aboutsummaryrefslogtreecommitdiff
path: root/plugins
diff options
context:
space:
mode:
Diffstat (limited to 'plugins')
-rw-r--r--plugins/ssr/ssrclasses.v3
-rw-r--r--plugins/ssr/ssreflect.v68
-rw-r--r--plugins/ssr/ssrsetoid.v103
-rw-r--r--plugins/ssr/ssrunder.v75
4 files changed, 183 insertions, 66 deletions
diff --git a/plugins/ssr/ssrclasses.v b/plugins/ssr/ssrclasses.v
index 29486ff4cf..0ae3f8c6a5 100644
--- a/plugins/ssr/ssrclasses.v
+++ b/plugins/ssr/ssrclasses.v
@@ -12,6 +12,9 @@
(** Compatibility layer for [under] and [setoid_rewrite].
+ Note: this file does not require [ssreflect]; it is both required by
+ [ssrsetoid] and required by [ssrunder].
+
Redefine [Coq.Classes.RelationClasses.Reflexive] here, so that doing
[Require Import ssreflect] does not [Require Import RelationClasses],
and conversely. **)
diff --git a/plugins/ssr/ssreflect.v b/plugins/ssr/ssreflect.v
index a19aade6e9..43c091123e 100644
--- a/plugins/ssr/ssreflect.v
+++ b/plugins/ssr/ssreflect.v
@@ -531,65 +531,13 @@ Lemma abstract_context T (P : T -> Type) x :
Proof. by move=> /(_ P); apply. Qed.
(*****************************************************************************)
-(* Constants for under/over, to rewrite under binders using "context lemmas" *)
-
-Require Import ssrclasses.
-
-Module Type UNDER_REL.
-Parameter Under_rel :
- forall (A : Type) (eqA : A -> A -> Prop), A -> A -> Prop.
-Parameter Under_rel_from_rel :
- forall (A : Type) (eqA : A -> A -> Prop) (x y : A),
- @Under_rel A eqA x y -> eqA x y.
-Parameter Under_relE :
- forall (A : Type) (eqA : A -> A -> Prop) (x y : A),
- @Under_rel A eqA x y = eqA x y.
-
-(** [Over_rel, over_rel, over_rel_done]: for "by rewrite over_rel" *)
-Parameter Over_rel :
- forall (A : Type) (eqA : A -> A -> Prop), A -> A -> Prop.
-Parameter over_rel :
- forall (A : Type) (eqA : A -> A -> Prop) (x y : A),
- @Under_rel A eqA x y = @Over_rel A eqA x y.
-Parameter over_rel_done :
- forall (A : Type) (eqA : A -> A -> Prop) (EeqA : Reflexive eqA) (x : A),
- @Over_rel A eqA x x.
-Hint Extern 0 (@Over_rel _ _ _ _) =>
- solve [ apply: over_rel_done ] : core.
-Hint Resolve over_rel_done : core.
-
-(** [under_rel_done]: for Ltac-style over *)
-Parameter under_rel_done :
- forall (A : Type) (eqA : A -> A -> Prop) (EeqA : Reflexive eqA) (x : A),
- @Under_rel A eqA x x.
-Notation "''Under[' x ]" := (@Under_rel _ _ x _)
- (at level 8, format "''Under[' x ]", only printing).
-End UNDER_REL.
-
-Module Export Under_rel : UNDER_REL.
-Definition Under_rel (A : Type) (eqA : A -> A -> Prop) :=
- eqA.
-Lemma Under_rel_from_rel :
- forall (A : Type) (eqA : A -> A -> Prop) (x y : A),
- @Under_rel A eqA x y -> eqA x y.
-Proof. by []. Qed.
-Lemma Under_relE (A : Type) (eqA : A -> A -> Prop) (x y : A) :
- @Under_rel A eqA x y = eqA x y.
-Proof. by []. Qed.
-Definition Over_rel := Under_rel.
-Lemma over_rel :
- forall (A : Type) (eqA : A -> A -> Prop) (x y : A),
- @Under_rel A eqA x y = @Over_rel A eqA x y.
-Proof. by []. Qed.
-Lemma over_rel_done :
- forall (A : Type) (eqA : A -> A -> Prop) (EeqA : Reflexive eqA) (x : A),
- @Over_rel A eqA x x.
-Proof. by rewrite /Over_rel. Qed.
-Lemma under_rel_done :
- forall (A : Type) (eqA : A -> A -> Prop) (EeqA : Reflexive eqA) (x : A),
- @Under_rel A eqA x x.
-Proof. by []. Qed.
-End Under_rel.
+(* Material for under/over (to rewrite under binders using "context lemmas") *)
+
+Require Export ssrunder.
+
+Hint Extern 0 (@Under_rel.Over_rel _ _ _ _) =>
+ solve [ apply: Under_rel.over_rel_done ] : core.
+Hint Resolve Under_rel.over_rel_done : core.
Register Under_rel.Under_rel as plugins.ssreflect.Under_rel.
Register Under_rel.Under_rel_from_rel as plugins.ssreflect.Under_rel_from_rel.
@@ -607,6 +555,8 @@ Ltac over :=
them in another way than with reflexivity. *)
Definition UnderE := Under_relE.
+(*****************************************************************************)
+
(** An interface for non-Prop types; used to avoid improper instantiation
of polymorphic lemmas with on-demand implicits when they are used as views.
For example: Some_inj {T} : forall x y : T, Some x = Some y -> x = y.
diff --git a/plugins/ssr/ssrsetoid.v b/plugins/ssr/ssrsetoid.v
index 75653be0c5..609c9d5ab8 100644
--- a/plugins/ssr/ssrsetoid.v
+++ b/plugins/ssr/ssrsetoid.v
@@ -12,22 +12,111 @@
(** Compatibility layer for [under] and [setoid_rewrite].
- This file is intended to be required by [Require Import Setoid] or so
- in order to reconcile [Coq.Classes.RelationClasses.Reflexive] with
- [Coq.ssr.ssrclasses.Reflexive].
+ This file is intended to be required by [Require Import Setoid].
- We can thus use the [under] tactic with other relations than [eq],
- such as [iff] or a [RewriteRelation], by doing:
+ In particular, we can use the [under] tactic with other relations
+ than [eq] or [iff], e.g. a [RewriteRelation], by doing:
[Require Import ssreflect. Require Setoid.]
+ This file's instances have priority 12 > other stdlib instances
+ and each [Under_rel] instance comes with a [Hint Cut] directive
+ (otherwise Ring_polynom.v won't compile because of unbounded search).
+
(Note: this file could be skipped when porting [under] to stdlib2.)
*)
Require Import ssrclasses.
+Require Import ssrunder.
Require Import RelationClasses.
+Require Import Relation_Definitions.
+
+(** Reconcile [Coq.Classes.RelationClasses.Reflexive] with
+ [Coq.ssr.ssrclasses.Reflexive] *)
Instance compat_Reflexive :
- forall {A} {R : A -> A -> Prop},
+ forall {A} {R : relation A},
RelationClasses.Reflexive R ->
- ssrclasses.Reflexive R.
+ ssrclasses.Reflexive R | 12.
Proof. now trivial. Qed.
+
+(** Add instances so that ['Under[ F i ]] terms,
+ that is, [Under_rel T R (F i) (?G i)] terms,
+ can be manipulated with rewrite/setoid_rewrite with lemmas on [R].
+ Note that this requires that [R] is a [Prop] relation, otherwise
+ a [bool] relation may need to be "lifted": see the [TestPreOrder]
+ section in test-suite/ssr/under.v *)
+
+Instance Under_subrelation {A} (R : relation A) : subrelation R (Under_rel _ R) | 12.
+Proof. now rewrite Under_relE. Qed.
+
+(* see also Morphisms.trans_co_eq_inv_impl_morphism *)
+
+Instance Under_Reflexive {A} (R : relation A) :
+ RelationClasses.Reflexive R ->
+ RelationClasses.Reflexive (Under_rel.Under_rel A R) | 12.
+Proof. now rewrite Under_rel.Under_relE. Qed.
+
+Hint Cut [_* Under_Reflexive Under_Reflexive] : typeclass_instances.
+
+(* These instances are a bit off-topic given that (Under_rel A R) will
+ typically be reflexive, to be able to trigger the [over] terminator
+
+Instance under_Irreflexive {A} (R : relation A) :
+ RelationClasses.Irreflexive R ->
+ RelationClasses.Irreflexive (Under_rel.Under_rel A R) | 12.
+Proof. now rewrite Under_rel.Under_relE. Qed.
+
+Hint Cut [_* Under_Irreflexive Under_Irreflexive] : typeclass_instances.
+
+Instance under_Asymmetric {A} (R : relation A) :
+ RelationClasses.Asymmetric R ->
+ RelationClasses.Asymmetric (Under_rel.Under_rel A R) | 12.
+Proof. now rewrite Under_rel.Under_relE. Qed.
+
+Hint Cut [_* Under_Asymmetric Under_Asymmetric] : typeclass_instances.
+
+Instance under_StrictOrder {A} (R : relation A) :
+ RelationClasses.StrictOrder R ->
+ RelationClasses.StrictOrder (Under_rel.Under_rel A R) | 12.
+Proof. now rewrite Under_rel.Under_relE. Qed.
+
+Hint Cut [_* Under_Strictorder Under_Strictorder] : typeclass_instances.
+ *)
+
+Instance Under_Symmetric {A} (R : relation A) :
+ RelationClasses.Symmetric R ->
+ RelationClasses.Symmetric (Under_rel.Under_rel A R) | 12.
+Proof. now rewrite Under_rel.Under_relE. Qed.
+
+Hint Cut [_* Under_Symmetric Under_Symmetric] : typeclass_instances.
+
+Instance Under_Transitive {A} (R : relation A) :
+ RelationClasses.Transitive R ->
+ RelationClasses.Transitive (Under_rel.Under_rel A R) | 12.
+Proof. now rewrite Under_rel.Under_relE. Qed.
+
+Hint Cut [_* Under_Transitive Under_Transitive] : typeclass_instances.
+
+Instance Under_PreOrder {A} (R : relation A) :
+ RelationClasses.PreOrder R ->
+ RelationClasses.PreOrder (Under_rel.Under_rel A R) | 12.
+Proof. now rewrite Under_rel.Under_relE. Qed.
+
+Hint Cut [_* Under_PreOrder Under_PreOrder] : typeclass_instances.
+
+Instance Under_PER {A} (R : relation A) :
+ RelationClasses.PER R ->
+ RelationClasses.PER (Under_rel.Under_rel A R) | 12.
+Proof. now rewrite Under_rel.Under_relE. Qed.
+
+Hint Cut [_* Under_PER Under_PER] : typeclass_instances.
+
+Instance Under_Equivalence {A} (R : relation A) :
+ RelationClasses.Equivalence R ->
+ RelationClasses.Equivalence (Under_rel.Under_rel A R) | 12.
+Proof. now rewrite Under_rel.Under_relE. Qed.
+
+Hint Cut [_* Under_Equivalence Under_Equivalence] : typeclass_instances.
+
+(* Don't handle Antisymmetric and PartialOrder classes for now,
+ as these classes depend on two relation symbols... *)
diff --git a/plugins/ssr/ssrunder.v b/plugins/ssr/ssrunder.v
new file mode 100644
index 0000000000..7c529a6133
--- /dev/null
+++ b/plugins/ssr/ssrunder.v
@@ -0,0 +1,75 @@
+(************************************************************************)
+(* * The Coq Proof Assistant / The Coq Development Team *)
+(* v * INRIA, CNRS and contributors - Copyright 1999-2019 *)
+(* <O___,, * (see CREDITS file for the list of authors) *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(* * (see LICENSE file for the text of the license) *)
+(************************************************************************)
+
+(** #<style> .doc { font-family: monospace; white-space: pre; } </style># **)
+
+(** Constants for under/over, to rewrite under binders using "context lemmas"
+
+ Note: this file does not require [ssreflect]; it is both required by
+ [ssrsetoid] and *exported* by [ssrunder].
+
+ This preserves the following feature: we can use [Setoid] without
+ requiring [ssreflect] and use [ssreflect] without requiring [Setoid].
+*)
+
+Require Import ssrclasses.
+
+Module Type UNDER_REL.
+Parameter Under_rel :
+ forall (A : Type) (eqA : A -> A -> Prop), A -> A -> Prop.
+Parameter Under_rel_from_rel :
+ forall (A : Type) (eqA : A -> A -> Prop) (x y : A),
+ @Under_rel A eqA x y -> eqA x y.
+Parameter Under_relE :
+ forall (A : Type) (eqA : A -> A -> Prop),
+ @Under_rel A eqA = eqA.
+
+(** [Over_rel, over_rel, over_rel_done]: for "by rewrite over_rel" *)
+Parameter Over_rel :
+ forall (A : Type) (eqA : A -> A -> Prop), A -> A -> Prop.
+Parameter over_rel :
+ forall (A : Type) (eqA : A -> A -> Prop) (x y : A),
+ @Under_rel A eqA x y = @Over_rel A eqA x y.
+Parameter over_rel_done :
+ forall (A : Type) (eqA : A -> A -> Prop) (EeqA : Reflexive eqA) (x : A),
+ @Over_rel A eqA x x.
+
+(** [under_rel_done]: for Ltac-style over *)
+Parameter under_rel_done :
+ forall (A : Type) (eqA : A -> A -> Prop) (EeqA : Reflexive eqA) (x : A),
+ @Under_rel A eqA x x.
+Notation "''Under[' x ]" := (@Under_rel _ _ x _)
+ (at level 8, format "''Under[' x ]", only printing).
+End UNDER_REL.
+
+Module Export Under_rel : UNDER_REL.
+Definition Under_rel (A : Type) (eqA : A -> A -> Prop) :=
+ eqA.
+Lemma Under_rel_from_rel :
+ forall (A : Type) (eqA : A -> A -> Prop) (x y : A),
+ @Under_rel A eqA x y -> eqA x y.
+Proof. now trivial. Qed.
+Lemma Under_relE (A : Type) (eqA : A -> A -> Prop) :
+ @Under_rel A eqA = eqA.
+Proof. now trivial. Qed.
+Definition Over_rel := Under_rel.
+Lemma over_rel :
+ forall (A : Type) (eqA : A -> A -> Prop) (x y : A),
+ @Under_rel A eqA x y = @Over_rel A eqA x y.
+Proof. now trivial. Qed.
+Lemma over_rel_done :
+ forall (A : Type) (eqA : A -> A -> Prop) (EeqA : Reflexive eqA) (x : A),
+ @Over_rel A eqA x x.
+Proof. now unfold Over_rel. Qed.
+Lemma under_rel_done :
+ forall (A : Type) (eqA : A -> A -> Prop) (EeqA : Reflexive eqA) (x : A),
+ @Under_rel A eqA x x.
+Proof. now trivial. Qed.
+End Under_rel.