diff options
Diffstat (limited to 'theories/Array/PArray.v')
| -rw-r--r-- | theories/Array/PArray.v | 22 |
1 files changed, 11 insertions, 11 deletions
diff --git a/theories/Array/PArray.v b/theories/Array/PArray.v index 282f56267c..3511ba0918 100644 --- a/theories/Array/PArray.v +++ b/theories/Array/PArray.v @@ -45,19 +45,19 @@ Local Open Scope array_scope. Primitive max_length := #array_max_length. (** Axioms *) -Axiom get_out_of_bounds : forall A (t:array A) i, (i < length t) = false -> t.[i] = default t. +Axiom get_out_of_bounds : forall A (t:array A) i, (i <? length t) = false -> t.[i] = default t. -Axiom get_set_same : forall A t i (a:A), (i < length t) = true -> t.[i<-a].[i] = a. +Axiom get_set_same : forall A t i (a:A), (i <? length t) = true -> t.[i<-a].[i] = a. Axiom get_set_other : forall A t i j (a:A), i <> j -> t.[i<-a].[j] = t.[j]. Axiom default_set : forall A t i (a:A), default t.[i<-a] = default t. Axiom get_make : forall A (a:A) size i, (make size a).[i] = a. -Axiom leb_length : forall A (t:array A), length t <= max_length = true. +Axiom leb_length : forall A (t:array A), length t <=? max_length = true. Axiom length_make : forall A size (a:A), - length (make size a) = if size <= max_length then size else max_length. + length (make size a) = if size <=? max_length then size else max_length. Axiom length_set : forall A t i (a:A), length t.[i<-a] = length t. @@ -69,7 +69,7 @@ Axiom length_reroot : forall A (t:array A), length (reroot t) = length t. Axiom array_ext : forall A (t1 t2:array A), length t1 = length t2 -> - (forall i, i < length t1 = true -> t1.[i] = t2.[i]) -> + (forall i, i <? length t1 = true -> t1.[i] = t2.[i]) -> default t1 = default t2 -> t1 = t2. @@ -77,7 +77,7 @@ Axiom array_ext : forall A (t1 t2:array A), Lemma default_copy A (t:array A) : default (copy t) = default t. Proof. - assert (irr_lt : length t < length t = false). + assert (irr_lt : length t <? length t = false). destruct (Int63.ltbP (length t) (length t)); try reflexivity. exfalso; eapply BinInt.Z.lt_irrefl; eassumption. assert (get_copy := get_copy A t (length t)). @@ -87,7 +87,7 @@ Qed. Lemma default_make A (a : A) size : default (make size a) = a. Proof. - assert (irr_lt : length (make size a) < length (make size a) = false). + assert (irr_lt : length (make size a) <? length (make size a) = false). destruct (Int63.ltbP (length (make size a)) (length (make size a))); try reflexivity. exfalso; eapply BinInt.Z.lt_irrefl; eassumption. assert (get_make := get_make A a size (length (make size a))). @@ -96,7 +96,7 @@ Qed. Lemma default_reroot A (t:array A) : default (reroot t) = default t. Proof. - assert (irr_lt : length t < length t = false). + assert (irr_lt : length t <? length t = false). destruct (Int63.ltbP (length t) (length t)); try reflexivity. exfalso; eapply BinInt.Z.lt_irrefl; eassumption. assert (get_reroot := get_reroot A t (length t)). @@ -107,16 +107,16 @@ Qed. Lemma get_set_same_default A (t : array A) (i : int) : t.[i <- default t].[i] = default t. Proof. - case_eq (i < length t); intros. + case_eq (i <? length t); intros. rewrite get_set_same; trivial. rewrite get_out_of_bounds, default_set; trivial. rewrite length_set; trivial. Qed. Lemma get_not_default_lt A (t:array A) x : - t.[x] <> default t -> (x < length t) = true. + t.[x] <> default t -> (x <? length t) = true. Proof. intros Hd. - case_eq (x < length t); intros Heq; [trivial | ]. + case_eq (x <? length t); intros Heq; [trivial | ]. elim Hd; rewrite get_out_of_bounds; trivial. Qed. |
