aboutsummaryrefslogtreecommitdiff
path: root/plugins/funind
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/funind')
-rw-r--r--plugins/funind/functional_principles_proofs.ml6
-rw-r--r--plugins/funind/gen_principle.ml12
-rw-r--r--plugins/funind/recdef.ml25
3 files changed, 21 insertions, 22 deletions
diff --git a/plugins/funind/functional_principles_proofs.ml b/plugins/funind/functional_principles_proofs.ml
index 79f311e282..afe89aef6e 100644
--- a/plugins/funind/functional_principles_proofs.ml
+++ b/plugins/funind/functional_principles_proofs.ml
@@ -854,10 +854,10 @@ let generate_equation_lemma evd fnames f fun_num nb_params nb_args rec_args_num
(*i The next call to mk_equation_id is valid since we are
constructing the lemma Ensures by: obvious i*)
let info = Declare.Info.make () in
- let lemma =
- Declare.Proof.start ~name:(mk_equation_id f_id) ~poly:false ~info
- ~impargs:[] evd lemma_type
+ let cinfo =
+ Declare.CInfo.make ~name:(mk_equation_id f_id) ~typ:lemma_type ()
in
+ let lemma = Declare.Proof.start ~cinfo ~info evd in
let lemma, _ =
Declare.Proof.by (Proofview.V82.tactic prove_replacement) lemma
in
diff --git a/plugins/funind/gen_principle.ml b/plugins/funind/gen_principle.ml
index 50ce783579..0cd5df12f7 100644
--- a/plugins/funind/gen_principle.ml
+++ b/plugins/funind/gen_principle.ml
@@ -1519,10 +1519,8 @@ let derive_correctness (funs : Constr.pconstant list) (graphs : inductive list)
let lem_id = mk_correct_id f_id in
let typ, _ = lemmas_types_infos.(i) in
let info = Declare.Info.make () in
- let lemma =
- Declare.Proof.start ~name:lem_id ~poly:false ~info ~impargs:[] !evd
- typ
- in
+ let cinfo = Declare.CInfo.make ~name:lem_id ~typ () in
+ let lemma = Declare.Proof.start ~cinfo ~info !evd in
let lemma =
fst @@ Declare.Proof.by (Proofview.V82.tactic (proving_tac i)) lemma
in
@@ -1585,10 +1583,10 @@ let derive_correctness (funs : Constr.pconstant list) (graphs : inductive list)
i*)
let lem_id = mk_complete_id f_id in
let info = Declare.Info.make () in
- let lemma =
- Declare.Proof.start ~name:lem_id ~poly:false sigma ~info ~impargs:[]
- (fst lemmas_types_infos.(i))
+ let cinfo =
+ Declare.CInfo.make ~name:lem_id ~typ:(fst lemmas_types_infos.(i)) ()
in
+ let lemma = Declare.Proof.start ~cinfo sigma ~info in
let lemma =
fst
(Declare.Proof.by
diff --git a/plugins/funind/recdef.ml b/plugins/funind/recdef.ml
index 5a188ca82b..92eb85ffd8 100644
--- a/plugins/funind/recdef.ml
+++ b/plugins/funind/recdef.ml
@@ -1492,10 +1492,8 @@ let open_new_goal ~lemma build_proof sigma using_lemmas ref_ goal_name
Declare.Proof.save ~proof:lemma ~opaque:opacity ~idopt:None
in
let info = Declare.Info.make ~hook:(Declare.Hook.make hook) () in
- let lemma =
- Declare.Proof.start ~name:na ~poly:false (* FIXME *) ~info ~impargs:[] sigma
- gls_type
- in
+ let cinfo = Declare.CInfo.make ~name:na ~typ:gls_type () in
+ let lemma = Declare.Proof.start ~cinfo ~info sigma in
let lemma =
if Indfun_common.is_strict_tcc () then
fst @@ Declare.Proof.by (Proofview.V82.tactic tclIDTAC) lemma
@@ -1530,12 +1528,13 @@ let com_terminate interactive_proof tcc_lemma_name tcc_lemma_ref is_mes
fonctional_ref input_type relation rec_arg_num thm_name using_lemmas nb_args
ctx hook =
let start_proof env ctx tac_start tac_end =
- let info = Declare.Info.make ~hook () in
- let lemma =
- Declare.Proof.start ~name:thm_name ~poly:false (*FIXME*) ~info ctx
- ~impargs:[]
- (EConstr.of_constr (compute_terminate_type nb_args fonctional_ref))
+ let cinfo =
+ Declare.CInfo.make ~name:thm_name
+ ~typ:(EConstr.of_constr (compute_terminate_type nb_args fonctional_ref))
+ ()
in
+ let info = Declare.Info.make ~hook () in
+ let lemma = Declare.Proof.start ~cinfo ~info ctx in
let lemma =
fst
@@ Declare.Proof.by
@@ -1605,10 +1604,12 @@ let com_eqn uctx nb_arg eq_name functional_ref f_ref terminate_ref
let f_constr = constr_of_monomorphic_global f_ref in
let equation_lemma_type = subst1 f_constr equation_lemma_type in
let info = Declare.Info.make () in
- let lemma =
- Declare.Proof.start ~name:eq_name ~poly:false evd ~info ~impargs:[]
- (EConstr.of_constr equation_lemma_type)
+ let cinfo =
+ Declare.CInfo.make ~name:eq_name
+ ~typ:(EConstr.of_constr equation_lemma_type)
+ ()
in
+ let lemma = Declare.Proof.start ~cinfo evd ~info in
let lemma =
fst
@@ Declare.Proof.by