diff options
Diffstat (limited to 'plugins/micromega/simplex.ml')
| -rw-r--r-- | plugins/micromega/simplex.ml | 99 |
1 files changed, 46 insertions, 53 deletions
diff --git a/plugins/micromega/simplex.ml b/plugins/micromega/simplex.ml index 54976221bc..15ab03964e 100644 --- a/plugins/micromega/simplex.ml +++ b/plugins/micromega/simplex.ml @@ -8,10 +8,9 @@ (* * (see LICENSE file for the text of the license) *) (************************************************************************) +open NumCompat +open Q.Notations open Polynomial -open Num - -(*open Util*) open Mutils type ('a, 'b) sum = Inl of 'a | Inr of 'b @@ -118,7 +117,7 @@ let output_vars o m = let unfeasible (rst : Restricted.t) tbl = Restricted.fold rst - (fun k v m -> if Vect.get_cst v >=/ Int 0 then m else IMap.add k () m) + (fun k v m -> if Vect.get_cst v >=/ Q.zero then m else IMap.add k () m) tbl IMap.empty let is_feasible rst tb = IMap.is_empty (unfeasible rst tb) @@ -138,7 +137,7 @@ let is_feasible rst tb = IMap.is_empty (unfeasible rst tb) let is_maximised_vect rst v = Vect.for_all (fun xi ai -> - if ai >/ Int 0 then false else Restricted.is_restricted xi rst) + if ai >/ Q.zero then false else Restricted.is_restricted xi rst) v (** [is_maximised rst v] @@ -161,11 +160,11 @@ let is_maximised rst v = *) type result = - | Max of num (** Maximum is reached *) + | Max of Q.t (** Maximum is reached *) | Ubnd of var (** Problem is unbounded *) | Feas (** Problem is feasible *) -type pivot = Done of result | Pivot of int * int * num +type pivot = Done of result | Pivot of int * int * Q.t type simplex = Opt of tableau * result (** For a row, x = ao.xo+...+ai.xi @@ -180,7 +179,7 @@ let rec find_pivot_column (rst : Restricted.t) (r : Vect.t) = match Vect.choose r with | None -> failwith "find_pivot_column" | Some (xi, ai, r') -> - if ai </ Int 0 then + if ai </ Q.zero then if Restricted.is_restricted xi rst then find_pivot_column rst r' (* ai.xi cannot be improved *) else (xi, -1) (* r is not restricted, sign of ai does not matter *) @@ -207,9 +206,9 @@ let find_pivot_row rst tbl j sgn = Restricted.fold rst (fun i' v res -> let aij = Vect.get j v in - if Int sgn */ aij </ Int 0 then + if Q.of_int sgn */ aij </ Q.zero then (* This would improve *) - let score' = Num.abs_num (Vect.get_cst v // aij) in + let score' = Q.abs (Vect.get_cst v // aij) in min_score res (i', score') else res) tbl None @@ -246,10 +245,10 @@ let find_pivot vr (rst : Restricted.t) tbl = let solve_column (c : var) (r : var) (e : Vect.t) : Vect.t = let a = Vect.get c e in - if a =/ Int 0 then failwith "Cannot solve column" + if a =/ Q.zero then failwith "Cannot solve column" else - let a' = Int (-1) // a in - Vect.mul a' (Vect.set r (Int (-1)) (Vect.set c (Int 0) e)) + let a' = Q.neg_one // a in + Vect.mul a' (Vect.set r Q.neg_one (Vect.set c Q.zero e)) (** [pivot_row r c e] @param c is such that c = e @@ -258,7 +257,7 @@ let solve_column (c : var) (r : var) (e : Vect.t) : Vect.t = let pivot_row (row : Vect.t) (c : var) (e : Vect.t) : Vect.t = let g = Vect.get c row in - if g =/ Int 0 then row else Vect.mul_add g e (Int 1) (Vect.set c (Int 0) row) + if g =/ Q.zero then row else Vect.mul_add g e Q.one (Vect.set c Q.zero row) let pivot_with (m : tableau) (v : var) (p : Vect.t) = IMap.map (fun (r : Vect.t) -> pivot_row r v p) m @@ -270,7 +269,7 @@ let pivot (m : tableau) (r : var) (c : var) = IMap.add c piv (pivot_with (IMap.remove r m) c piv) let adapt_unbounded vr x rst tbl = - if Vect.get_cst (IMap.find vr tbl) >=/ Int 0 then tbl else pivot tbl vr x + if Vect.get_cst (IMap.find vr tbl) >=/ Q.zero then tbl else pivot tbl vr x module BaseSet = Set.Make (struct type t = iset @@ -295,7 +294,7 @@ let simplex opt vr rst tbl = output_tableau stdout tbl; Printf.fprintf stdout "Error for variables %a\n" output_vars m end; - if (not opt) && Vect.get_cst (IMap.find vr tbl) >=/ Int 0 then + if (not opt) && Vect.get_cst (IMap.find vr tbl) >=/ Q.zero then Opt (tbl, Feas) else match find_pivot vr rst tbl with @@ -308,7 +307,7 @@ let simplex opt vr rst tbl = | Feas -> raise (Invalid_argument "find_pivot") ) | Pivot (i, j, s) -> if debug then begin - Printf.fprintf stdout "Find pivot for x%i(%s)\n" vr (string_of_num s); + Printf.fprintf stdout "Find pivot for x%i(%s)\n" vr (Q.to_string s); Printf.fprintf stdout "Leaving variable x%i\n" i; Printf.fprintf stdout "Entering variable x%i\n" j end; @@ -359,14 +358,13 @@ let push_real (opt : bool) (nw : var) (v : Vect.t) (rst : Restricted.t) | Feas -> Sat (t', None) | Max n -> if debug then begin - Printf.printf "The objective is maximised %s\n" (string_of_num n); + Printf.printf "The objective is maximised %s\n" (Q.to_string n); Printf.printf "%a = %a\n" LinPoly.pp_var nw pp_row (IMap.find nw t') end; - if n >=/ Int 0 then Sat (t', None) + if n >=/ Q.zero then Sat (t', None) else let v' = safe_find "push_real" nw t' in - Unsat - (Vect.set nw (Int 1) (Vect.set 0 (Int 0) (Vect.mul (Int (-1)) v'))) ) + Unsat (Vect.set nw Q.one (Vect.set 0 Q.zero (Vect.mul Q.neg_one v'))) ) open Mutils (** One complication is that equalities needs some pre-processing. @@ -381,7 +379,7 @@ let make_certificate vm l = (Vect.fold (fun acc x n -> let x', b = IMap.find x vm in - Vect.set x' (if b then n else Num.minus_num n) acc) + Vect.set x' (if b then n else Q.neg n) acc) Vect.null l) (** [eliminate_equalities vr0 l] @@ -397,11 +395,11 @@ let eliminate_equalities (vr0 : var) (l : Polynomial.cstr list) = | c :: l -> ( match c.op with | Ge -> - let v = Vect.set 0 (minus_num c.cst) c.coeffs in + let v = Vect.set 0 (Q.neg c.cst) c.coeffs in elim (idx + 1) (vr + 1) (IMap.add vr (idx, true) vm) l ((vr, v) :: acc) | Eq -> - let v1 = Vect.set 0 (minus_num c.cst) c.coeffs in - let v2 = Vect.mul (Int (-1)) v1 in + let v1 = Vect.set 0 (Q.neg c.cst) c.coeffs in + let v2 = Vect.mul Q.neg_one v1 in let vm = IMap.add vr (idx, true) (IMap.add (vr + 1) (idx, false) vm) in elim (idx + 1) (vr + 2) vm l ((vr, v1) :: (vr + 1, v2) :: acc) | Gt -> raise Strict ) @@ -419,7 +417,7 @@ let find_full_solution rst tbl = IMap.fold (fun vr v res -> Vect.set vr (Vect.get_cst v) res) tbl Vect.null let choose_conflict (sol : Vect.t) (l : (var * Vect.t) list) = - let esol = Vect.set 0 (Int 1) sol in + let esol = Vect.set 0 Q.one sol in let rec most_violating l e (x, v) rst = match l with | [] -> Some ((x, v), rst) @@ -476,7 +474,7 @@ let optimise obj l = let _, vm, l' = eliminate_equalities (vr0 + 1) l in let bound pos res = match res with - | Opt (_, Max n) -> Some (if pos then n else minus_num n) + | Opt (_, Max n) -> Some (if pos then n else Q.neg n) | Opt (_, Ubnd _) -> None | Opt (_, Feas) -> None in @@ -501,9 +499,7 @@ let make_farkas_certificate (env : WithProof.t IMap.t) vm v = begin try let x', b = IMap.find x vm in - mul_cst_proof - (if b then n else Num.minus_num n) - (snd (IMap.find x' env)) + mul_cst_proof (if b then n else Q.neg n) (snd (IMap.find x' env)) with Not_found -> (* This is an introduced hypothesis *) mul_cst_proof n (snd (IMap.find x env)) @@ -517,7 +513,7 @@ let make_farkas_proof (env : WithProof.t IMap.t) vm v = begin try let x', b = IMap.find x vm in - let n = if b then n else Num.minus_num n in + let n = if b then n else Q.neg n in let prf = IMap.find x' env in WithProof.mult (Vect.cst n) prf with Not_found -> @@ -526,7 +522,7 @@ let make_farkas_proof (env : WithProof.t IMap.t) vm v = end) WithProof.zero v -let frac_num n = n -/ Num.floor_num n +let frac_num n = n -/ Q.floor n type ('a, 'b) hitkind = | Forget @@ -538,38 +534,38 @@ type ('a, 'b) hitkind = let cut env rmin sol vm (rst : Restricted.t) tbl (x, v) = let n, r = Vect.decomp_cst v in let fn = frac_num n in - if fn =/ Int 0 then Forget (* The solution is integral *) + if fn =/ Q.zero then Forget (* The solution is integral *) else (* The cut construction is from: Letchford and Lodi. Strengthening Chvatal-Gomory cuts and Gomory fractional cuts. We implement the classic Proposition 2 from the "known results" - *) + *) (* Proposition 3 requires all the variables to be restricted and is therefore not always applicable. *) (* let ccoeff_prop1 v = frac_num v in - let ccoeff_prop3 v = - (* mixed integer cut *) - let fv = frac_num v in - Num.min_num fv (fn */ (Int 1 -/ fv) // (Int 1 -/ fn)) - in - let ccoeff_prop3 = - if Restricted.is_restricted x rst then ("Prop3", ccoeff_prop3) - else ("Prop1", ccoeff_prop1) - in *) - let n0_5 = Int 1 // Int 2 in + let ccoeff_prop3 v = + (* mixed integer cut *) + let fv = frac_num v in + Num.min_num fv (fn */ (Q.one -/ fv) // (Q.one -/ fn)) + in + let ccoeff_prop3 = + if Restricted.is_restricted x rst then ("Prop3", ccoeff_prop3) + else ("Prop1", ccoeff_prop1) + in *) + let n0_5 = Q.one // Q.two in (* If the fractional part [fn] is small, we construct the t-cut. If the fractional part [fn] is big, we construct the t-cut of the negated row. (This is only a cut if all the fractional variables are restricted.) - *) + *) let ccoeff_prop2 = let tmin = if fn </ n0_5 then (* t-cut *) - Num.ceiling_num (n0_5 // fn) + Q.ceiling (n0_5 // fn) else (* multiply by -1 & t-cut *) - minus_num (Num.ceiling_num (n0_5 // (Int 1 -/ fn))) + Q.neg (Q.ceiling (n0_5 // (Q.one -/ fn))) in ("Prop2", fun v -> frac_num (v */ tmin)) in @@ -651,7 +647,7 @@ let eliminate_variable (bounded, vr, env, tbl) x = let tv = var_of_vect t in (* x = z - t *) let xdef = Vect.add z (Vect.uminus t) in - let xp = ((Vect.set x (Int 1) (Vect.uminus xdef), Eq), Def vr) in + let xp = ((Vect.set x Q.one (Vect.uminus xdef), Eq), Def vr) in let zp = ((z, Ge), Def zv) in let tp = ((t, Ge), Def tv) in (* Pivot the current tableau using xdef *) @@ -662,11 +658,8 @@ let eliminate_variable (bounded, vr, env, tbl) x = (fun lp -> let (v, o), p = lp in let ai = Vect.get x v in - if ai =/ Int 0 then lp - else - WithProof.addition - (WithProof.mult (Vect.cst (Num.minus_num ai)) xp) - lp) + if ai =/ Q.zero then lp + else WithProof.addition (WithProof.mult (Vect.cst (Q.neg ai)) xp) lp) env in (* Add the variables to the environment *) |
