diff options
Diffstat (limited to 'test-suite/stm/Nijmegen_QArithSternBrocot_Zaux.v')
| -rw-r--r-- | test-suite/stm/Nijmegen_QArithSternBrocot_Zaux.v | 33 |
1 files changed, 17 insertions, 16 deletions
diff --git a/test-suite/stm/Nijmegen_QArithSternBrocot_Zaux.v b/test-suite/stm/Nijmegen_QArithSternBrocot_Zaux.v index 69ed621877..ae71ddfd1d 100644 --- a/test-suite/stm/Nijmegen_QArithSternBrocot_Zaux.v +++ b/test-suite/stm/Nijmegen_QArithSternBrocot_Zaux.v @@ -19,6 +19,7 @@ Require Export ZArith. Require Export ZArithRing. +Require Import Lia. Tactic Notation "ElimCompare" constr(c) constr(d) := elim_compare c d. @@ -140,35 +141,35 @@ Qed. Lemma lt_minus_neq : forall m n : nat, m < n -> n - m <> 0. Proof. intros. - omega. + lia. Qed. Lemma lt_minus_eq_0 : forall m n : nat, m < n -> m - n = 0. Proof. intros. - omega. + lia. Qed. Lemma le_plus_Sn_1_SSn : forall n : nat, S n + 1 <= S (S n). Proof. intros. - omega. + lia. Qed. Lemma le_plus_O_l : forall p q : nat, p + q <= 0 -> p = 0. Proof. - intros; omega. + intros; lia. Qed. Lemma le_plus_O_r : forall p q : nat, p + q <= 0 -> q = 0. Proof. - intros; omega. + intros; lia. Qed. Lemma minus_pred : forall m n : nat, 0 < n -> pred m - pred n = m - n. Proof. intros. - omega. + lia. Qed. @@ -573,7 +574,7 @@ Qed. -Hint Resolve Zmult_pos_pos Zmult_neg_neg Zmult_neg_pos Zmult_pos_neg: zarith. +Local Hint Resolve Zmult_pos_pos Zmult_neg_neg Zmult_neg_pos Zmult_pos_neg: zarith. Lemma Zle_reg_mult_l : @@ -1158,7 +1159,7 @@ Proof. intros [| p| p]; intros; [ Falsum | constructor | constructor ]. Qed. -Hint Resolve square_pos: zarith. +Local Hint Resolve square_pos: zarith. (*###########################################################################*) (** Properties of positive numbers, mapping between Z and nat *) @@ -1414,13 +1415,13 @@ Qed. Lemma lt_inj : forall m n : nat, (m < n)%Z -> m < n. Proof. intros. - omega. + lia. Qed. Lemma le_inj : forall m n : nat, (m <= n)%Z -> m <= n. Proof. intros. - omega. + lia. Qed. @@ -1501,7 +1502,7 @@ Proof. [ replace (Z.abs_nat x) with (Z.abs_nat (x - 1 + 1)); [ idtac | apply f_equal with Z; auto with zarith ]; rewrite absolu_plus; - [ unfold Z.abs_nat at 2, nat_of_P, Pos.iter_op in |- *; omega + [ unfold Z.abs_nat at 2, nat_of_P, Pos.iter_op in |- *; lia | auto with zarith | intro; discriminate ] | rewrite <- H1; reflexivity ]. @@ -1985,7 +1986,7 @@ Proof. intros [| p| p] Hp; trivial. Qed. -Hint Resolve Zsgn_1 Zsgn_2 Zsgn_3 Zsgn_4 Zsgn_5 Zsgn_6 Zsgn_7 Zsgn_7' Zsgn_8 +Local Hint Resolve Zsgn_1 Zsgn_2 Zsgn_3 Zsgn_4 Zsgn_5 Zsgn_6 Zsgn_7 Zsgn_7' Zsgn_8 Zsgn_9 Zsgn_10 Zsgn_11 Zsgn_12 Zsgn_13 Zsgn_14 Zsgn_15 Zsgn_16 Zsgn_17 Zsgn_18 Zsgn_19 Zsgn_20 Zsgn_21 Zsgn_22 Zsgn_23 Zsgn_24 Zsgn_25 Zsgn_26 Zsgn_27: zarith. @@ -2388,7 +2389,7 @@ Proof. intros [|z|z]; simpl; auto with zarith; apply Zle_neg_pos. Qed. -Hint Resolve Zabs_1 Zabs_2 Zabs_3 Zabs_4 Zabs_5 Zabs_6 Zabs_7 Zabs_8 Zabs_9 +Local Hint Resolve Zabs_1 Zabs_2 Zabs_3 Zabs_4 Zabs_5 Zabs_6 Zabs_7 Zabs_8 Zabs_9 Zabs_10 Zabs_11 Zabs_12 Zabs_min Zabs_neg Zabs_mult Zabs_plus Zle_Zabs: zarith. @@ -2949,7 +2950,7 @@ Proof. ring. Qed. -Hint Resolve ZmaxSS Zle_max_r Zle_max_l Zmax_n_n: zarith. +Local Hint Resolve ZmaxSS Zle_max_r Zle_max_l Zmax_n_n: zarith. (*###########################################################################*) (** Properties of Arity *) @@ -3020,7 +3021,7 @@ Proof. Flip. Qed. -Hint Resolve Z_div_mod_eq_2 Z_div_le Z_div_nonneg Z_div_neg: zarith. +Local Hint Resolve Z_div_mod_eq_2 Z_div_le Z_div_nonneg Z_div_neg: zarith. (*###########################################################################*) (** Properties of Zpower *) @@ -3038,4 +3039,4 @@ Proof. ring. Qed. -Hint Resolve Zpower_1 Zpower_2: zarith. +Local Hint Resolve Zpower_1 Zpower_2: zarith. |
