aboutsummaryrefslogtreecommitdiff
path: root/plugins
diff options
context:
space:
mode:
Diffstat (limited to 'plugins')
-rw-r--r--plugins/extraction/big.ml76
-rw-r--r--plugins/extraction/dune2
-rw-r--r--plugins/nsatz/dune2
-rw-r--r--plugins/omega/coq_omega.ml27
-rw-r--r--plugins/syntax/float_syntax.ml10
-rw-r--r--plugins/syntax/r_syntax.ml49
6 files changed, 89 insertions, 77 deletions
diff --git a/plugins/extraction/big.ml b/plugins/extraction/big.ml
index 19055fd425..7228f709f1 100644
--- a/plugins/extraction/big.ml
+++ b/plugins/extraction/big.ml
@@ -8,63 +8,61 @@
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
-(** [Big] : a wrapper around ocaml [Big_int] with nicer names,
+(** [Big] : a wrapper around ocaml [ZArith] with nicer names,
and a few extraction-specific constructions *)
-(** To be linked with [nums.(cma|cmxa)] *)
+(** To be linked with [zarith] *)
-open Big_int
-
-type big_int = Big_int.big_int
+type big_int = Z.t
(** The type of big integers. *)
-let zero = zero_big_int
+let zero = Z.zero
(** The big integer [0]. *)
-let one = unit_big_int
+let one = Z.one
(** The big integer [1]. *)
-let two = big_int_of_int 2
+let two = Z.of_int 2
(** The big integer [2]. *)
(** {6 Arithmetic operations} *)
-let opp = minus_big_int
+let opp = Z.neg
(** Unary negation. *)
-let abs = abs_big_int
+let abs = Z.abs
(** Absolute value. *)
-let add = add_big_int
+let add = Z.add
(** Addition. *)
-let succ = succ_big_int
- (** Successor (add 1). *)
+let succ = Z.succ
+(** Successor (add 1). *)
-let add_int = add_int_big_int
+let add_int = Z.add
(** Addition of a small integer to a big integer. *)
-let sub = sub_big_int
+let sub = Z.sub
(** Subtraction. *)
-let pred = pred_big_int
+let pred = Z.pred
(** Predecessor (subtract 1). *)
-let mult = mult_big_int
+let mult = Z.mul
(** Multiplication of two big integers. *)
-let mult_int = mult_int_big_int
+let mult_int x y = Z.mul (Z.of_int x) y
(** Multiplication of a big integer by a small integer *)
-let square = square_big_int
+let square x = Z.mul x x
(** Return the square of the given big integer *)
-let sqrt = sqrt_big_int
+let sqrt = Z.sqrt
(** [sqrt_big_int a] returns the integer square root of [a],
that is, the largest big integer [r] such that [r * r <= a].
Raise [Invalid_argument] if [a] is negative. *)
-let quomod = quomod_big_int
+let quomod = Z.div_rem
(** Euclidean division of two big integers.
The first part of the result is the quotient,
the second part is the remainder.
@@ -72,18 +70,18 @@ let quomod = quomod_big_int
[a = q * b + r] and [0 <= r < |b|].
Raise [Division_by_zero] if the divisor is zero. *)
-let div = div_big_int
+let div = Z.div
(** Euclidean quotient of two big integers.
This is the first result [q] of [quomod_big_int] (see above). *)
-let modulo = mod_big_int
+let modulo = Z.(mod)
(** Euclidean modulus of two big integers.
This is the second result [r] of [quomod_big_int] (see above). *)
-let gcd = gcd_big_int
+let gcd = Z.gcd
(** Greatest common divisor of two big integers. *)
-let power = power_big_int_positive_big_int
+let power = Z.pow
(** Exponentiation functions. Return the big integer
representing the first argument [a] raised to the power [b]
(the second argument). Depending
@@ -92,45 +90,45 @@ let power = power_big_int_positive_big_int
(** {6 Comparisons and tests} *)
-let sign = sign_big_int
+let sign = Z.sign
(** Return [0] if the given big integer is zero,
[1] if it is positive, and [-1] if it is negative. *)
-let compare = compare_big_int
+let compare = Z.compare
(** [compare_big_int a b] returns [0] if [a] and [b] are equal,
[1] if [a] is greater than [b], and [-1] if [a] is smaller
than [b]. *)
-let eq = eq_big_int
-let le = le_big_int
-let ge = ge_big_int
-let lt = lt_big_int
-let gt = gt_big_int
+let eq = Z.equal
+let le = Z.leq
+let ge = Z.geq
+let lt = Z.lt
+let gt = Z.gt
(** Usual boolean comparisons between two big integers. *)
-let max = max_big_int
+let max = Z.max
(** Return the greater of its two arguments. *)
-let min = min_big_int
+let min = Z.min
(** Return the smaller of its two arguments. *)
(** {6 Conversions to and from strings} *)
-let to_string = string_of_big_int
+let to_string = Z.to_string
(** Return the string representation of the given big integer,
in decimal (base 10). *)
-let of_string = big_int_of_string
+let of_string = Z.of_string
(** Convert a string to a big integer, in decimal.
The string consists of an optional [-] or [+] sign,
followed by one or several decimal digits. *)
(** {6 Conversions to and from other numerical types} *)
-let of_int = big_int_of_int
+let of_int = Z.of_int
(** Convert a small integer to a big integer. *)
-let is_int = is_int_big_int
+let is_int = Z.fits_int
(** Test whether the given big integer is small enough to
be representable as a small integer (type [int])
without loss of precision. On a 32-bit platform,
@@ -139,7 +137,7 @@ let is_int = is_int_big_int
[is_int_big_int a] returns [true] if and only if
[a] is between -2{^62} and 2{^62}-1. *)
-let to_int = int_of_big_int
+let to_int = Z.to_int
(** Convert a big integer to a small integer (type [int]).
Raises [Failure "int_of_big_int"] if the big integer
is not representable as a small integer. *)
diff --git a/plugins/extraction/dune b/plugins/extraction/dune
index 0c01dcd488..d9d675fe6a 100644
--- a/plugins/extraction/dune
+++ b/plugins/extraction/dune
@@ -2,6 +2,6 @@
(name extraction_plugin)
(public_name coq.plugins.extraction)
(synopsis "Coq's extraction plugin")
- (libraries num coq.plugins.ltac))
+ (libraries coq.plugins.ltac))
(coq.pp (modules g_extraction))
diff --git a/plugins/nsatz/dune b/plugins/nsatz/dune
index b921c9c408..3b67ab3429 100644
--- a/plugins/nsatz/dune
+++ b/plugins/nsatz/dune
@@ -2,6 +2,6 @@
(name nsatz_plugin)
(public_name coq.plugins.nsatz)
(synopsis "Coq's nsatz solver plugin")
- (libraries num coq.plugins.ltac))
+ (libraries coq.plugins.ltac))
(coq.pp (modules g_nsatz))
diff --git a/plugins/omega/coq_omega.ml b/plugins/omega/coq_omega.ml
index cd5b747d75..4f7b3fbe74 100644
--- a/plugins/omega/coq_omega.ml
+++ b/plugins/omega/coq_omega.ml
@@ -32,7 +32,22 @@ open Tactypes
open Context.Named.Declaration
module NamedDecl = Context.Named.Declaration
-module OmegaSolver = Omega.MakeOmegaSolver (Bigint)
+
+module ZOmega = struct
+ type bigint = Z.t
+ let equal = Z.equal
+ let less_than = Z.lt
+ let add = Z.add
+ let sub = Z.sub
+ let mult = Z.mul
+ let euclid = Z.div_rem
+ let neg = Z.neg
+ let zero = Z.zero
+ let one = Z.one
+ let to_string = Z.to_string
+end
+
+module OmegaSolver = Omega.MakeOmegaSolver (ZOmega)
open OmegaSolver
(* Added by JCF, 09/03/98 *)
@@ -719,7 +734,7 @@ let rec shuffle p (t1,t2) =
Oplus(l2,t')
else [],Oplus(t1,t2)
| Oz t1,Oz t2 ->
- [focused_simpl p], Oz(Bigint.add t1 t2)
+ [focused_simpl p], Oz(Z.add t1 t2)
| t1,t2 ->
if weight t1 < weight t2 then
[clever_rewrite p [[P_APP 1];[P_APP 2]]
@@ -741,7 +756,7 @@ let shuffle_mult p_init k1 e1 k2 e2 =
[P_APP 2; P_APP 2]]
(Lazy.force coq_fast_OMEGA10)
in
- if Bigint.add (Bigint.mult k1 c1) (Bigint.mult k2 c2) =? zero then
+ if Z.add (Z.mul k1 c1) (Z.mul k2 c2) =? zero then
let tac' =
clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 2]]
(Lazy.force coq_fast_Zred_factor5) in
@@ -798,7 +813,7 @@ let shuffle_mult_right p_init e1 k2 e2 =
[P_APP 2; P_APP 2]]
(Lazy.force coq_fast_OMEGA15)
in
- if Bigint.add c1 (Bigint.mult k2 c2) =? zero then
+ if Z.add c1 (Z.mul k2 c2) =? zero then
let tac' =
clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 2]]
(Lazy.force coq_fast_Zred_factor5)
@@ -1004,7 +1019,7 @@ let reduce_factor p = function
| Otimes(Oatom v,c) ->
let rec compute = function
| Oz n -> n
- | Oplus(t1,t2) -> Bigint.add (compute t1) (compute t2)
+ | Oplus(t1,t2) -> Z.add (compute t1) (compute t2)
| _ -> CErrors.user_err Pp.(str "condense.1")
in
[focused_simpl (P_APP 2 :: p)], Otimes(Oatom v,Oz(compute c))
@@ -1160,7 +1175,7 @@ let replay_history tactic_normalisation =
| NOT_EXACT_DIVIDE (e1,k) :: l ->
let c = floor_div e1.constant k in
- let d = Bigint.sub e1.constant (Bigint.mult c k) in
+ let d = Z.sub e1.constant (Z.mul c k) in
let e2 = {id=e1.id; kind=EQUA;constant = c;
body = map_eq_linear (fun c -> c / k) e1.body } in
let eq2 = val_of(decompile e2) in
diff --git a/plugins/syntax/float_syntax.ml b/plugins/syntax/float_syntax.ml
index 8e87fc13ca..5d8dcd04fe 100644
--- a/plugins/syntax/float_syntax.ml
+++ b/plugins/syntax/float_syntax.ml
@@ -48,21 +48,21 @@ let interp_float ?loc n =
| None -> "" | Some f -> NumTok.UnsignedNat.to_string f in
let e = match e with
| None -> "0" | Some e -> NumTok.SignedNat.to_string e in
- Bigint.of_string (i ^ f),
+ Z.of_string (i ^ f),
(try int_of_string e with Failure _ -> 0) - String.length f in
let m', e' =
let m', e' = Float64.frshiftexp f in
let m' = Float64.normfr_mantissa m' in
let e' = Uint63.to_int_min e' 4096 - Float64.eshift - 53 in
- Bigint.of_string (Uint63.to_string m'),
+ Z.of_string (Uint63.to_string m'),
e' in
- let c2, c5 = Bigint.(of_int 2, of_int 5) in
+ let c2, c5 = Z.(of_int 2, of_int 5) in
(* check m*5^e <> m'*2^e' *)
let check m e m' e' =
- not (Bigint.(equal (mult m (pow c5 e)) (mult m' (pow c2 e')))) in
+ not (Z.(equal (mul m (pow c5 e)) (mul m' (pow c2 e')))) in
(* check m*5^e*2^e' <> m' *)
let check' m e e' m' =
- not (Bigint.(equal (mult (mult m (pow c5 e)) (pow c2 e')) m')) in
+ not (Z.(equal (mul (mul m (pow c5 e)) (pow c2 e')) m')) in
(* we now have to check m*10^e <> m'*2^e' *)
if e >= 0 then
if e <= e' then check m e m' (e' - e)
diff --git a/plugins/syntax/r_syntax.ml b/plugins/syntax/r_syntax.ml
index 23a7cc07c5..d66b9537b4 100644
--- a/plugins/syntax/r_syntax.ml
+++ b/plugins/syntax/r_syntax.ml
@@ -11,7 +11,6 @@
open Util
open Names
open Glob_term
-open Bigint
(* Poor's man DECLARE PLUGIN *)
let __coq_plugin_name = "r_syntax_plugin"
@@ -47,10 +46,10 @@ let pos_of_bignat ?loc x =
let ref_xH = DAst.make @@ GRef (glob_xH, None) in
let ref_xO = DAst.make @@ GRef (glob_xO, None) in
let rec pos_of x =
- match div2_with_rest x with
- | (q,false) -> DAst.make @@ GApp (ref_xO,[pos_of q])
- | (q,true) when not (Bigint.equal q zero) -> DAst.make @@ GApp (ref_xI,[pos_of q])
- | (q,true) -> ref_xH
+ match Z.(div_rem x (of_int 2)) with
+ | (q,rem) when rem = Z.zero -> DAst.make @@ GApp (ref_xO,[pos_of q])
+ | (q,_) when not Z.(equal q zero) -> DAst.make @@ GApp (ref_xI,[pos_of q])
+ | (q,_) -> ref_xH
in
pos_of x
@@ -59,9 +58,9 @@ let pos_of_bignat ?loc x =
(**********************************************************************)
let rec bignat_of_pos c = match DAst.get c with
- | GApp (r, [a]) when is_gr r glob_xO -> mult_2(bignat_of_pos a)
- | GApp (r, [a]) when is_gr r glob_xI -> add_1(mult_2(bignat_of_pos a))
- | GRef (a, _) when GlobRef.equal a glob_xH -> Bigint.one
+ | GApp (r, [a]) when is_gr r glob_xO -> Z.mul Z.(of_int 2) (bignat_of_pos a)
+ | GApp (r, [a]) when is_gr r glob_xI -> Z.add Z.one Z.(mul (of_int 2) (bignat_of_pos a))
+ | GRef (a, _) when GlobRef.equal a glob_xH -> Z.one
| _ -> raise Non_closed_number
(**********************************************************************)
@@ -77,9 +76,9 @@ let glob_POS = GlobRef.ConstructRef path_of_POS
let glob_NEG = GlobRef.ConstructRef path_of_NEG
let z_of_int ?loc n =
- if not (Bigint.equal n zero) then
+ if not Z.(equal n zero) then
let sgn, n =
- if is_pos_or_zero n then glob_POS, n else glob_NEG, Bigint.neg n in
+ if Z.(leq zero n) then glob_POS, n else glob_NEG, Z.neg n in
DAst.make @@ GApp(DAst.make @@ GRef (sgn,None), [pos_of_bignat ?loc n])
else
DAst.make @@ GRef (glob_ZERO, None)
@@ -90,8 +89,8 @@ let z_of_int ?loc n =
let bigint_of_z c = match DAst.get c with
| GApp (r,[a]) when is_gr r glob_POS -> bignat_of_pos a
- | GApp (r,[a]) when is_gr r glob_NEG -> Bigint.neg (bignat_of_pos a)
- | GRef (a, _) when GlobRef.equal a glob_ZERO -> Bigint.zero
+ | GApp (r,[a]) when is_gr r glob_NEG -> Z.neg (bignat_of_pos a)
+ | GRef (a, _) when GlobRef.equal a glob_ZERO -> Z.zero
| _ -> raise Non_closed_number
(**********************************************************************)
@@ -122,13 +121,13 @@ let r_of_rawnum ?loc n =
let rdiv r r' =
DAst.make @@ GApp (DAst.make @@ GRef(glob_Rdiv,None), [r; r']) in
let pow p e =
- let p = z_of_int ?loc (Bigint.of_int p) in
+ let p = z_of_int ?loc (Z.of_int p) in
let e = pos_of_bignat e in
DAst.make @@ GApp (DAst.make @@ GRef(glob_pow_pos,None), [p; e]) in
let n =
izr (z_of_int ?loc n) in
- if Bigint.is_strictly_pos e then rmult n (izr (pow p e))
- else if Bigint.is_strictly_neg e then rdiv n (izr (pow p (neg e)))
+ if Int.equal (Z.sign e) 1 then rmult n (izr (pow p e))
+ else if Int.equal (Z.sign e) (-1) then rdiv n (izr (pow p (Z.neg e)))
else n (* e = 0 *)
(**********************************************************************)
@@ -141,24 +140,24 @@ let rawnum_of_r c =
(* choose between 123e-2 and 1.23, this is purely heuristic
and doesn't play any soundness role *)
let choose_exponent =
- if Bigint.is_strictly_pos e then
+ if Int.equal (Z.sign e) 1 then
true (* don't print 12 * 10^2 as 1200 to distinguish them *)
else
- let i = Bigint.to_string i in
+ let i = Z.to_string i in
let li = if i.[0] = '-' then String.length i - 1 else String.length i in
- let e = Bigint.neg e in
- let le = String.length (Bigint.to_string e) in
- Bigint.(less_than (add (of_int li) (of_int le)) e) in
+ let e = Z.neg e in
+ let le = String.length (Z.to_string e) in
+ Z.(lt (add (of_int li) (of_int le)) e) in
(* print 123 * 10^-2 as 123e-2 *)
let numTok_exponent () =
NumTok.Signed.of_bigint_and_exponent i (NumTok.EDec e) in
(* print 123 * 10^-2 as 1.23, precondition e < 0 *)
let numTok_dot () =
let s, i =
- if Bigint.is_pos_or_zero i then NumTok.SPlus, Bigint.to_string i
- else NumTok.SMinus, Bigint.(to_string (neg i)) in
+ if Z.sign i >= 0 then NumTok.SPlus, Z.to_string i
+ else NumTok.SMinus, Z.(to_string (neg i)) in
let ni = String.length i in
- let e = - (Bigint.to_int e) in
+ let e = - (Z.to_int e) in
assert (e > 0);
let i, f =
if e < ni then String.sub i 0 (ni - e), String.sub i (ni - e) e
@@ -178,12 +177,12 @@ let rawnum_of_r c =
begin match DAst.get r with
| GApp (p, [t; e]) when is_gr p glob_pow_pos ->
let t = bigint_of_z t in
- if not (Bigint.(equal t (of_int 10))) then
+ if not (Z.(equal t (of_int 10))) then
raise Non_closed_number
else
let i = bigint_of_z l in
let e = bignat_of_pos e in
- let e = if is_gr md glob_Rdiv then neg e else e in
+ let e = if is_gr md glob_Rdiv then Z.neg e else e in
numTok_of_int_exp i e
| _ -> raise Non_closed_number
end