aboutsummaryrefslogtreecommitdiff
path: root/contrib
diff options
context:
space:
mode:
Diffstat (limited to 'contrib')
-rw-r--r--contrib/fourier/Fourier.v27
-rw-r--r--contrib/fourier/Fourier_util.v261
-rw-r--r--contrib/fourier/fourier.ml202
-rw-r--r--contrib/fourier/fourierR.ml543
4 files changed, 1033 insertions, 0 deletions
diff --git a/contrib/fourier/Fourier.v b/contrib/fourier/Fourier.v
new file mode 100644
index 0000000000..67d734281d
--- /dev/null
+++ b/contrib/fourier/Fourier.v
@@ -0,0 +1,27 @@
+(***********************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
+(* \VV/ *************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(***********************************************************************)
+
+(* $Id$ *)
+
+(* "Fourier's method to solve linear inequations/equations systems.".*)
+
+Declare ML Module "quote".
+Declare ML Module "ring".
+Declare ML Module "fourier".
+Declare ML Module "fourierR".
+
+Require Export Fourier_util.
+
+Grammar tactic simple_tactic:ast:=
+ fourier
+ ["Fourier" constrarg_list($arg)] ->
+ [(Fourier ($LIST $arg))].
+
+Tactic Definition FourierEq :=
+ Apply Rge_ge_eq ; Fourier.
+
diff --git a/contrib/fourier/Fourier_util.v b/contrib/fourier/Fourier_util.v
new file mode 100644
index 0000000000..91134f022f
--- /dev/null
+++ b/contrib/fourier/Fourier_util.v
@@ -0,0 +1,261 @@
+(***********************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
+(* \VV/ *************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(***********************************************************************)
+
+(* $Id$ *)
+
+Require Export Rbase.
+Comments "Lemmas used by the tactic Fourier".
+
+Lemma Rfourier_lt:
+ (x1, y1, a : R) (Rlt x1 y1) -> (Rlt R0 a) -> (Rlt (Rmult a x1) (Rmult a y1)).
+Intros x1 y1 a H H0; Try Assumption.
+Apply Rlt_monotony; Auto with real.
+Qed.
+
+Lemma Rfourier_le:
+ (x1, y1, a : R) (Rle x1 y1) -> (Rlt R0 a) -> (Rle (Rmult a x1) (Rmult a y1)).
+Red.
+Intros.
+Case H; Auto with real.
+Qed.
+
+Lemma Rfourier_lt_lt:
+ (x1, y1, x2, y2, a : R)
+ (Rlt x1 y1) ->
+ (Rlt x2 y2) ->
+ (Rlt R0 a) -> (Rlt (Rplus x1 (Rmult a x2)) (Rplus y1 (Rmult a y2))).
+Intros x1 y1 x2 y2 a H H0 H1; Try Assumption.
+Apply Rplus_lt.
+Try Exact H.
+Apply Rfourier_lt.
+Try Exact H0.
+Try Exact H1.
+Qed.
+
+Lemma Rfourier_lt_le:
+ (x1, y1, x2, y2, a : R)
+ (Rlt x1 y1) ->
+ (Rle x2 y2) ->
+ (Rlt R0 a) -> (Rlt (Rplus x1 (Rmult a x2)) (Rplus y1 (Rmult a y2))).
+Intros x1 y1 x2 y2 a H H0 H1; Try Assumption.
+Case H0; Intros.
+Apply Rplus_lt.
+Try Exact H.
+Apply Rfourier_lt; Auto with real.
+Rewrite H2.
+Rewrite (Rplus_sym y1 (Rmult a y2)).
+Rewrite (Rplus_sym x1 (Rmult a y2)).
+Apply Rlt_compatibility.
+Try Exact H.
+Qed.
+
+Lemma Rfourier_le_lt:
+ (x1, y1, x2, y2, a : R)
+ (Rle x1 y1) ->
+ (Rlt x2 y2) ->
+ (Rlt R0 a) -> (Rlt (Rplus x1 (Rmult a x2)) (Rplus y1 (Rmult a y2))).
+Intros x1 y1 x2 y2 a H H0 H1; Try Assumption.
+Case H; Intros.
+Apply Rfourier_lt_le; Auto with real.
+Rewrite H2.
+Apply Rlt_compatibility.
+Apply Rfourier_lt; Auto with real.
+Qed.
+
+Lemma Rfourier_le_le:
+ (x1, y1, x2, y2, a : R)
+ (Rle x1 y1) ->
+ (Rle x2 y2) ->
+ (Rlt R0 a) -> (Rle (Rplus x1 (Rmult a x2)) (Rplus y1 (Rmult a y2))).
+Intros x1 y1 x2 y2 a H H0 H1; Try Assumption.
+Case H0; Intros.
+Red.
+Left; Try Assumption.
+Apply Rfourier_le_lt; Auto with real.
+Rewrite H2.
+Case H; Intros.
+Red.
+Left; Try Assumption.
+Rewrite (Rplus_sym x1 (Rmult a y2)).
+Rewrite (Rplus_sym y1 (Rmult a y2)).
+Apply Rlt_compatibility.
+Try Exact H3.
+Rewrite H3.
+Red.
+Right; Try Assumption.
+Auto with real.
+Qed.
+
+Lemma Rlt_zero_pos_plus1: (x : R) (Rlt R0 x) -> (Rlt R0 (Rplus R1 x)).
+Intros x H; Try Assumption.
+Rewrite Rplus_sym.
+Apply Rlt_r_plus_R1.
+Red; Auto with real.
+Qed.
+
+Lemma Rlt_mult_inv_pos:
+ (x, y : R) (Rlt R0 x) -> (Rlt R0 y) -> (Rlt R0 (Rmult x (Rinv y))).
+Intros x y H H0; Try Assumption.
+Replace R0 with (Rmult x R0).
+Apply Rlt_monotony; Auto with real.
+Ring.
+Qed.
+
+Lemma Rlt_zero_1: (Rlt R0 R1).
+Exact Rlt_R0_R1.
+Qed.
+
+Lemma Rle_zero_pos_plus1: (x : R) (Rle R0 x) -> (Rle R0 (Rplus R1 x)).
+Intros x H; Try Assumption.
+Case H; Intros.
+Red.
+Left; Try Assumption.
+Apply Rlt_zero_pos_plus1; Auto with real.
+Rewrite <- H0.
+Replace (Rplus R1 R0) with R1.
+Red; Left.
+Exact Rlt_zero_1.
+Ring.
+Qed.
+
+Lemma Rle_mult_inv_pos:
+ (x, y : R) (Rle R0 x) -> (Rlt R0 y) -> (Rle R0 (Rmult x (Rinv y))).
+Intros x y H H0; Try Assumption.
+Case H; Intros.
+Red; Left.
+Apply Rlt_mult_inv_pos; Auto with real.
+Rewrite <- H1.
+Red; Right; Ring.
+Qed.
+
+Lemma Rle_zero_1: (Rle R0 R1).
+Red; Left.
+Exact Rlt_zero_1.
+Qed.
+
+Lemma Rle_not_lt:
+ (n, d : R) (Rle R0 (Rmult n (Rinv d))) -> ~ (Rlt R0 (Rmult (Ropp n) (Rinv d))).
+Intros n d H; Red; Intros H0; Try Exact H0.
+Generalize (Rle_not R0 (Rmult n (Rinv d))).
+Intros H1; Elim H1; Try Assumption.
+Replace (Rmult n (Rinv d)) with (Ropp (Ropp (Rmult n (Rinv d)))).
+Replace R0 with (Ropp (Ropp R0)).
+Replace (Ropp (Rmult n (Rinv d))) with (Rmult (Ropp n) (Rinv d)).
+Replace (Ropp R0) with R0.
+Red.
+Try Exact H0.
+Apply Rgt_Ropp.
+Replace (Ropp (Rmult n (Rinv d))) with (Rmult (Ropp n) (Rinv d)).
+Replace (Ropp R0) with R0.
+Red.
+Try Exact H0.
+Ring.
+Ring.
+Ring.
+Ring.
+Ring.
+Ring.
+Qed.
+
+Lemma Rnot_lt0: (x : R) ~ (Rlt R0 (Rmult R0 x)).
+Intros x; Try Assumption.
+Replace (Rmult R0 x) with R0.
+Apply Rlt_antirefl.
+Ring.
+Qed.
+
+Lemma Rlt_not_le:
+ (n, d : R) (Rlt R0 (Rmult n (Rinv d))) -> ~ (Rle R0 (Rmult (Ropp n) (Rinv d))).
+Intros n d H; Try Assumption.
+Apply Rle_not.
+Replace R0 with (Ropp R0).
+Replace (Rmult (Ropp n) (Rinv d)) with (Ropp (Rmult n (Rinv d))).
+Apply Rlt_Ropp.
+Try Exact H.
+Ring.
+Ring.
+Qed.
+
+Lemma Rnot_lt_lt: (x, y : R) ~ (Rlt R0 (Rminus y x)) -> ~ (Rlt x y).
+Unfold not; Intros.
+Apply H.
+Apply Rlt_anti_compatibility with x.
+Replace (Rplus x R0) with x.
+Replace (Rplus x (Rminus y x)) with y.
+Try Exact H0.
+Ring.
+Ring.
+Qed.
+
+Lemma Rnot_le_le: (x, y : R) ~ (Rle R0 (Rminus y x)) -> ~ (Rle x y).
+Unfold not; Intros.
+Apply H.
+Case H0; Intros.
+Left.
+Apply Rlt_anti_compatibility with x.
+Replace (Rplus x R0) with x.
+Replace (Rplus x (Rminus y x)) with y.
+Try Exact H1.
+Ring.
+Ring.
+Right.
+Rewrite H1; Ring.
+Qed.
+
+Lemma Rfourier_gt_to_lt: (x, y : R) (Rgt y x) -> (Rlt x y).
+Unfold Rgt; Auto with *.
+Qed.
+
+Lemma Rfourier_ge_to_le: (x, y : R) (Rge y x) -> (Rle x y).
+Unfold Rge Rle; Intuition.
+Qed.
+
+Lemma Rfourier_eqLR_to_le: (x, y : R) x == y -> (Rle x y).
+Intros.
+Rewrite H; Red.
+Right; Auto with *.
+Qed.
+
+Lemma Rfourier_eqRL_to_le: (x, y : R) y == x -> (Rle x y).
+Intros.
+Rewrite H; Red.
+Right; Auto with *.
+Qed.
+
+Lemma Rfourier_not_ge_lt: (x, y : R) ((Rge x y) -> False) -> (Rlt x y).
+Intros.
+Unfold Rge in H.
+Elim (total_order x y); Intros.
+Try Exact H0.
+Intuition.
+Qed.
+
+Lemma Rfourier_not_gt_le: (x, y : R) ((Rgt x y) -> False) -> (Rle x y).
+Intros.
+Red.
+Elim (total_order x y); Intros.
+Intuition.
+Intuition.
+Qed.
+
+Lemma Rfourier_not_le_gt: (x, y : R) ((Rle x y) -> False) -> (Rgt x y).
+Unfold Rle.
+Intros.
+Red.
+Elim (total_order x y); Intros.
+Intuition.
+Intuition.
+Qed.
+
+Lemma Rfourier_not_lt_ge: (x, y : R) ((Rlt x y) -> False) -> (Rge x y).
+Intros.
+Red.
+Elim (total_order x y); Intros.
+Intuition.
+Intuition.
+Qed.
diff --git a/contrib/fourier/fourier.ml b/contrib/fourier/fourier.ml
new file mode 100644
index 0000000000..ea124ed17e
--- /dev/null
+++ b/contrib/fourier/fourier.ml
@@ -0,0 +1,202 @@
+(***********************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
+(* \VV/ *************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(***********************************************************************)
+
+(* $Id$ *)
+
+(* Méthode d'élimination de Fourier *)
+(* Référence:
+Auteur(s) : Fourier, Jean-Baptiste-Joseph
+
+Titre(s) : Oeuvres de Fourier [Document électronique]. Tome second. Mémoires publiés dans divers recueils / publ. par les soins de M. Gaston Darboux,...
+
+Publication : Numérisation BnF de l'édition de Paris : Gauthier-Villars, 1890
+
+Pages: 326-327
+
+http://gallica.bnf.fr/
+*)
+
+(* Un peu de calcul sur les rationnels...
+Les opérations rendent des rationnels normalisés,
+i.e. le numérateur et le dénominateur sont premiers entre eux.
+*)
+type rational = {num:int;
+ den:int}
+;;
+let print_rational x =
+ print_int x.num;
+ print_string "/";
+ print_int x.den
+;;
+
+let rec pgcd x y = if y = 0 then x else pgcd y (x mod y);;
+
+
+let r0 = {num=0;den=1};;
+let r1 = {num=1;den=1};;
+
+let rnorm x = let x = (if x.den<0 then {num=(-x.num);den=(-x.den)} else x) in
+ if x.num=0 then r0
+ else (let d=pgcd x.num x.den in
+ {num=(x.num)/d;den=(x.den)/d});;
+
+let rop x = rnorm {num=(-x.num);den=x.den};;
+
+let rplus x y = rnorm {num=x.num*y.den + y.num*x.den;den=x.den*y.den};;
+
+let rminus x y = rnorm {num=x.num*y.den - y.num*x.den;den=x.den*y.den};;
+
+let rmult x y = rnorm {num=x.num*y.num;den=x.den*y.den};;
+
+let rinv x = rnorm {num=x.den;den=x.num};;
+
+let rinf x y = x.num*y.den < y.num*x.den;;
+let rinfeq x y = x.num*y.den <= y.num*x.den;;
+
+(* {coef;hist;strict}, où coef=[c1; ...; cn; d], représente l'inéquation
+c1x1+...+cnxn < d si strict=true, <= sinon,
+hist donnant les coefficients (positifs) d'une combinaison linéaire qui permet d'obtenir l'inéquation à partir de celles du départ.
+*)
+
+type ineq = {coef:rational list;
+ hist:rational list;
+ strict:bool};;
+
+let pop x l = l:=x::(!l);;
+
+(* sépare la liste d'inéquations s selon que leur premier coefficient est
+négatif, nul ou positif. *)
+let partitionne s =
+ let lpos=ref [] in
+ let lneg=ref [] in
+ let lnul=ref [] in
+ List.iter (fun ie -> match ie.coef with
+ [] -> raise (Failure "empty ineq")
+ |(c::r) -> if rinf c r0
+ then pop ie lneg
+ else if rinf r0 c then pop ie lpos
+ else pop ie lnul)
+ s;
+ [!lneg;!lnul;!lpos]
+;;
+(* initialise les histoires d'une liste d'inéquations données par leurs listes de coefficients et leurs strictitudes (!):
+(add_hist [(equation 1, s1);...;(équation n, sn)])
+=
+[{équation 1, [1;0;...;0], s1};
+ {équation 2, [0;1;...;0], s2};
+ ...
+ {équation n, [0;0;...;1], sn}]
+*)
+let add_hist le =
+ let n = List.length le in
+ let i=ref 0 in
+ List.map (fun (ie,s) ->
+ let h =ref [] in
+ for k=1 to (n-(!i)-1) do pop r0 h; done;
+ pop r1 h;
+ for k=1 to !i do pop r0 h; done;
+ i:=!i+1;
+ {coef=ie;hist=(!h);strict=s})
+ le
+;;
+(* additionne deux inéquations *)
+let ie_add ie1 ie2 = {coef=List.map2 rplus ie1.coef ie2.coef;
+ hist=List.map2 rplus ie1.hist ie2.hist;
+ strict=ie1.strict || ie2.strict}
+;;
+(* multiplication d'une inéquation par un rationnel (positif) *)
+let ie_emult a ie = {coef=List.map (fun x -> rmult a x) ie.coef;
+ hist=List.map (fun x -> rmult a x) ie.hist;
+ strict= ie.strict}
+;;
+(* on enlève le premier coefficient *)
+let ie_tl ie = {coef=List.tl ie.coef;hist=ie.hist;strict=ie.strict}
+;;
+(* le premier coefficient: "tête" de l'inéquation *)
+let hd_coef ie = List.hd ie.coef
+;;
+
+(* calcule toutes les combinaisons entre inéquations de tête négative et inéquations de tête positive qui annulent le premier coefficient.
+*)
+let deduce_add lneg lpos =
+ let res=ref [] in
+ List.iter (fun i1 ->
+ List.iter (fun i2 ->
+ let a = rop (hd_coef i1) in
+ let b = hd_coef i2 in
+ pop (ie_tl (ie_add (ie_emult b i1)
+ (ie_emult a i2))) res)
+ lpos)
+ lneg;
+ !res
+;;
+(* élimination de la première variable à partir d'une liste d'inéquations:
+opération qu'on itère dans l'algorithme de Fourier.
+*)
+let deduce1 s =
+ match (partitionne s) with
+ [lneg;lnul;lpos] ->
+ let lnew = deduce_add lneg lpos in
+ (List.map ie_tl lnul)@lnew
+ |_->assert false
+;;
+(* algorithme de Fourier: on élimine successivement toutes les variables.
+*)
+let deduce lie =
+ let n = List.length (fst (List.hd lie)) in
+ let lie=ref (add_hist lie) in
+ for i=1 to n-1 do
+ lie:= deduce1 !lie;
+ done;
+ !lie
+;;
+
+(* donne [] si le système a des solutions,
+sinon donne [c,s,lc]
+où lc est la combinaison linéaire des inéquations de départ
+qui donne 0 < c si s=true
+ ou 0 <= c sinon
+cette inéquation étant absurde.
+*)
+let unsolvable lie =
+ let lr = deduce lie in
+ let res = ref [] in
+ (try (List.iter (fun e ->
+ match e with
+ {coef=[c];hist=lc;strict=s} ->
+ if (rinf c r0 && (not s)) || (rinfeq c r0 && s)
+ then (res := [c,s,lc];
+ raise (Failure "contradiction found"))
+ |_->assert false)
+ lr)
+ with _ -> ());
+ !res
+;;
+
+(* Exemples:
+
+let test1=[[r1;r1;r0],true;[rop r1;r1;r1],false;[r0;rop r1;rop r1],false];;
+deduce test1;;
+unsolvable test1;;
+
+let test2=[
+[r1;r1;r0;r0;r0],false;
+[r0;r1;r1;r0;r0],false;
+[r0;r0;r1;r1;r0],false;
+[r0;r0;r0;r1;r1],false;
+[r1;r0;r0;r0;r1],false;
+[rop r1;rop r1;r0;r0;r0],false;
+[r0;rop r1;rop r1;r0;r0],false;
+[r0;r0;rop r1;rop r1;r0],false;
+[r0;r0;r0;rop r1;rop r1],false;
+[rop r1;r0;r0;r0;rop r1],false
+];;
+deduce test2;;
+unsolvable test2;;
+
+*) \ No newline at end of file
diff --git a/contrib/fourier/fourierR.ml b/contrib/fourier/fourierR.ml
new file mode 100644
index 0000000000..c85ead5362
--- /dev/null
+++ b/contrib/fourier/fourierR.ml
@@ -0,0 +1,543 @@
+(***********************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
+(* \VV/ *************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(***********************************************************************)
+
+(* $Id$ *)
+
+
+
+(* La tactique Fourier ne fonctionne de manière sûre que si les coefficients
+des inéquations et équations sont entiers. En attendant la tactique Field.
+*)
+
+open Term
+open Tactics
+open Clenv
+open Names
+open Tacmach
+open Fourier
+
+(******************************************************************************
+Opérations sur les combinaisons linéaires affines.
+La partie homogène d'une combinaison linéaire est en fait une table de hash
+qui donne le coefficient d'un terme du calcul des constructions,
+qui est zéro si le terme n'y est pas.
+*)
+
+type flin = {fhom:(constr , rational)Hashtbl.t;
+ fcste:rational};;
+
+let flin_zero () = {fhom=Hashtbl.create 50;fcste=r0};;
+
+let flin_coef f x = try (Hashtbl.find f.fhom x) with _-> r0;;
+
+let flin_add f x c =
+ let cx = flin_coef f x in
+ Hashtbl.remove f.fhom x;
+ Hashtbl.add f.fhom x (rplus cx c);
+ f
+;;
+let flin_add_cste f c =
+ {fhom=f.fhom;
+ fcste=rplus f.fcste c}
+;;
+
+let flin_one () = flin_add_cste (flin_zero()) r1;;
+
+let flin_plus f1 f2 =
+ let f3 = flin_zero() in
+ Hashtbl.iter (fun x c -> let _=flin_add f3 x c in ()) f1.fhom;
+ Hashtbl.iter (fun x c -> let _=flin_add f3 x c in ()) f2.fhom;
+ flin_add_cste (flin_add_cste f3 f1.fcste) f2.fcste;
+;;
+
+let flin_minus f1 f2 =
+ let f3 = flin_zero() in
+ Hashtbl.iter (fun x c -> let _=flin_add f3 x c in ()) f1.fhom;
+ Hashtbl.iter (fun x c -> let _=flin_add f3 x (rop c) in ()) f2.fhom;
+ flin_add_cste (flin_add_cste f3 f1.fcste) (rop f2.fcste);
+;;
+let flin_emult a f =
+ let f2 = flin_zero() in
+ Hashtbl.iter (fun x c -> let _=flin_add f2 x (rmult a c) in ()) f.fhom;
+ flin_add_cste f2 (rmult a f.fcste);
+;;
+
+(*****************************************************************************)
+let parse_ast = Pcoq.parse_string Pcoq.Constr.constr;;
+let parse s = Astterm.interp_constr Evd.empty (Global.env()) (parse_ast s);;
+let pf_parse_constr gl s =
+ Astterm.interp_constr Evd.empty (pf_env gl) (parse_ast s);;
+
+let rec string_of_constr c =
+ match kind_of_term c with
+ IsCast (c,t) -> string_of_constr c
+ |IsConst (c,l) -> string_of_path c
+ |IsVar(c) -> string_of_id c
+ | _ -> "not_of_constant"
+;;
+
+let rec rational_of_constr c =
+ match kind_of_term c with
+ | IsCast (c,t) -> (rational_of_constr c)
+ | IsApp (c,args) ->
+ (match kind_of_term c with
+ IsConst (c,l) ->
+ (match (string_of_path c) with
+ "Coq.Reals.Rdefinitions.Ropp" ->
+ rop (rational_of_constr args.(0))
+ |"Coq.Reals.Rdefinitions.Rinv" ->
+ rinv (rational_of_constr args.(0))
+ |"Coq.Reals.Rdefinitions.Rmult" ->
+ rmult (rational_of_constr args.(0))
+ (rational_of_constr args.(1))
+ |"Coq.Reals.Rdefinitions.Rplus" ->
+ rplus (rational_of_constr args.(0))
+ (rational_of_constr args.(1))
+ |"Coq.Reals.Rdefinitions.Rminus" ->
+ rminus (rational_of_constr args.(0))
+ (rational_of_constr args.(1))
+ | _ -> failwith "not a rational")
+ | _ -> failwith "not a rational")
+ | IsConst (c,l) ->
+ (match (string_of_path c) with
+ "Coq.Reals.Rdefinitions.R1" -> r1
+ |"Coq.Reals.Rdefinitions.R0" -> r0
+ | _ -> failwith "not a rational")
+ | _ -> failwith "not a rational"
+;;
+
+let rec flin_of_constr c =
+ try(
+ match kind_of_term c with
+ | IsCast (c,t) -> (flin_of_constr c)
+ | IsApp (c,args) ->
+ (match kind_of_term c with
+ IsConst (c,l) ->
+ (match (string_of_path c) with
+ "Coq.Reals.Rdefinitions.Ropp" ->
+ flin_emult (rop r1) (flin_of_constr args.(0))
+ |"Coq.Reals.Rdefinitions.Rplus"->
+ flin_plus (flin_of_constr args.(0))
+ (flin_of_constr args.(1))
+ |"Coq.Reals.Rdefinitions.Rminus"->
+ flin_minus (flin_of_constr args.(0))
+ (flin_of_constr args.(1))
+ |"Coq.Reals.Rdefinitions.Rmult"->
+ (try (let a=(rational_of_constr args.(0)) in
+ try (let b = (rational_of_constr args.(1)) in
+ (flin_add_cste (flin_zero()) (rmult a b)))
+ with _-> (flin_add (flin_zero())
+ args.(1)
+ a))
+ with _-> (flin_add (flin_zero())
+ args.(0)
+ (rational_of_constr args.(1))))
+ |_->assert false)
+ |_ -> assert false)
+ | IsConst (c,l) ->
+ (match (string_of_path c) with
+ "Coq.Reals.Rdefinitions.R1" -> flin_one ()
+ |"Coq.Reals.Rdefinitions.R0" -> flin_zero ()
+ |_-> assert false)
+ |_-> assert false)
+ with _ -> flin_add (flin_zero())
+ c
+ r1
+;;
+
+let flin_to_alist f =
+ let res=ref [] in
+ Hashtbl.iter (fun x c -> res:=(c,x)::(!res)) f;
+ !res
+;;
+
+(* Représentation des hypothèses qui sont des inéquations ou des équations.
+*)
+type hineq={hname:constr; (* le nom de l'hypothèse *)
+ htype:string; (* Rlt, Rgt, Rle, Rge, eqTLR ou eqTRL *)
+ hleft:constr;
+ hright:constr;
+ hflin:flin;
+ hstrict:bool}
+;;
+
+(* Transforme une hypothese h:t en inéquation flin<0 ou flin<=0
+*)
+let ineq1_of_constr (h,t) =
+ match (kind_of_term t) with
+ IsApp (f,args) ->
+ let t1= args.(0) in
+ let t2= args.(1) in
+ (match kind_of_term f with
+ IsConst (c,l) ->
+ (match (string_of_path c) with
+ "Coq.Reals.Rdefinitions.Rlt" -> [{hname=h;
+ htype="Rlt";
+ hleft=t1;
+ hright=t2;
+ hflin= flin_minus (flin_of_constr t1)
+ (flin_of_constr t2);
+ hstrict=true}]
+ |"Coq.Reals.Rdefinitions.Rgt" -> [{hname=h;
+ htype="Rgt";
+ hleft=t2;
+ hright=t1;
+ hflin= flin_minus (flin_of_constr t2)
+ (flin_of_constr t1);
+ hstrict=true}]
+ |"Coq.Reals.Rdefinitions.Rle" -> [{hname=h;
+ htype="Rle";
+ hleft=t1;
+ hright=t2;
+ hflin= flin_minus (flin_of_constr t1)
+ (flin_of_constr t2);
+ hstrict=false}]
+ |"Coq.Reals.Rdefinitions.Rge" -> [{hname=h;
+ htype="Rge";
+ hleft=t2;
+ hright=t1;
+ hflin= flin_minus (flin_of_constr t2)
+ (flin_of_constr t1);
+ hstrict=false}]
+ |_->assert false)
+ | IsMutInd ((sp,i),l) ->
+ (match (string_of_path sp) with
+ "Coq.Init.Logic_Type.eqT" -> let t0= args.(0) in
+ let t1= args.(1) in
+ let t2= args.(2) in
+ (match (kind_of_term t0) with
+ IsConst (c,l) ->
+ (match (string_of_path c) with
+ "Coq.Reals.Rdefinitions.R"->
+ [{hname=h;
+ htype="eqTLR";
+ hleft=t1;
+ hright=t2;
+ hflin= flin_minus (flin_of_constr t1)
+ (flin_of_constr t2);
+ hstrict=false};
+ {hname=h;
+ htype="eqTRL";
+ hleft=t2;
+ hright=t1;
+ hflin= flin_minus (flin_of_constr t2)
+ (flin_of_constr t1);
+ hstrict=false}]
+ |_-> assert false)
+ |_-> assert false)
+ |_-> assert false)
+ |_-> assert false)
+ |_-> assert false
+;;
+
+(* Applique la méthode de Fourier à une liste d'hypothèses (type hineq)
+*)
+
+let fourier_lineq lineq1 =
+ let nvar=ref (-1) in
+ let hvar=Hashtbl.create 50 in (* la table des variables des inéquations *)
+ List.iter (fun f ->
+ Hashtbl.iter (fun x c ->
+ try (Hashtbl.find hvar x;())
+ with _-> nvar:=(!nvar)+1;
+ Hashtbl.add hvar x (!nvar))
+ f.hflin.fhom)
+ lineq1;
+ let sys= List.map (fun h->
+ let v=Array.create ((!nvar)+1) r0 in
+ Hashtbl.iter (fun x c -> v.(Hashtbl.find hvar x)<-c)
+ h.hflin.fhom;
+ ((Array.to_list v)@[rop h.hflin.fcste],h.hstrict))
+ lineq1 in
+ unsolvable sys
+;;
+
+(******************************************************************************
+Construction de la preuve en cas de succès de la méthode de Fourier,
+i.e. on obtient une contradiction.
+*)
+let is_int x = (x.den)=1
+;;
+
+(* fraction = couple (num,den) *)
+let rec rational_to_fraction x= (x.num,x.den)
+;;
+
+(* traduction -3 -> (Ropp (Rplus R1 (Rplus R1 R1)))
+*)
+let int_to_real n =
+ let nn=abs n in
+ let s=ref "" in
+ if nn=0
+ then s:="R0"
+ else (s:="R1";
+ for i=1 to (nn-1) do s:="(Rplus R1 "^(!s)^")"; done;);
+ if n<0 then s:="(Ropp "^(!s)^")";
+ !s
+;;
+(* -1/2 -> (Rmult (Ropp R1) (Rinv (Rplus R1 R1)))
+*)
+let rational_to_real x =
+ let (n,d)=rational_to_fraction x in
+ ("(Rmult "^(int_to_real n)^" (Rinv "^(int_to_real d)^"))")
+;;
+
+(* preuve que 0<n*1/d
+*)
+let tac_zero_inf_pos gl (n,d) =
+ let cste = pf_parse_constr gl in
+ let tacn=ref (apply (cste "Rlt_zero_1")) in
+ let tacd=ref (apply (cste "Rlt_zero_1")) in
+ for i=1 to n-1 do
+ tacn:=(tclTHEN (apply (cste "Rlt_zero_pos_plus1")) !tacn); done;
+ for i=1 to d-1 do
+ tacd:=(tclTHEN (apply (cste "Rlt_zero_pos_plus1")) !tacd); done;
+ (tclTHENS (apply (cste "Rlt_mult_inv_pos")) [!tacn;!tacd])
+;;
+
+(* preuve que 0<=n*1/d
+*)
+let tac_zero_infeq_pos gl (n,d)=
+ let cste = pf_parse_constr gl in
+ let tacn=ref (if n=0
+ then (apply (cste "Rle_zero_zero"))
+ else (apply (cste "Rle_zero_1"))) in
+ let tacd=ref (apply (cste "Rlt_zero_1")) in
+ for i=1 to n-1 do
+ tacn:=(tclTHEN (apply (cste "Rle_zero_pos_plus1")) !tacn); done;
+ for i=1 to d-1 do
+ tacd:=(tclTHEN (apply (cste "Rlt_zero_pos_plus1")) !tacd); done;
+ (tclTHENS (apply (cste "Rle_mult_inv_pos")) [!tacn;!tacd])
+;;
+
+(* preuve que 0<(-n)*(1/d) => False
+*)
+let tac_zero_inf_false gl (n,d) =
+ let cste = pf_parse_constr gl in
+ if n=0 then (apply (cste "Rnot_lt0"))
+ else
+ (tclTHEN (apply (cste "Rle_not_lt"))
+ (tac_zero_infeq_pos gl (-n,d)))
+;;
+
+(* preuve que 0<=(-n)*(1/d) => False
+*)
+let tac_zero_infeq_false gl (n,d) =
+ let cste = pf_parse_constr gl in
+ (tclTHEN (apply (cste "Rlt_not_le"))
+ (tac_zero_inf_pos gl (-n,d)))
+;;
+
+let create_meta () = mkMeta(new_meta());;
+
+let my_cut c gl=
+ let concl = pf_concl gl in
+ apply_type (mkProd(Anonymous,c,concl)) [create_meta()] gl
+;;
+let exact = exact_check;;
+
+let tac_use h = match h.htype with
+ "Rlt" -> exact h.hname
+ |"Rle" -> exact h.hname
+ |"Rgt" -> (tclTHEN (apply (parse "Rfourier_gt_to_lt"))
+ (exact h.hname))
+ |"Rge" -> (tclTHEN (apply (parse "Rfourier_ge_to_le"))
+ (exact h.hname))
+ |"eqTLR" -> (tclTHEN (apply (parse "Rfourier_eqLR_to_le"))
+ (exact h.hname))
+ |"eqTRL" -> (tclTHEN (apply (parse "Rfourier_eqRL_to_le"))
+ (exact h.hname))
+ |_->assert false
+;;
+
+let is_ineq (h,t) =
+ match (kind_of_term t) with
+ IsApp (f,args) ->
+ (match (string_of_constr f) with
+ "Coq.Reals.Rdefinitions.Rlt" -> true
+ |"Coq.Reals.Rdefinitions.Rgt" -> true
+ |"Coq.Reals.Rdefinitions.Rle" -> true
+ |"Coq.Reals.Rdefinitions.Rge" -> true
+ |"Coq.Init.Logic_Type.eqT" -> (match (string_of_constr args.(0)) with
+ "Coq.Reals.Rdefinitions.R"->true
+ |_->false)
+ |_->false)
+ |_->false
+;;
+
+let list_of_sign s = List.map (fun (x,_,z)->(x,z)) s;;
+
+let mkAppL a =
+ let l = Array.to_list a in
+ mkApp(List.hd l, Array.of_list (List.tl l))
+;;
+
+(* Résolution d'inéquations linéaires dans R *)
+let rec fourier gl=
+ let parse = pf_parse_constr gl in
+ let goal = strip_outer_cast (pf_concl gl) in
+ let fhyp=id_of_string "new_hyp_for_fourier" in
+ (* si le but est une inéquation, on introduit son contraire,
+ et le but à prouver devient False *)
+ try (let tac =
+ match (kind_of_term goal) with
+ IsApp (f,args) ->
+ (match (string_of_constr f) with
+ "Coq.Reals.Rdefinitions.Rlt" ->
+ (tclTHEN
+ (tclTHEN (apply (parse "Rfourier_not_ge_lt"))
+ (intro_using fhyp))
+ fourier)
+ |"Coq.Reals.Rdefinitions.Rle" ->
+ (tclTHEN
+ (tclTHEN (apply (parse "Rfourier_not_gt_le"))
+ (intro_using fhyp))
+ fourier)
+ |"Coq.Reals.Rdefinitions.Rgt" ->
+ (tclTHEN
+ (tclTHEN (apply (parse "Rfourier_not_le_gt"))
+ (intro_using fhyp))
+ fourier)
+ |"Coq.Reals.Rdefinitions.Rge" ->
+ (tclTHEN
+ (tclTHEN (apply (parse "Rfourier_not_lt_ge"))
+ (intro_using fhyp))
+ fourier)
+ |_->assert false)
+ |_->assert false
+ in tac gl)
+ with _ ->
+ (* les hypothèses *)
+ let hyps = List.map (fun (h,t)-> (mkVar h,(body_of_type t)))
+ (list_of_sign (pf_hyps gl)) in
+ let lineq =ref [] in
+ List.iter (fun h -> try (lineq:=(ineq1_of_constr h)@(!lineq))
+ with _-> ())
+ hyps;
+ (* lineq = les inéquations découlant des hypothèses *)
+ let res=fourier_lineq (!lineq) in
+ let tac=ref tclIDTAC in
+ if res=[]
+ then (print_string "Tactic Fourier fails, perhaps because it cannot prove some equality on rationnal numbers with the tactic Ring.";
+ flush stdout)
+ (* l'algorithme de Fourier a réussi: on va en tirer une preuve Coq *)
+ else (match res with
+ [(cres,sres,lc)]->
+ (* lc=coefficients multiplicateurs des inéquations
+ qui donnent 0<cres ou 0<=cres selon sres *)
+ (*print_string "Fourier's method can prove the goal...";flush stdout;*)
+ let lutil=ref [] in
+ List.iter
+ (fun (h,c) ->
+ if c<>r0
+ then (lutil:=(h,c)::(!lutil)(*;
+ print_rational(c);print_string " "*)))
+ (List.combine (!lineq) lc);
+ (* on construit la combinaison linéaire des inéquation *)
+ (match (!lutil) with
+ (h1,c1)::lutil ->
+ let s=ref (h1.hstrict) in
+ let t1=ref (mkAppL [|parse "Rmult";
+ parse (rational_to_real c1);
+ h1.hleft|]) in
+ let t2=ref (mkAppL [|parse "Rmult";
+ parse (rational_to_real c1);
+ h1.hright|]) in
+ List.iter (fun (h,c) ->
+ s:=(!s)||(h.hstrict);
+ t1:=(mkAppL [|parse "Rplus";
+ !t1;
+ mkAppL [|parse "Rmult";
+ parse (rational_to_real c);
+ h.hleft|] |]);
+ t2:=(mkAppL [|parse "Rplus";
+ !t2;
+ mkAppL [|parse "Rmult";
+ parse (rational_to_real c);
+ h.hright|] |]))
+ lutil;
+ let ineq=mkAppL [|parse (if (!s) then "Rlt" else "Rle");
+ !t1;
+ !t2 |] in
+ let tc=parse (rational_to_real cres) in
+ (* puis sa preuve *)
+ let tac1=ref (if h1.hstrict
+ then (tclTHENS (apply (parse "Rfourier_lt"))
+ [tac_use h1;
+ tac_zero_inf_pos gl
+ (rational_to_fraction c1)])
+ else (tclTHENS (apply (parse "Rfourier_le"))
+ [tac_use h1;
+ tac_zero_inf_pos gl
+ (rational_to_fraction c1)])) in
+ s:=h1.hstrict;
+ List.iter (fun (h,c)->
+ (if (!s)
+ then (if h.hstrict
+ then tac1:=(tclTHENS (apply (parse "Rfourier_lt_lt"))
+ [!tac1;tac_use h;
+ tac_zero_inf_pos gl
+ (rational_to_fraction c)])
+ else tac1:=(tclTHENS (apply (parse "Rfourier_lt_le"))
+ [!tac1;tac_use h;
+ tac_zero_inf_pos gl
+ (rational_to_fraction c)]))
+ else (if h.hstrict
+ then tac1:=(tclTHENS (apply (parse "Rfourier_le_lt"))
+ [!tac1;tac_use h;
+ tac_zero_inf_pos gl
+ (rational_to_fraction c)])
+ else tac1:=(tclTHENS (apply (parse "Rfourier_le_le"))
+ [!tac1;tac_use h;
+ tac_zero_inf_pos gl
+ (rational_to_fraction c)])));
+ s:=(!s)||(h.hstrict))
+ lutil;
+ let tac2= if sres
+ then tac_zero_inf_false gl (rational_to_fraction cres)
+ else tac_zero_infeq_false gl (rational_to_fraction cres)
+ in
+ tac:=(tclTHENS (my_cut ineq)
+ [tclTHEN (change_in_concl
+ (mkAppL [| parse "not"; ineq|]
+ ))
+ (tclTHEN (apply (if sres then parse "Rnot_lt_lt"
+ else parse "Rnot_le_le"))
+ (tclTHENS (Equality.replace
+ (mkAppL [|parse "Rminus";!t2;!t1|]
+ )
+ tc)
+ [tac2;
+ (tclTHENS (Equality.replace (parse "(Rinv R1)")
+ (parse "R1"))
+(* en attendant Field, ça peut aider Ring de remplacer 1/1 par 1 ... *)
+
+ [(Ring.polynom []);
+ (tclTHEN (apply (parse "sym_eqT"))
+ (apply (parse "Rinv_R1")))]
+
+ )
+ ]));
+ !tac1]);
+ tac:=(tclTHENS (cut (parse "False"))
+ [tclTHEN intro contradiction;
+ !tac])
+ |_-> assert false) |_-> assert false
+ );
+(* ((tclTHEN !tac (tclFAIL 1 (* 1 au hasard... *))) gl) *)
+ ((tclABSTRACT None !tac) gl)
+
+;;
+
+let fourier_tac x gl =
+ fourier gl
+;;
+
+let v_fourier = add_tactic "Fourier" fourier_tac
+
+