZDiv.
-
-Module Type ZDivSpecific (Import Z:ZAxiomsSig')(Import DM : DivMod' Z).
- Axiom mod_bound : forall a b, 0<=a -> 0<b -> 0 <= a mod b < b.
- Axiom mod_opp_l : forall a b, b ~= 0 -> (-a) mod b == - (a mod b).
- Axiom mod_opp_r : forall a b, b ~= 0 -> a mod (-b) == a mod b.
-End ZDivSpecific.
-
-Module Type ZDiv (Z:ZAxiomsSig)
- := DivMod Z <+ NZDivCommon Z <+ ZDivSpecific Z.
-
-Module Type ZDivSig := ZAxiomsSig <+ ZDiv.
-Module Type ZDivSig' := ZAxiomsSig' <+ ZDiv <+ DivModNotation.
-
-Module ZDivProp (Import Z : ZDivSig')(Import ZP : ZProp Z).
+Module Type ZQuotProp
+ (Import A : ZAxiomsSig')
+ (Import B : ZMulOrderProp A)
+ (Import C : ZSgnAbsProp A B).
(** We benefit from what already exists for NZ *)
- Module Import NZDivP := Nop <+ NZDivProp Z Z ZP.
+ Module Quot2Div <: NZDiv A.
+ Definition div := quot.
+ Definition modulo := remainder.
+ Definition div_wd := quot_wd.
+ Definition mod_wd := rem_wd.
+ Definition div_mod := quot_rem.
+ Definition mod_bound_pos := rem_bound_pos.
+ End Quot2Div.
+
+ Module NZQuot := Nop <+ NZDivProp A Quot2Div B.
Ltac pos_or_neg a :=
let LT := fresh "LT" in
@@ -51,175 +51,269 @@ Ltac pos_or_neg a :=
(** Another formulation of the main equation *)
-Lemma mod_eq :
- forall a b, b~=0 -> a mod b == a - b*(a/b).
+Lemma rem_eq :
+ forall a b, b~=0 -> a rem b == a - b*(a÷b).
Proof.
intros.
rewrite <- add_move_l.
-symmetry. now apply div_mod.
+symmetry. now apply quot_rem.
Qed.
(** A few sign rules (simple ones) *)
-Lemma mod_opp_opp : forall a b, b ~= 0 -> (-a) mod (-b) == - (a mod b).
-Proof. intros. now rewrite mod_opp_r, mod_opp_l. Qed.
+Lemma rem_opp_opp : forall a b, b ~= 0 -> (-a) rem (-b) == - (a rem b).
+Proof. intros. now rewrite rem_opp_r, rem_opp_l. Qed.
-Lemma div_opp_l : forall a b, b ~= 0 -> (-a)/b == -(a/b).
+Lemma quot_opp_l : forall a b, b ~= 0 -> (-a)÷b == -(a÷b).
Proof.
intros.
rewrite <- (mul_cancel_l _ _ b) by trivial.
-rewrite <- (add_cancel_r _ _ ((-a) mod b)).
-now rewrite <- div_mod, mod_opp_l, mul_opp_r, <- opp_add_distr, <- div_mod.
+rewrite <- (add_cancel_r _ _ ((-a) rem b)).
+now rewrite <- quot_rem, rem_opp_l, mul_opp_r, <- opp_add_distr, <- quot_rem.
Qed.
-Lemma div_opp_r : forall a b, b ~= 0 -> a/(-b) == -(a/b).
+Lemma quot_opp_r : forall a b, b ~= 0 -> a÷(-b) == -(a÷b).
Proof.
intros.
assert (-b ~= 0) by (now rewrite eq_opp_l, opp_0).
rewrite <- (mul_cancel_l _ _ (-b)) by trivial.
-rewrite <- (add_cancel_r _ _ (a mod (-b))).
-now rewrite <- div_mod, mod_opp_r, mul_opp_opp, <- div_mod.
-Qed.
-
-Lemma div_opp_opp : forall a b, b ~= 0 -> (-a)/(-b) == a/b.
-Proof. intros. now rewrite div_opp_r, div_opp_l, opp_involutive. Qed.
-
-(** The sign of [a mod b] is the one of [a] *)
-
-(* TODO: a proper sgn function and theory *)
-
-Lemma mod_sign : forall a b, b~=0 -> 0 <= (a mod b) * a.
-Proof.
-assert (Aux : forall a b, 0<b -> 0 <= (a mod b) * a).
- intros. pos_or_neg a.
- apply mul_nonneg_nonneg; trivial. now destruct (mod_bound a b).
- rewrite <- mul_opp_opp, <- mod_opp_l by order.
- apply mul_nonneg_nonneg; try order. destruct (mod_bound (-a) b); order.
-intros. pos_or_neg b. apply Aux; order.
-rewrite <- mod_opp_r by order. apply Aux; order.
+rewrite <- (add_cancel_r _ _ (a rem (-b))).
+now rewrite <- quot_rem, rem_opp_r, mul_opp_opp, <- quot_rem.
Qed.
+Lemma quot_opp_opp : forall a b, b ~= 0 -> (-a)÷(-b) == a÷b.
+Proof. intros. now rewrite quot_opp_r, quot_opp_l, opp_involutive. Qed.
(** Uniqueness theorems *)
-Theorem div_mod_unique : forall b q1 q2 r1 r2 : t,
+Theorem quot_rem_unique : forall b q1 q2 r1 r2 : t,
(0<=r1<b \/ b<r1<=0) -> (0<=r2<b \/ b<r2<=0) ->
b*q1+r1 == b*q2+r2 -> q1 == q2 /\ r1 == r2.
Proof.
intros b q1 q2 r1 r2 Hr1 Hr2 EQ.
destruct Hr1; destruct Hr2; try (intuition; order).
-apply div_mod_unique with b; trivial.
+apply NZQuot.div_mod_unique with b; trivial.
rewrite <- (opp_inj_wd r1 r2).
-apply div_mod_unique with (-b); trivial.
+apply NZQuot.div_mod_unique with (-b); trivial.
rewrite <- opp_lt_mono, opp_nonneg_nonpos; tauto.
rewrite <- opp_lt_mono, opp_nonneg_nonpos; tauto.
now rewrite 2 mul_opp_l, <- 2 opp_add_distr, opp_inj_wd.
Qed.
-Theorem div_unique:
- forall a b q r, 0<=a -> 0<=r<b -> a == b*q + r -> q == a/b.
-Proof. intros; now apply div_unique with r. Qed.
+Theorem quot_unique:
+ forall a b q r, 0<=a -> 0<=r<b -> a == b*q + r -> q == a÷b.
+Proof. intros; now apply NZQuot.div_unique with r. Qed.
-Theorem mod_unique:
- forall a b q r, 0<=a -> 0<=r<b -> a == b*q + r -> r == a mod b.
-Proof. intros; now apply mod_unique with q. Qed.
+Theorem rem_unique:
+ forall a b q r, 0<=a -> 0<=r<b -> a == b*q + r -> r == a rem b.
+Proof. intros; now apply NZQuot.mod_unique with q. Qed.
(** A division by itself returns 1 *)
-Lemma div_same : forall a, a~=0 -> a/a == 1.
+Lemma quot_same : forall a, a~=0 -> a÷a == 1.
Proof.
-intros. pos_or_neg a. apply div_same; order.
-rewrite <- div_opp_opp by trivial. now apply div_same.
+intros. pos_or_neg a. apply NZQuot.div_same; order.
+rewrite <- quot_opp_opp by trivial. now apply NZQuot.div_same.
Qed.
-Lemma mod_same : forall a, a~=0 -> a mod a == 0.
+Lemma rem_same : forall a, a~=0 -> a rem a == 0.
Proof.
-intros. rewrite mod_eq, div_same by trivial. nzsimpl. apply sub_diag.
+intros. rewrite rem_eq, quot_same by trivial. nzsimpl. apply sub_diag.
Qed.
(** A division of a small number by a bigger one yields zero. *)
-Theorem div_small: forall a b, 0<=a<b -> a/b == 0.
-Proof. exact div_small. Qed.
+Theorem quot_small: forall a b, 0<=a<b -> a÷b == 0.
+Proof. exact NZQuot.div_small. Qed.
-(** Same situation, in term of modulo: *)
+(** Same situation, in term of remulo: *)
-Theorem mod_small: forall a b, 0<=a<b -> a mod b == a.
-Proof. exact mod_small. Qed.
+Theorem rem_small: forall a b, 0<=a<b -> a rem b == a.
+Proof. exact NZQuot.mod_small. Qed.
(** * Basic values of divisions and modulo. *)
-Lemma div_0_l: forall a, a~=0 -> 0/a == 0.
+Lemma quot_0_l: forall a, a~=0 -> 0÷a == 0.
Proof.
-intros. pos_or_neg a. apply div_0_l; order.
-rewrite <- div_opp_opp, opp_0 by trivial. now apply div_0_l.
+intros. pos_or_neg a. apply NZQuot.div_0_l; order.
+rewrite <- quot_opp_opp, opp_0 by trivial. now apply NZQuot.div_0_l.
Qed.
-Lemma mod_0_l: forall a, a~=0 -> 0 mod a == 0.
+Lemma rem_0_l: forall a, a~=0 -> 0 rem a == 0.
Proof.
-intros; rewrite mod_eq, div_0_l; now nzsimpl.
+intros; rewrite rem_eq, quot_0_l; now nzsimpl.
Qed.
-Lemma div_1_r: forall a, a/1 == a.
+Lemma quot_1_r: forall a, a÷1 == a.
Proof.
-intros. pos_or_neg a. now apply div_1_r.
-apply opp_inj. rewrite <- div_opp_l. apply div_1_r; order.
+intros. pos_or_neg a. now apply NZQuot.div_1_r.
+apply opp_inj. rewrite <- quot_opp_l. apply NZQuot.div_1_r; order.
intro EQ; symmetry in EQ; revert EQ; apply lt_neq, lt_0_1.
Qed.
-Lemma mod_1_r: forall a, a mod 1 == 0.
+Lemma rem_1_r: forall a, a rem 1 == 0.
Proof.
-intros. rewrite mod_eq, div_1_r; nzsimpl; auto using sub_diag.
+intros. rewrite rem_eq, quot_1_r; nzsimpl; auto using sub_diag.
intro EQ; symmetry in EQ; revert EQ; apply lt_neq; apply lt_0_1.
Qed.
-Lemma div_1_l: forall a, 1<a -> 1/a == 0.
-Proof. exact div_1_l. Qed.
+Lemma quot_1_l: forall a, 1<a -> 1÷a == 0.
+Proof. exact NZQuot.div_1_l. Qed.
+
+Lemma rem_1_l: forall a, 1<a -> 1 rem a == 1.
+Proof. exact NZQuot.mod_1_l. Qed.
+
+Lemma quot_mul : forall a b, b~=0 -> (a*b)÷b == a.
+Proof.
+intros. pos_or_neg a; pos_or_neg b. apply NZQuot.div_mul; order.
+rewrite <- quot_opp_opp, <- mul_opp_r by order. apply NZQuot.div_mul; order.
+rewrite <- opp_inj_wd, <- quot_opp_l, <- mul_opp_l by order.
+apply NZQuot.div_mul; order.
+rewrite <- opp_inj_wd, <- quot_opp_r, <- mul_opp_opp by order.
+apply NZQuot.div_mul; order.
+Qed.
+
+Lemma rem_mul : forall a b, b~=0 -> (a*b) rem b == 0.
+Proof.
+intros. rewrite rem_eq, quot_mul by trivial. rewrite mul_comm; apply sub_diag.
+Qed.
+
+(** The sign of [a rem b] is the one of [a] (when it's not null) *)
+
+Lemma rem_nonneg : forall a b, b~=0 -> 0 <= a -> 0 <= a rem b.
+Proof.
+ intros. pos_or_neg b. destruct (rem_bound_pos a b); order.
+ rewrite <- rem_opp_r; trivial.
+ destruct (rem_bound_pos a (-b)); trivial.
+Qed.
+
+Lemma rem_nonpos : forall a b, b~=0 -> a <= 0 -> a rem b <= 0.
+Proof.
+ intros a b Hb Ha.
+ apply opp_nonneg_nonpos. apply opp_nonneg_nonpos in Ha.
+ rewrite <- rem_opp_l by trivial. now apply rem_nonneg.
+Qed.
-Lemma mod_1_l: forall a, 1<a -> 1 mod a == 1.
-Proof. exact mod_1_l. Qed.
+Lemma rem_sign_mul : forall a b, b~=0 -> 0 <= (a rem b) * a.
+Proof.
+intros a b Hb. destruct (le_ge_cases 0 a).
+ apply mul_nonneg_nonneg; trivial. now apply rem_nonneg.
+ apply mul_nonpos_nonpos; trivial. now apply rem_nonpos.
+Qed.
-Lemma div_mul : forall a b, b~=0 -> (a*b)/b == a.
+Lemma rem_sign_nz : forall a b, b~=0 -> a rem b ~= 0 ->
+ sgn (a rem b) == sgn a.
Proof.
-intros. pos_or_neg a; pos_or_neg b. apply div_mul; order.
-rewrite <- div_opp_opp, <- mul_opp_r by order. apply div_mul; order.
-rewrite <- opp_inj_wd, <- div_opp_l, <- mul_opp_l by order. apply div_mul; order.
-rewrite <- opp_inj_wd, <- div_opp_r, <- mul_opp_opp by order. apply div_mul; order.
+intros a b Hb H. destruct (lt_trichotomy 0 a) as [LT|[EQ|LT]].
+rewrite 2 sgn_pos; try easy.
+ generalize (rem_nonneg a b Hb (lt_le_incl _ _ LT)). order.
+now rewrite <- EQ, rem_0_l, sgn_0.
+rewrite 2 sgn_neg; try easy.
+ generalize (rem_nonpos a b Hb (lt_le_incl _ _ LT)). order.
Qed.
-Lemma mod_mul : forall a b, b~=0 -> (a*b) mod b == 0.
+Lemma rem_sign : forall a b, a~=0 -> b~=0 -> sgn (a rem b) ~= -sgn a.
Proof.
-intros. rewrite mod_eq, div_mul by trivial. rewrite mul_comm; apply sub_diag.
+intros a b Ha Hb H.
+destruct (eq_decidable (a rem b) 0) as [EQ|NEQ].
+apply Ha, sgn_null_iff, opp_inj. now rewrite <- H, opp_0, EQ, sgn_0.
+apply Ha, sgn_null_iff. apply eq_mul_0_l with 2; try order'. nzsimpl'.
+apply add_move_0_l. rewrite <- H. symmetry. now apply rem_sign_nz.
Qed.
-(** * Order results about mod and div *)
+(** Operations and absolute value *)
+
+Lemma rem_abs_l : forall a b, b ~= 0 -> (abs a) rem b == abs (a rem b).
+Proof.
+intros a b Hb. destruct (le_ge_cases 0 a) as [LE|LE].
+rewrite 2 abs_eq; try easy. now apply rem_nonneg.
+rewrite 2 abs_neq, rem_opp_l; try easy. now apply rem_nonpos.
+Qed.
+
+Lemma rem_abs_r : forall a b, b ~= 0 -> a rem (abs b) == a rem b.
+Proof.
+intros a b Hb. destruct (le_ge_cases 0 b).
+now rewrite abs_eq. now rewrite abs_neq, ?rem_opp_r.
+Qed.
+
+Lemma rem_abs : forall a b, b ~= 0 -> (abs a) rem (abs b) == abs (a rem b).
+Proof.
+intros. now rewrite rem_abs_r, rem_abs_l.
+Qed.
+
+Lemma quot_abs_l : forall a b, b ~= 0 -> (abs a)÷b == (sgn a)*(a÷b).
+Proof.
+intros a b Hb. destruct (lt_trichotomy 0 a) as [LT|[EQ|LT]].
+rewrite abs_eq, sgn_pos by order. now nzsimpl.
+rewrite <- EQ, abs_0, quot_0_l; trivial. now nzsimpl.
+rewrite abs_neq, quot_opp_l, sgn_neg by order.
+ rewrite mul_opp_l. now nzsimpl.
+Qed.
+
+Lemma quot_abs_r : forall a b, b ~= 0 -> a÷(abs b) == (sgn b)*(a÷b).
+Proof.
+intros a b Hb. destruct (lt_trichotomy 0 b) as [LT|[EQ|LT]].
+rewrite abs_eq, sgn_pos by order. now nzsimpl.
+order.
+rewrite abs_neq, quot_opp_r, sgn_neg by order.
+ rewrite mul_opp_l. now nzsimpl.
+Qed.
+
+Lemma quot_abs : forall a b, b ~= 0 -> (abs a)÷(abs b) == abs (a÷b).
+Proof.
+intros a b Hb.
+pos_or_neg a; [rewrite (abs_eq a)|rewrite (abs_neq a)];
+ try apply opp_nonneg_nonpos; try order.
+pos_or_neg b; [rewrite (abs_eq b)|rewrite (abs_neq b)];
+ try apply opp_nonneg_nonpos; try order.
+rewrite abs_eq; try easy. apply NZQuot.div_pos; order.
+rewrite <- abs_opp, <- quot_opp_r, abs_eq; try easy.
+ apply NZQuot.div_pos; order.
+pos_or_neg b; [rewrite (abs_eq b)|rewrite (abs_neq b)];
+ try apply opp_nonneg_nonpos; try order.
+rewrite <- (abs_opp (_÷_)), <- quot_opp_l, abs_eq; try easy.
+ apply NZQuot.div_pos; order.
+rewrite <- (quot_opp_opp a b), abs_eq; try easy.
+ apply NZQuot.div_pos; order.
+Qed.
+
+(** We have a general bound for absolute values *)
+
+Lemma rem_bound_abs :
+ forall a b, b~=0 -> abs (a rem b) < abs b.
+Proof.
+intros. rewrite <- rem_abs; trivial.
+apply rem_bound_pos. apply abs_nonneg. now apply abs_pos.
+Qed.
+
+(** * Order results about rem and quot *)
(** A modulo cannot grow beyond its starting point. *)
-Theorem mod_le: forall a b, 0<=a -> 0<b -> a mod b <= a.
-Proof. exact mod_le. Qed.
+Theorem rem_le: forall a b, 0<=a -> 0<b -> a rem b <= a.
+Proof. exact NZQuot.mod_le. Qed.
-Theorem div_pos : forall a b, 0<=a -> 0<b -> 0<= a/b.
-Proof. exact div_pos. Qed.
+Theorem quot_pos : forall a b, 0<=a -> 0<b -> 0<= a÷b.
+Proof. exact NZQuot.div_pos. Qed.
-Lemma div_str_pos : forall a b, 0<b<=a -> 0 < a/b.
-Proof. exact div_str_pos. Qed.
+Lemma quot_str_pos : forall a b, 0<b<=a -> 0 < a÷b.
+Proof. exact NZQuot.div_str_pos. Qed.
-Lemma div_small_iff : forall a b, b~=0 -> (a/b==0 <-> abs a < abs b).
+Lemma quot_small_iff : forall a b, b~=0 -> (a÷b==0 <-> abs a < abs b).
Proof.
intros. pos_or_neg a; pos_or_neg b.
-rewrite div_small_iff; try order. rewrite 2 abs_eq; intuition; order.
-rewrite <- opp_inj_wd, opp_0, <- div_opp_r, div_small_iff by order.
+rewrite NZQuot.div_small_iff; try order. rewrite 2 abs_eq; intuition; order.
+rewrite <- opp_inj_wd, opp_0, <- quot_opp_r, NZQuot.div_small_iff by order.
rewrite (abs_eq a), (abs_neq' b); intuition; order.
-rewrite <- opp_inj_wd, opp_0, <- div_opp_l, div_small_iff by order.
+rewrite <- opp_inj_wd, opp_0, <- quot_opp_l, NZQuot.div_small_iff by order.
rewrite (abs_neq' a), (abs_eq b); intuition; order.
-rewrite <- div_opp_opp, div_small_iff by order.
+rewrite <- quot_opp_opp, NZQuot.div_small_iff by order.
rewrite (abs_neq' a), (abs_neq' b); intuition; order.
Qed.
-Lemma mod_small_iff : forall a b, b~=0 -> (a mod b == a <-> abs a < abs b).
+Lemma rem_small_iff : forall a b, b~=0 -> (a rem b == a <-> abs a < abs b).
Proof.
-intros. rewrite mod_eq, <- div_small_iff by order.
+intros. rewrite rem_eq, <- quot_small_iff by order.
rewrite sub_move_r, <- (add_0_r a) at 1. rewrite add_cancel_l.
rewrite eq_sym_iff, eq_mul_0. tauto.
Qed.
@@ -227,306 +321,295 @@ Qed.
(** As soon as the divisor is strictly greater than 1,
the division is strictly decreasing. *)
-Lemma div_lt : forall a b, 0<a -> 1<b -> a/b < a.
-Proof. exact div_lt. Qed.
+Lemma quot_lt : forall a b, 0<a -> 1<b -> a÷b < a.
+Proof. exact NZQuot.div_lt. Qed.
(** [le] is compatible with a positive division. *)
-Lemma div_le_mono : forall a b c, 0<c -> a<=b -> a/c <= b/c.
+Lemma quot_le_mono : forall a b c, 0<c -> a<=b -> a÷c <= b÷c.
Proof.
-intros. pos_or_neg a. apply div_le_mono; auto.
+intros. pos_or_neg a. apply NZQuot.div_le_mono; auto.
pos_or_neg b. apply le_trans with 0.
- rewrite <- opp_nonneg_nonpos, <- div_opp_l by order.
- apply div_pos; order.
- apply div_pos; order.
-rewrite opp_le_mono in *. rewrite <- 2 div_opp_l by order.
- apply div_le_mono; intuition; order.
+ rewrite <- opp_nonneg_nonpos, <- quot_opp_l by order.
+ apply quot_pos; order.
+ apply quot_pos; order.
+rewrite opp_le_mono in *. rewrite <- 2 quot_opp_l by order.
+ apply NZQuot.div_le_mono; intuition; order.
Qed.
(** With this choice of division,
- rounding of div is always done toward zero: *)
+ rounding of quot is always done toward zero: *)
-Lemma mul_div_le : forall a b, 0<=a -> b~=0 -> 0 <= b*(a/b) <= a.
+Lemma mul_quot_le : forall a b, 0<=a -> b~=0 -> 0 <= b*(a÷b) <= a.
Proof.
intros. pos_or_neg b.
split.
-apply mul_nonneg_nonneg; [|apply div_pos]; order.
-apply mul_div_le; order.
-rewrite <- mul_opp_opp, <- div_opp_r by order.
+apply mul_nonneg_nonneg; [|apply quot_pos]; order.
+apply NZQuot.mul_div_le; order.
+rewrite <- mul_opp_opp, <- quot_opp_r by order.
split.
-apply mul_nonneg_nonneg; [|apply div_pos]; order.
-apply mul_div_le; order.
+apply mul_nonneg_nonneg; [|apply quot_pos]; order.
+apply NZQuot.mul_div_le; order.
Qed.
-Lemma mul_div_ge : forall a b, a<=0 -> b~=0 -> a <= b*(a/b) <= 0.
+Lemma mul_quot_ge : forall a b, a<=0 -> b~=0 -> a <= b*(a÷b) <= 0.
Proof.
intros.
-rewrite <- opp_nonneg_nonpos, opp_le_mono, <-mul_opp_r, <-div_opp_l by order.
+rewrite <- opp_nonneg_nonpos, opp_le_mono, <-mul_opp_r, <-quot_opp_l by order.
rewrite <- opp_nonneg_nonpos in *.
-destruct (mul_div_le (-a) b); tauto.
+destruct (mul_quot_le (-a) b); tauto.
Qed.
-(** For positive numbers, considering [S (a/b)] leads to an upper bound for [a] *)
+(** For positive numbers, considering [S (a÷b)] leads to an upper bound for [a] *)
-Lemma mul_succ_div_gt: forall a b, 0<=a -> 0<b -> a < b*(S (a/b)).
-Proof. exact mul_succ_div_gt. Qed.
+Lemma mul_succ_quot_gt: forall a b, 0<=a -> 0<b -> a < b*(S (a÷b)).
+Proof. exact NZQuot.mul_succ_div_gt. Qed.
(** Similar results with negative numbers *)
-Lemma mul_pred_div_lt: forall a b, a<=0 -> 0<b -> b*(P (a/b)) < a.
+Lemma mul_pred_quot_lt: forall a b, a<=0 -> 0<b -> b*(P (a÷b)) < a.
Proof.
intros.
-rewrite opp_lt_mono, <- mul_opp_r, opp_pred, <- div_opp_l by order.
+rewrite opp_lt_mono, <- mul_opp_r, opp_pred, <- quot_opp_l by order.
rewrite <- opp_nonneg_nonpos in *.
-now apply mul_succ_div_gt.
+now apply mul_succ_quot_gt.
Qed.
-Lemma mul_pred_div_gt: forall a b, 0<=a -> b<0 -> a < b*(P (a/b)).
+Lemma mul_pred_quot_gt: forall a b, 0<=a -> b<0 -> a < b*(P (a÷b)).
Proof.
intros.
-rewrite <- mul_opp_opp, opp_pred, <- div_opp_r by order.
+rewrite <- mul_opp_opp, opp_pred, <- quot_opp_r by order.
rewrite <- opp_pos_neg in *.
-now apply mul_succ_div_gt.
+now apply mul_succ_quot_gt.
Qed.
-Lemma mul_succ_div_lt: forall a b, a<=0 -> b<0 -> b*(S (a/b)) < a.
+Lemma mul_succ_quot_lt: forall a b, a<=0 -> b<0 -> b*(S (a÷b)) < a.
Proof.
intros.
-rewrite opp_lt_mono, <- mul_opp_l, <- div_opp_opp by order.
+rewrite opp_lt_mono, <- mul_opp_l, <- quot_opp_opp by order.
rewrite <- opp_nonneg_nonpos, <- opp_pos_neg in *.
-now apply mul_succ_div_gt.
+now apply mul_succ_quot_gt.
Qed.
-(** Inequality [mul_div_le] is exact iff the modulo is zero. *)
+(** Inequality [mul_quot_le] is exact iff the modulo is zero. *)
-Lemma div_exact : forall a b, b~=0 -> (a == b*(a/b) <-> a mod b == 0).
+Lemma quot_exact : forall a b, b~=0 -> (a == b*(a÷b) <-> a rem b == 0).
Proof.
-intros. rewrite mod_eq by order. rewrite sub_move_r; nzsimpl; tauto.
+intros. rewrite rem_eq by order. rewrite sub_move_r; nzsimpl; tauto.
Qed.
-(** Some additionnal inequalities about div. *)
+(** Some additionnal inequalities about quot. *)
-Theorem div_lt_upper_bound:
- forall a b q, 0<=a -> 0<b -> a < b*q -> a/b < q.
-Proof. exact div_lt_upper_bound. Qed.
+Theorem quot_lt_upper_bound:
+ forall a b q, 0<=a -> 0<b -> a < b*q -> a÷b < q.
+Proof. exact NZQuot.div_lt_upper_bound. Qed.
-Theorem div_le_upper_bound:
- forall a b q, 0<b -> a <= b*q -> a/b <= q.
+Theorem quot_le_upper_bound:
+ forall a b q, 0<b -> a <= b*q -> a÷b <= q.
Proof.
intros.
-rewrite <- (div_mul q b) by order.
-apply div_le_mono; trivial. now rewrite mul_comm.
+rewrite <- (quot_mul q b) by order.
+apply quot_le_mono; trivial. now rewrite mul_comm.
Qed.
-Theorem div_le_lower_bound:
- forall a b q, 0<b -> b*q <= a -> q <= a/b.
+Theorem quot_le_lower_bound:
+ forall a b q, 0<b -> b*q <= a -> q <= a÷b.
Proof.
intros.
-rewrite <- (div_mul q b) by order.
-apply div_le_mono; trivial. now rewrite mul_comm.
+rewrite <- (quot_mul q b) by order.
+apply quot_le_mono; trivial. now rewrite mul_comm.
Qed.
(** A division respects opposite monotonicity for the divisor *)
-Lemma div_le_compat_l: forall p q r, 0<=p -> 0<q<=r -> p/r <= p/q.
-Proof. exact div_le_compat_l. Qed.
+Lemma quot_le_compat_l: forall p q r, 0<=p -> 0<q<=r -> p÷r <= p÷q.
+Proof. exact NZQuot.div_le_compat_l. Qed.
-(** * Relations between usual operations and mod and div *)
+(** * Relations between usual operations and rem and quot *)
(** Unlike with other division conventions, some results here aren't
always valid, and need to be restricted. For instance
- [(a+b*c) mod c <> a mod c] for [a=9,b=-5,c=2] *)
+ [(a+b*c) rem c <> a rem c] for [a=9,b=-5,c=2] *)
-Lemma mod_add : forall a b c, c~=0 -> 0 <= (a+b*c)*a ->
- (a + b * c) mod c == a mod c.
+Lemma rem_add : forall a b c, c~=0 -> 0 <= (a+b*c)*a ->
+ (a + b * c) rem c == a rem c.
Proof.
-assert (forall a b c, c~=0 -> 0<=a -> 0<=a+b*c -> (a+b*c) mod c == a mod c).
- intros. pos_or_neg c. apply mod_add; order.
- rewrite <- (mod_opp_r a), <- (mod_opp_r (a+b*c)) by order.
+assert (forall a b c, c~=0 -> 0<=a -> 0<=a+b*c -> (a+b*c) rem c == a rem c).
+ intros. pos_or_neg c. apply NZQuot.mod_add; order.
+ rewrite <- (rem_opp_r a), <- (rem_opp_r (a+b*c)) by order.
rewrite <- mul_opp_opp in *.
- apply mod_add; order.
+ apply NZQuot.mod_add; order.
intros a b c Hc Habc.
destruct (le_0_mul _ _ Habc) as [(Habc',Ha)|(Habc',Ha)]. auto.
apply opp_inj. revert Ha Habc'.
rewrite <- 2 opp_nonneg_nonpos.
-rewrite <- 2 mod_opp_l, opp_add_distr, <- mul_opp_l by order. auto.
+rewrite <- 2 rem_opp_l, opp_add_distr, <- mul_opp_l by order. auto.
Qed.
-Lemma div_add : forall a b c, c~=0 -> 0 <= (a+b*c)*a ->
- (a + b * c) / c == a / c + b.
+Lemma quot_add : forall a b c, c~=0 -> 0 <= (a+b*c)*a ->
+ (a + b * c) ÷ c == a ÷ c + b.
Proof.
intros.
rewrite <- (mul_cancel_l _ _ c) by trivial.
-rewrite <- (add_cancel_r _ _ ((a+b*c) mod c)).
-rewrite <- div_mod, mod_add by trivial.
-now rewrite mul_add_distr_l, add_shuffle0, <-div_mod, mul_comm.
+rewrite <- (add_cancel_r _ _ ((a+b*c) rem c)).
+rewrite <- quot_rem, rem_add by trivial.
+now rewrite mul_add_distr_l, add_shuffle0, <-quot_rem, mul_comm.
Qed.
-Lemma div_add_l: forall a b c, b~=0 -> 0 <= (a*b+c)*c ->
- (a * b + c) / b == a + c / b.
+Lemma quot_add_l: forall a b c, b~=0 -> 0 <= (a*b+c)*c ->
+ (a * b + c) ÷ b == a + c ÷ b.
Proof.
- intros a b c. rewrite add_comm, (add_comm a). now apply div_add.
+ intros a b c. rewrite add_comm, (add_comm a). now apply quot_add.
Qed.
(** Cancellations. *)
-Lemma div_mul_cancel_r : forall a b c, b~=0 -> c~=0 ->
- (a*c)/(b*c) == a/b.
+Lemma quot_mul_cancel_r : forall a b c, b~=0 -> c~=0 ->
+ (a*c)÷(b*c) == a÷b.
Proof.
-assert (Aux1 : forall a b c, 0<=a -> 0<b -> c~=0 -> (a*c)/(b*c) == a/b).
- intros. pos_or_neg c. apply div_mul_cancel_r; order.
- rewrite <- div_opp_opp, <- 2 mul_opp_r. apply div_mul_cancel_r; order.
+assert (Aux1 : forall a b c, 0<=a -> 0<b -> c~=0 -> (a*c)÷(b*c) == a÷b).
+ intros. pos_or_neg c. apply NZQuot.div_mul_cancel_r; order.
+ rewrite <- quot_opp_opp, <- 2 mul_opp_r. apply NZQuot.div_mul_cancel_r; order.
rewrite <- neq_mul_0; intuition order.
-assert (Aux2 : forall a b c, 0<=a -> b~=0 -> c~=0 -> (a*c)/(b*c) == a/b).
+assert (Aux2 : forall a b c, 0<=a -> b~=0 -> c~=0 -> (a*c)÷(b*c) == a÷b).
intros. pos_or_neg b. apply Aux1; order.
- apply opp_inj. rewrite <- 2 div_opp_r, <- mul_opp_l; try order. apply Aux1; order.
+ apply opp_inj. rewrite <- 2 quot_opp_r, <- mul_opp_l; try order. apply Aux1; order.
rewrite <- neq_mul_0; intuition order.
intros. pos_or_neg a. apply Aux2; order.
-apply opp_inj. rewrite <- 2 div_opp_l, <- mul_opp_l; try order. apply Aux2; order.
+apply opp_inj. rewrite <- 2 quot_opp_l, <- mul_opp_l; try order. apply Aux2; order.
rewrite <- neq_mul_0; intuition order.
Qed.
-Lemma div_mul_cancel_l : forall a b c, b~=0 -> c~=0 ->
- (c*a)/(c*b) == a/b.
+Lemma quot_mul_cancel_l : forall a b c, b~=0 -> c~=0 ->
+ (c*a)÷(c*b) == a÷b.
Proof.
-intros. rewrite !(mul_comm c); now apply div_mul_cancel_r.
+intros. rewrite !(mul_comm c); now apply quot_mul_cancel_r.
Qed.
-Lemma mul_mod_distr_r: forall a b c, b~=0 -> c~=0 ->
- (a*c) mod (b*c) == (a mod b) * c.
+Lemma mul_rem_distr_r: forall a b c, b~=0 -> c~=0 ->
+ (a*c) rem (b*c) == (a rem b) * c.
Proof.
intros.
assert (b*c ~= 0) by (rewrite <- neq_mul_0; tauto).
-rewrite ! mod_eq by trivial.
-rewrite div_mul_cancel_r by order.
-now rewrite mul_sub_distr_r, <- !mul_assoc, (mul_comm (a/b) c).
+rewrite ! rem_eq by trivial.
+rewrite quot_mul_cancel_r by order.
+now rewrite mul_sub_distr_r, <- !mul_assoc, (mul_comm (a÷b) c).
Qed.
-Lemma mul_mod_distr_l: forall a b c, b~=0 -> c~=0 ->
- (c*a) mod (c*b) == c * (a mod b).
+Lemma mul_rem_distr_l: forall a b c, b~=0 -> c~=0 ->
+ (c*a) rem (c*b) == c * (a rem b).
Proof.
-intros; rewrite !(mul_comm c); now apply mul_mod_distr_r.
+intros; rewrite !(mul_comm c); now apply mul_rem_distr_r.
Qed.
(** Operations modulo. *)
-Theorem mod_mod: forall a n, n~=0 ->
- (a mod n) mod n == a mod n.
+Theorem rem_rem: forall a n, n~=0 ->
+ (a rem n) rem n == a rem n.
Proof.
-intros. pos_or_neg a; pos_or_neg n. apply mod_mod; order.
-rewrite <- ! (mod_opp_r _ n) by trivial. apply mod_mod; order.
-apply opp_inj. rewrite <- !mod_opp_l by order. apply mod_mod; order.
-apply opp_inj. rewrite <- !mod_opp_opp by order. apply mod_mod; order.
+intros. pos_or_neg a; pos_or_neg n. apply NZQuot.mod_mod; order.
+rewrite <- ! (rem_opp_r _ n) by trivial. apply NZQuot.mod_mod; order.
+apply opp_inj. rewrite <- !rem_opp_l by order. apply NZQuot.mod_mod; order.
+apply opp_inj. rewrite <- !rem_opp_opp by order. apply NZQuot.mod_mod; order.
Qed.
-Lemma mul_mod_idemp_l : forall a b n, n~=0 ->
- ((a mod n)*b) mod n == (a*b) mod n.
+Lemma mul_rem_idemp_l : forall a b n, n~=0 ->
+ ((a rem n)*b) rem n == (a*b) rem n.
Proof.
assert (Aux1 : forall a b n, 0<=a -> 0<=b -> n~=0 ->
- ((a mod n)*b) mod n == (a*b) mod n).
- intros. pos_or_neg n. apply mul_mod_idemp_l; order.
- rewrite <- ! (mod_opp_r _ n) by order. apply mul_mod_idemp_l; order.
+ ((a rem n)*b) rem n == (a*b) rem n).
+ intros. pos_or_neg n. apply NZQuot.mul_mod_idemp_l; order.
+ rewrite <- ! (rem_opp_r _ n) by order. apply NZQuot.mul_mod_idemp_l; order.
assert (Aux2 : forall a b n, 0<=a -> n~=0 ->
- ((a mod n)*b) mod n == (a*b) mod n).
+ ((a rem n)*b) rem n == (a*b) rem n).
intros. pos_or_neg b. now apply Aux1.
- apply opp_inj. rewrite <-2 mod_opp_l, <-2 mul_opp_r by order.
+ apply opp_inj. rewrite <-2 rem_opp_l, <-2 mul_opp_r by order.
apply Aux1; order.
intros a b n Hn. pos_or_neg a. now apply Aux2.
-apply opp_inj. rewrite <-2 mod_opp_l, <-2 mul_opp_l, <-mod_opp_l by order.
+apply opp_inj. rewrite <-2 rem_opp_l, <-2 mul_opp_l, <-rem_opp_l by order.
apply Aux2; order.
Qed.
-Lemma mul_mod_idemp_r : forall a b n, n~=0 ->
- (a*(b mod n)) mod n == (a*b) mod n.
+Lemma mul_rem_idemp_r : forall a b n, n~=0 ->
+ (a*(b rem n)) rem n == (a*b) rem n.
Proof.
-intros. rewrite !(mul_comm a). now apply mul_mod_idemp_l.
+intros. rewrite !(mul_comm a). now apply mul_rem_idemp_l.
Qed.
-Theorem mul_mod: forall a b n, n~=0 ->
- (a * b) mod n == ((a mod n) * (b mod n)) mod n.
+Theorem mul_rem: forall a b n, n~=0 ->
+ (a * b) rem n == ((a rem n) * (b rem n)) rem n.
Proof.
-intros. now rewrite mul_mod_idemp_l, mul_mod_idemp_r.
+intros. now rewrite mul_rem_idemp_l, mul_rem_idemp_r.
Qed.
(** addition and modulo
Generally speaking, unlike with other conventions, we don't have
- [(a+b) mod n = (a mod n + b mod n) mod n]
+ [(a+b) rem n = (a rem n + b rem n) rem n]
for any a and b.
- For instance, take (8 + (-10)) mod 3 = -2 whereas
- (8 mod 3 + (-10 mod 3)) mod 3 = 1.
+ For instance, take (8 + (-10)) rem 3 = -2 whereas
+ (8 rem 3 + (-10 rem 3)) rem 3 = 1.
*)
-Lemma add_mod_idemp_l : forall a b n, n~=0 -> 0 <= a*b ->
- ((a mod n)+b) mod n == (a+b) mod n.
+Lemma add_rem_idemp_l : forall a b n, n~=0 -> 0 <= a*b ->
+ ((a rem n)+b) rem n == (a+b) rem n.
Proof.
assert (Aux : forall a b n, 0<=a -> 0<=b -> n~=0 ->
- ((a mod n)+b) mod n == (a+b) mod n).
- intros. pos_or_neg n. apply add_mod_idemp_l; order.
- rewrite <- ! (mod_opp_r _ n) by order. apply add_mod_idemp_l; order.
+ ((a rem n)+b) rem n == (a+b) rem n).
+ intros. pos_or_neg n. apply NZQuot.add_mod_idemp_l; order.
+ rewrite <- ! (rem_opp_r _ n) by order. apply NZQuot.add_mod_idemp_l; order.
intros a b n Hn Hab. destruct (le_0_mul _ _ Hab) as [(Ha,Hb)|(Ha,Hb)].
now apply Aux.
-apply opp_inj. rewrite <-2 mod_opp_l, 2 opp_add_distr, <-mod_opp_l by order.
+apply opp_inj. rewrite <-2 rem_opp_l, 2 opp_add_distr, <-rem_opp_l by order.
rewrite <- opp_nonneg_nonpos in *.
now apply Aux.
Qed.
-Lemma add_mod_idemp_r : forall a b n, n~=0 -> 0 <= a*b ->
- (a+(b mod n)) mod n == (a+b) mod n.
+Lemma add_rem_idemp_r : forall a b n, n~=0 -> 0 <= a*b ->
+ (a+(b rem n)) rem n == (a+b) rem n.
Proof.
-intros. rewrite !(add_comm a). apply add_mod_idemp_l; trivial.
+intros. rewrite !(add_comm a). apply add_rem_idemp_l; trivial.
now rewrite mul_comm.
Qed.
-Theorem add_mod: forall a b n, n~=0 -> 0 <= a*b ->
- (a+b) mod n == (a mod n + b mod n) mod n.
+Theorem add_rem: forall a b n, n~=0 -> 0 <= a*b ->
+ (a+b) rem n == (a rem n + b rem n) rem n.
Proof.
-intros a b n Hn Hab. rewrite add_mod_idemp_l, add_mod_idemp_r; trivial.
+intros a b n Hn Hab. rewrite add_rem_idemp_l, add_rem_idemp_r; trivial.
reflexivity.
destruct (le_0_mul _ _ Hab) as [(Ha,Hb)|(Ha,Hb)];
- destruct (le_0_mul _ _ (mod_sign b n Hn)) as [(Hb',Hm)|(Hb',Hm)];
+ destruct (le_0_mul _ _ (rem_sign_mul b n Hn)) as [(Hb',Hm)|(Hb',Hm)];
auto using mul_nonneg_nonneg, mul_nonpos_nonpos.
- setoid_replace b with 0 by order. rewrite mod_0_l by order. nzsimpl; order.
- setoid_replace b with 0 by order. rewrite mod_0_l by order. nzsimpl; order.
+ setoid_replace b with 0 by order. rewrite rem_0_l by order. nzsimpl; order.
+ setoid_replace b with 0 by order. rewrite rem_0_l by order. nzsimpl; order.
Qed.
(** Conversely, the following result needs less restrictions here. *)
-Lemma div_div : forall a b c, b~=0 -> c~=0 ->
- (a/b)/c == a/(b*c).
+Lemma quot_quot : forall a b c, b~=0 -> c~=0 ->
+ (a÷b)÷c == a÷(b*c).
Proof.
-assert (Aux1 : forall a b c, 0<=a -> 0<b -> c~=0 -> (a/b)/c == a/(b*c)).
- intros. pos_or_neg c. apply div_div; order.
- apply opp_inj. rewrite <- 2 div_opp_r, <- mul_opp_r; trivial.
- apply div_div; order.
+assert (Aux1 : forall a b c, 0<=a -> 0<b -> c~=0 -> (a÷b)÷c == a÷(b*c)).
+ intros. pos_or_neg c. apply NZQuot.div_div; order.
+ apply opp_inj. rewrite <- 2 quot_opp_r, <- mul_opp_r; trivial.
+ apply NZQuot.div_div; order.
rewrite <- neq_mul_0; intuition order.
-assert (Aux2 : forall a b c, 0<=a -> b~=0 -> c~=0 -> (a/b)/c == a/(b*c)).
+assert (Aux2 : forall a b c, 0<=a -> b~=0 -> c~=0 -> (a÷b)÷c == a÷(b*c)).
intros. pos_or_neg b. apply Aux1; order.
- apply opp_inj. rewrite <- div_opp_l, <- 2 div_opp_r, <- mul_opp_l; trivial.
+ apply opp_inj. rewrite <- quot_opp_l, <- 2 quot_opp_r, <- mul_opp_l; trivial.
apply Aux1; trivial.
rewrite <- neq_mul_0; intuition order.
intros. pos_or_neg a. apply Aux2; order.
-apply opp_inj. rewrite <- 3 div_opp_l; try order. apply Aux2; order.
+apply opp_inj. rewrite <- 3 quot_opp_l; try order. apply Aux2; order.
rewrite <- neq_mul_0. tauto.
Qed.
(** A last inequality: *)
-Theorem div_mul_le:
- forall a b c, 0<=a -> 0<b -> 0<=c -> c*(a/b) <= (c*a)/b.
-Proof. exact div_mul_le. Qed.
-
-(** mod is related to divisibility *)
-
-Lemma mod_divides : forall a b, b~=0 ->
- (a mod b == 0 <-> exists c, a == b*c).
-Proof.
- intros a b Hb. split.
- intros Hab. exists (a/b). rewrite (div_mod a b Hb) at 1.
- rewrite Hab; now nzsimpl.
- intros (c,Hc). rewrite Hc, mul_comm. now apply mod_mul.
-Qed.
+Theorem quot_mul_le:
+ forall a b c, 0<=a -> 0<b -> 0<=c -> c*(a÷b) <= (c*a)÷b.
+Proof. exact NZQuot.div_mul_le. Qed.
-End ZDivProp.
+End ZQuotProp.
diff --git a/theories/Numbers/Integer/Abstract/ZGcd.v b/theories/Numbers/Integer/Abstract/ZGcd.v
index d58d1f1e27..6b1d4675ee 100644
--- a/theories/Numbers/Integer/Abstract/ZGcd.v
+++ b/theories/Numbers/Integer/Abstract/ZGcd.v
@@ -10,10 +10,10 @@
Require Import ZAxioms ZMulOrder ZSgnAbs NZGcd.
-Module ZGcdProp
+Module Type ZGcdProp
(Import A : ZAxiomsSig')
(Import B : ZMulOrderProp A)
- (Import D : ZSgnAbsProp A B).
+ (Import C : ZSgnAbsProp A B).
Include NZGcdProp A A B.
@@ -269,8 +269,6 @@ Proof.
symmetry in G. apply gcd_eq_0 in G. destruct G as (Hn',_); order.
Qed.
-(** TODO : relation between gcd and division and modulo *)
-
(** TODO : more about rel_prime (i.e. gcd == 1), about prime ... *)
End ZGcdProp.
diff --git a/theories/Numbers/Integer/Abstract/ZLcm.v b/theories/Numbers/Integer/Abstract/ZLcm.v
new file mode 100644
index 0000000000..27bd5962ca
--- /dev/null
+++ b/theories/Numbers/Integer/Abstract/ZLcm.v
@@ -0,0 +1,436 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+Require Import ZAxioms ZMulOrder ZSgnAbs ZGcd ZDivTrunc ZDivFloor.
+
+(** * Least Common Multiple *)
+
+(** Unlike other functions around, we will define lcm below instead of
+ axiomatizing it. Indeed, there is no "prior art" about lcm in the
+ standard library to be compliant with, and the generic definition
+ of lcm via gcd is quite reasonable.
+
+ By the way, we also state here some combined properties of div/mod
+ and quot/rem and gcd.
+*)
+
+Module Type ZLcmProp
+ (Import A : ZAxiomsSig')
+ (Import B : ZMulOrderProp A)
+ (Import C : ZSgnAbsProp A B)
+ (Import D : ZDivProp A B C)
+ (Import E : ZQuotProp A B C)
+ (Import F : ZGcdProp A B C).
+
+(** The two notions of division are equal on non-negative numbers *)
+
+Lemma quot_div_nonneg : forall a b, 0<=a -> 0<b -> a÷b == a/b.
+Proof.
+ intros. apply div_unique_pos with (a rem b).
+ now apply rem_bound_pos.
+ apply quot_rem. order.
+Qed.
+
+Lemma rem_mod_nonneg : forall a b, 0<=a -> 0<b -> a rem b == a mod b.
+Proof.
+ intros. apply mod_unique_pos with (a÷b).
+ now apply rem_bound_pos.
+ apply quot_rem. order.
+Qed.
+
+(** Modulo and remainder are null at the same place,
+ and this correspond to the divisibility relation. *)
+
+Lemma mod_divide : forall a b, b~=0 -> (a mod b == 0 <-> (b|a)).
+Proof.
+ intros a b Hb. split.
+ intros Hab. exists (a/b). rewrite (div_mod a b Hb) at 2.
+ rewrite Hab; now nzsimpl.
+ intros (c,Hc). rewrite <- Hc, mul_comm. now apply mod_mul.
+Qed.
+
+Lemma rem_divide : forall a b, b~=0 -> (a rem b == 0 <-> (b|a)).
+Proof.
+ intros a b Hb. split.
+ intros Hab. exists (a÷b). rewrite (quot_rem a b Hb) at 2.
+ rewrite Hab; now nzsimpl.
+ intros (c,Hc). rewrite <- Hc, mul_comm. now apply rem_mul.
+Qed.
+
+Lemma rem_mod_eq_0 : forall a b, b~=0 -> (a rem b == 0 <-> a mod b == 0).
+Proof.
+ intros a b Hb. now rewrite mod_divide, rem_divide.
+Qed.
+
+(** When division is exact, div and quot agree *)
+
+Lemma quot_div_exact : forall a b, b~=0 -> (b|a) -> a÷b == a/b.
+Proof.
+ intros a b Hb H.
+ apply mul_cancel_l with b; trivial.
+ assert (H':=H).
+ apply rem_divide, quot_exact in H; trivial.
+ apply mod_divide, div_exact in H'; trivial.
+ now rewrite <-H,<-H'.
+Qed.
+
+Lemma divide_div_mul_exact : forall a b c, b~=0 -> (b|a) ->
+ (c*a)/b == c*(a/b).
+Proof.
+ intros a b c Hb H.
+ apply mul_cancel_l with b; trivial.
+ rewrite mul_assoc, mul_shuffle0.
+ assert (H':=H). apply mod_divide, div_exact in H'; trivial.
+ rewrite <- H', (mul_comm a c).
+ symmetry. apply div_exact; trivial.
+ apply mod_divide; trivial.
+ now apply divide_mul_r.
+Qed.
+
+Lemma divide_quot_mul_exact : forall a b c, b~=0 -> (b|a) ->
+ (c*a)÷b == c*(a÷b).
+Proof.
+ intros a b c Hb H.
+ rewrite 2 quot_div_exact; trivial.
+ apply divide_div_mul_exact; trivial.
+ now apply divide_mul_r.
+Qed.
+
+(** Gcd of divided elements, for exact divisions *)
+
+Lemma gcd_div_factor : forall a b c, 0<c -> (c|a) -> (c|b) ->
+ gcd (a/c) (b/c) == (gcd a b)/c.
+Proof.
+ intros a b c Hc Ha Hb.
+ apply mul_cancel_l with c; try order.
+ assert (H:=gcd_greatest _ _ _ Ha Hb).
+ apply mod_divide, div_exact in H; try order.
+ rewrite <- H.
+ rewrite <- gcd_mul_mono_l_nonneg; try order.
+ apply gcd_wd; symmetry; apply div_exact; try order;
+ apply mod_divide; trivial; try order.
+Qed.
+
+Lemma gcd_quot_factor : forall a b c, 0<c -> (c|a) -> (c|b) ->
+ gcd (a÷c) (b÷c) == (gcd a b)÷c.
+Proof.
+ intros a b c Hc Ha Hb. rewrite !quot_div_exact; trivial; try order.
+ now apply gcd_div_factor. now apply gcd_greatest.
+Qed.
+
+Lemma gcd_div_gcd : forall a b g, g~=0 -> g == gcd a b ->
+ gcd (a/g) (b/g) == 1.
+Proof.
+ intros a b g NZ EQ. rewrite gcd_div_factor.
+ now rewrite <- EQ, div_same.
+ generalize (gcd_nonneg a b); order.
+ rewrite EQ; apply gcd_divide_l.
+ rewrite EQ; apply gcd_divide_r.
+Qed.
+
+Lemma gcd_quot_gcd : forall a b g, g~=0 -> g == gcd a b ->
+ gcd (a÷g) (b÷g) == 1.
+Proof.
+ intros a b g NZ EQ. rewrite !quot_div_exact; trivial.
+ now apply gcd_div_gcd.
+ rewrite EQ; apply gcd_divide_r.
+ rewrite EQ; apply gcd_divide_l.
+Qed.
+
+(** The following equality is crucial for Euclid algorithm *)
+
+Lemma gcd_mod : forall a b, b~=0 -> gcd (a mod b) b == gcd b a.
+Proof.
+ intros a b Hb. rewrite mod_eq; trivial.
+ rewrite <- add_opp_r, mul_comm, <- mul_opp_l.
+ rewrite (gcd_comm _ b).
+ apply gcd_add_mult_diag_r.
+Qed.
+
+Lemma gcd_rem : forall a b, b~=0 -> gcd (a rem b) b == gcd b a.
+Proof.
+ intros a b Hb. rewrite rem_eq; trivial.
+ rewrite <- add_opp_r, mul_comm, <- mul_opp_l.
+ rewrite (gcd_comm _ b).
+ apply gcd_add_mult_diag_r.
+Qed.
+
+(** We now define lcm thanks to gcd:
+
+ lcm a b = a * (b / gcd a b)
+ = (a / gcd a b) * b
+ = (a*b) / gcd a b
+
+ We had an abs in order to have an always-nonnegative lcm,
+ in the spirit of gcd. Nota: [lcm 0 0] should be 0, which
+ isn't garantee with the third equation above.
+*)
+
+Definition lcm a b := abs (a*(b/gcd a b)).
+
+Instance lcm_wd : Proper (eq==>eq==>eq) lcm.
+Proof.
+ unfold lcm. intros x x' Hx y y' Hy. now rewrite Hx, Hy.
+Qed.
+
+Lemma lcm_equiv1 : forall a b, gcd a b ~= 0 ->
+ a * (b / gcd a b) == (a*b)/gcd a b.
+Proof.
+ intros a b H. rewrite divide_div_mul_exact; try easy. apply gcd_divide_r.
+Qed.
+
+Lemma lcm_equiv2 : forall a b, gcd a b ~= 0 ->
+ (a / gcd a b) * b == (a*b)/gcd a b.
+Proof.
+ intros a b H. rewrite 2 (mul_comm _ b).
+ rewrite divide_div_mul_exact; try easy. apply gcd_divide_l.
+Qed.
+
+Lemma gcd_div_swap : forall a b,
+ (a / gcd a b) * b == a * (b / gcd a b).
+Proof.
+ intros a b. destruct (eq_decidable (gcd a b) 0) as [EQ|NEQ].
+ apply gcd_eq_0 in EQ. destruct EQ as (EQ,EQ'). rewrite EQ, EQ'. now nzsimpl.
+ now rewrite lcm_equiv1, <-lcm_equiv2.
+Qed.
+
+Lemma divide_lcm_l : forall a b, (a | lcm a b).
+Proof.
+ unfold lcm. intros a b. apply divide_abs_r, divide_factor_l.
+Qed.
+
+Lemma divide_lcm_r : forall a b, (b | lcm a b).
+Proof.
+ unfold lcm. intros a b. apply divide_abs_r. rewrite <- gcd_div_swap.
+ apply divide_factor_r.
+Qed.
+
+Lemma divide_div : forall a b c, a~=0 -> (a|b) -> (b|c) -> (b/a|c/a).
+Proof.
+ intros a b c Ha Hb (c',Hc). exists c'.
+ now rewrite mul_comm, <- divide_div_mul_exact, mul_comm, Hc.
+Qed.
+
+Lemma lcm_least : forall a b c,
+ (a | c) -> (b | c) -> (lcm a b | c).
+Proof.
+ intros a b c Ha Hb. unfold lcm. apply divide_abs_l.
+ destruct (eq_decidable (gcd a b) 0) as [EQ|NEQ].
+ apply gcd_eq_0 in EQ. destruct EQ as (EQ,EQ'). rewrite EQ in *. now nzsimpl.
+ assert (Ga := gcd_divide_l a b).
+ assert (Gb := gcd_divide_r a b).
+ set (g:=gcd a b) in *.
+ assert (Ha' := divide_div g a c NEQ Ga Ha).
+ assert (Hb' := divide_div g b c NEQ Gb Hb).
+ destruct Ha' as (a',Ha'). rewrite <- Ha' in Hb'.
+ apply gauss in Hb'; [|apply gcd_div_gcd; unfold g; trivial using gcd_comm].
+ destruct Hb' as (b',Hb').
+ exists b'.
+ rewrite <- mul_assoc, Hb'.
+ rewrite (proj2 (div_exact c g NEQ)).
+ rewrite <- Ha', mul_assoc. apply mul_wd; try easy.
+ apply div_exact; trivial.
+ apply mod_divide; trivial.
+ apply mod_divide; trivial. transitivity a; trivial.
+Qed.
+
+Lemma lcm_nonneg : forall a b, 0 <= lcm a b.
+Proof.
+ intros a b. unfold lcm. apply abs_nonneg.
+Qed.
+
+Lemma lcm_comm : forall a b, lcm a b == lcm b a.
+Proof.
+ intros a b. unfold lcm. rewrite (gcd_comm b), (mul_comm b).
+ now rewrite <- gcd_div_swap.
+Qed.
+
+Lemma lcm_divide_iff : forall n m p,
+ (lcm n m | p) <-> (n | p) /\ (m | p).
+Proof.
+ intros. split. split.
+ transitivity (lcm n m); trivial using divide_lcm_l.
+ transitivity (lcm n m); trivial using divide_lcm_r.
+ intros (H,H'). now apply lcm_least.
+Qed.
+
+Lemma lcm_unique : forall n m p,
+ 0<=p -> (n|p) -> (m|p) ->
+ (forall q, (n|q) -> (m|q) -> (p|q)) ->
+ lcm n m == p.
+Proof.
+ intros n m p Hp Hn Hm H.
+ apply divide_antisym_nonneg; trivial. apply lcm_nonneg.
+ now apply lcm_least.
+ apply H. apply divide_lcm_l. apply divide_lcm_r.
+Qed.
+
+Lemma lcm_unique_alt : forall n m p, 0<=p ->
+ (forall q, (p|q) <-> (n|q) /\ (m|q)) ->
+ lcm n m == p.
+Proof.
+ intros n m p Hp H.
+ apply lcm_unique; trivial.
+ apply -> H. apply divide_refl.
+ apply -> H. apply divide_refl.
+ intros. apply H. now split.
+Qed.
+
+Lemma lcm_assoc : forall n m p, lcm n (lcm m p) == lcm (lcm n m) p.
+Proof.
+ intros. apply lcm_unique_alt; try apply lcm_nonneg.
+ intros. now rewrite !lcm_divide_iff, and_assoc.
+Qed.
+
+Lemma lcm_0_l : forall n, lcm 0 n == 0.
+Proof.
+ intros. apply lcm_unique; trivial. order.
+ apply divide_refl.
+ apply divide_0_r.
+Qed.
+
+Lemma lcm_0_r : forall n, lcm n 0 == 0.
+Proof.
+ intros. now rewrite lcm_comm, lcm_0_l.
+Qed.
+
+Lemma lcm_1_l_nonneg : forall n, 0<=n -> lcm 1 n == n.
+Proof.
+ intros. apply lcm_unique; trivial using divide_1_l, le_0_1, divide_refl.
+Qed.
+
+Lemma lcm_1_r_nonneg : forall n, 0<=n -> lcm n 1 == n.
+Proof.
+ intros. now rewrite lcm_comm, lcm_1_l_nonneg.
+Qed.
+
+Lemma lcm_diag_nonneg : forall n, 0<=n -> lcm n n == n.
+Proof.
+ intros. apply lcm_unique; trivial using divide_refl.
+Qed.
+
+Lemma lcm_eq_0 : forall n m, lcm n m == 0 <-> n == 0 \/ m == 0.
+Proof.
+ intros. split.
+ intros EQ.
+ apply eq_mul_0.
+ apply divide_0_l. rewrite <- EQ. apply lcm_least.
+ apply divide_factor_l. apply divide_factor_r.
+ destruct 1 as [EQ|EQ]; rewrite EQ. apply lcm_0_l. apply lcm_0_r.
+Qed.
+
+Lemma divide_lcm_eq_r : forall n m, 0<=m -> (n|m) -> lcm n m == m.
+Proof.
+ intros n m Hm H. apply lcm_unique_alt; trivial.
+ intros q. split. split; trivial. now transitivity m.
+ now destruct 1.
+Qed.
+
+Lemma divide_lcm_iff : forall n m, 0<=m -> ((n|m) <-> lcm n m == m).
+Proof.
+ intros n m Hn. split. now apply divide_lcm_eq_r.
+ intros EQ. rewrite <- EQ. apply divide_lcm_l.
+Qed.
+
+Lemma lcm_opp_l : forall n m, lcm (-n) m == lcm n m.
+Proof.
+ intros. apply lcm_unique_alt; try apply lcm_nonneg.
+ intros. rewrite divide_opp_l. apply lcm_divide_iff.
+Qed.
+
+Lemma lcm_opp_r : forall n m, lcm n (-m) == lcm n m.
+Proof.
+ intros. now rewrite lcm_comm, lcm_opp_l, lcm_comm.
+Qed.
+
+Lemma lcm_abs_l : forall n m, lcm (abs n) m == lcm n m.
+Proof.
+ intros. destruct (abs_eq_or_opp n) as [H|H]; rewrite H.
+ easy. apply lcm_opp_l.
+Qed.
+
+Lemma lcm_abs_r : forall n m, lcm n (abs m) == lcm n m.
+Proof.
+ intros. now rewrite lcm_comm, lcm_abs_l, lcm_comm.
+Qed.
+
+Lemma lcm_1_l : forall n, lcm 1 n == abs n.
+Proof.
+ intros. rewrite <- lcm_abs_r. apply lcm_1_l_nonneg, abs_nonneg.
+Qed.
+
+Lemma lcm_1_r : forall n, lcm n 1 == abs n.
+Proof.
+ intros. now rewrite lcm_comm, lcm_1_l.
+Qed.
+
+Lemma lcm_diag : forall n, lcm n n == abs n.
+Proof.
+ intros. rewrite <- lcm_abs_l, <- lcm_abs_r.
+ apply lcm_diag_nonneg, abs_nonneg.
+Qed.
+
+Lemma lcm_mul_mono_l :
+ forall n m p, lcm (p * n) (p * m) == abs p * lcm n m.
+Proof.
+ intros n m p.
+ destruct (eq_decidable p 0) as [Hp|Hp].
+ rewrite Hp. nzsimpl. rewrite lcm_0_l, abs_0. now nzsimpl.
+ destruct (eq_decidable (gcd n m) 0) as [Hg|Hg].
+ apply gcd_eq_0 in Hg. destruct Hg as (Hn,Hm); rewrite Hn, Hm.
+ nzsimpl. rewrite lcm_0_l. now nzsimpl.
+ unfold lcm.
+ rewrite gcd_mul_mono_l.
+ rewrite !abs_mul, mul_assoc. apply mul_wd; try easy.
+ rewrite <- (abs_sgn p) at 1. rewrite <- mul_assoc.
+ rewrite div_mul_cancel_l; trivial.
+ rewrite divide_div_mul_exact; trivial. rewrite abs_mul.
+ rewrite <- (sgn_abs (sgn p)), sgn_sgn.
+ destruct (sgn_spec p) as [(_,EQ)|[(EQ,_)|(_,EQ)]].
+ rewrite EQ. now nzsimpl. order.
+ rewrite EQ. rewrite mul_opp_l, mul_opp_r, opp_involutive. now nzsimpl.
+ apply gcd_divide_r.
+ contradict Hp. now apply abs_0_iff.
+Qed.
+
+Lemma lcm_mul_mono_l_nonneg :
+ forall n m p, 0<=p -> lcm (p*n) (p*m) == p * lcm n m.
+Proof.
+ intros. rewrite <- (abs_eq p) at 3; trivial. apply lcm_mul_mono_l.
+Qed.
+
+Lemma lcm_mul_mono_r :
+ forall n m p, lcm (n * p) (m * p) == lcm n m * abs p.
+Proof.
+ intros n m p. now rewrite !(mul_comm _ p), lcm_mul_mono_l, mul_comm.
+Qed.
+
+Lemma lcm_mul_mono_r_nonneg :
+ forall n m p, 0<=p -> lcm (n*p) (m*p) == lcm n m * p.
+Proof.
+ intros. rewrite <- (abs_eq p) at 3; trivial. apply lcm_mul_mono_r.
+Qed.
+
+Lemma gcd_1_lcm_mul : forall n m, n~=0 -> m~=0 ->
+ (gcd n m == 1 <-> lcm n m == abs (n*m)).
+Proof.
+ intros n m Hn Hm. split; intros H.
+ unfold lcm. rewrite H. now rewrite div_1_r.
+ unfold lcm in *.
+ rewrite !abs_mul in H. apply mul_cancel_l in H; [|now rewrite abs_0_iff].
+ assert (H' := gcd_divide_r n m).
+ assert (Hg : gcd n m ~= 0) by (red; rewrite gcd_eq_0; destruct 1; order).
+ apply mod_divide in H'; trivial. apply div_exact in H'; trivial.
+ assert (m / gcd n m ~=0) by (contradict Hm; rewrite H', Hm; now nzsimpl).
+ rewrite <- (mul_1_l (abs (_/_))) in H.
+ rewrite H' in H at 3. rewrite abs_mul in H.
+ apply mul_cancel_r in H; [|now rewrite abs_0_iff].
+ rewrite abs_eq in H. order. apply gcd_nonneg.
+Qed.
+
+End ZLcmProp.
diff --git a/theories/Numbers/Integer/Abstract/ZProperties.v b/theories/Numbers/Integer/Abstract/ZProperties.v
index 6fbf0f23db..2e747782c7 100644
--- a/theories/Numbers/Integer/Abstract/ZProperties.v
+++ b/theories/Numbers/Integer/Abstract/ZProperties.v
@@ -6,10 +6,12 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-Require Export ZAxioms ZMaxMin ZSgnAbs ZParity ZPow ZGcd.
+Require Export ZAxioms ZMaxMin ZSgnAbs ZParity ZPow ZDivTrunc ZDivFloor
+ ZGcd ZLcm.
(** This functor summarizes all known facts about Z. *)
Module Type ZProp (Z:ZAxiomsSig) :=
ZMaxMinProp Z <+ ZSgnAbsProp Z <+ ZParityProp Z <+ ZPowProp Z
- <+ NZSqrt.NZSqrtProp Z Z <+ NZLog.NZLog2Prop Z Z Z <+ ZGcdProp Z.
+ <+ NZSqrt.NZSqrtProp Z Z <+ NZLog.NZLog2Prop Z Z Z
+ <+ ZDivProp Z <+ ZQuotProp Z <+ ZGcdProp Z <+ ZLcmProp Z.