aboutsummaryrefslogtreecommitdiff
path: root/contrib/ring/Setoid_ring_normalize.v
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/ring/Setoid_ring_normalize.v')
-rw-r--r--contrib/ring/Setoid_ring_normalize.v1930
1 files changed, 963 insertions, 967 deletions
diff --git a/contrib/ring/Setoid_ring_normalize.v b/contrib/ring/Setoid_ring_normalize.v
index bbebde4223..c619f32654 100644
--- a/contrib/ring/Setoid_ring_normalize.v
+++ b/contrib/ring/Setoid_ring_normalize.v
@@ -8,17 +8,18 @@
(* $Id$ *)
-Require Setoid_ring_theory.
-Require Quote.
+Require Import Setoid_ring_theory.
+Require Import Quote.
Set Implicit Arguments.
-Lemma index_eq_prop: (n,m:index)(Is_true (index_eq n m)) -> n=m.
+Lemma index_eq_prop : forall n m:index, Is_true (index_eq n m) -> n = m.
Proof.
- Induction n; Induction m; Simpl; Try (Reflexivity Orelse Contradiction).
- Intros; Rewrite (H i0); Trivial.
- Intros; Rewrite (H i0); Trivial.
-Save.
+ simple induction n; simple induction m; simpl in |- *;
+ try reflexivity || contradiction.
+ intros; rewrite (H i0); trivial.
+ intros; rewrite (H i0); trivial.
+Qed.
Section setoid.
@@ -31,35 +32,38 @@ Variable Azero : A.
Variable Aopp : A -> A.
Variable Aeq : A -> A -> bool.
-Variable S : (Setoid_Theory A Aequiv).
+Variable S : Setoid_Theory A Aequiv.
Add Setoid A Aequiv S.
-Variable plus_morph : (a,a0,a1,a2:A)
- (Aequiv a a0)->(Aequiv a1 a2)->(Aequiv (Aplus a a1) (Aplus a0 a2)).
-Variable mult_morph : (a,a0,a1,a2:A)
- (Aequiv a a0)->(Aequiv a1 a2)->(Aequiv (Amult a a1) (Amult a0 a2)).
-Variable opp_morph : (a,a0:A)
- (Aequiv a a0)->(Aequiv (Aopp a) (Aopp a0)).
+Variable
+ plus_morph :
+ forall a a0 a1 a2:A,
+ Aequiv a a0 -> Aequiv a1 a2 -> Aequiv (Aplus a a1) (Aplus a0 a2).
+Variable
+ mult_morph :
+ forall a a0 a1 a2:A,
+ Aequiv a a0 -> Aequiv a1 a2 -> Aequiv (Amult a a1) (Amult a0 a2).
+Variable opp_morph : forall a a0:A, Aequiv a a0 -> Aequiv (Aopp a) (Aopp a0).
Add Morphism Aplus : Aplus_ext.
-Exact plus_morph.
-Save.
+exact plus_morph.
+Qed.
Add Morphism Amult : Amult_ext.
-Exact mult_morph.
-Save.
+exact mult_morph.
+Qed.
Add Morphism Aopp : Aopp_ext.
-Exact opp_morph.
-Save.
+exact opp_morph.
+Qed.
-Local equiv_refl := (Seq_refl A Aequiv S).
-Local equiv_sym := (Seq_sym A Aequiv S).
-Local equiv_trans := (Seq_trans A Aequiv S).
+Let equiv_refl := Seq_refl A Aequiv S.
+Let equiv_sym := Seq_sym A Aequiv S.
+Let equiv_trans := Seq_trans A Aequiv S.
-Hints Resolve equiv_refl equiv_trans.
-Hints Immediate equiv_sym.
+Hint Resolve equiv_refl equiv_trans.
+Hint Immediate equiv_sym.
Section semi_setoid_rings.
@@ -81,16 +85,14 @@ Section semi_setoid_rings.
(* varlist is isomorphic to (list var), but we built a special inductive
for efficiency *)
-Inductive varlist : Type :=
-| Nil_var : varlist
-| Cons_var : index -> varlist -> varlist
-.
+Inductive varlist : Type :=
+ | Nil_var : varlist
+ | Cons_var : index -> varlist -> varlist.
-Inductive canonical_sum : Type :=
-| Nil_monom : canonical_sum
-| Cons_monom : A -> varlist -> canonical_sum -> canonical_sum
-| Cons_varlist : varlist -> canonical_sum -> canonical_sum
-.
+Inductive canonical_sum : Type :=
+ | Nil_monom : canonical_sum
+ | Cons_monom : A -> varlist -> canonical_sum -> canonical_sum
+ | Cons_varlist : varlist -> canonical_sum -> canonical_sum.
(* Order on monoms *)
@@ -107,244 +109,251 @@ Inductive canonical_sum : Type :=
4*x*y < 59*x*y*y*z
*)
-Fixpoint varlist_eq [x,y:varlist] : bool :=
- Cases x y of
- | Nil_var Nil_var => true
- | (Cons_var i xrest) (Cons_var j yrest) =>
- (andb (index_eq i j) (varlist_eq xrest yrest))
- | _ _ => false
+Fixpoint varlist_eq (x y:varlist) {struct y} : bool :=
+ match x, y with
+ | Nil_var, Nil_var => true
+ | Cons_var i xrest, Cons_var j yrest =>
+ andb (index_eq i j) (varlist_eq xrest yrest)
+ | _, _ => false
end.
-Fixpoint varlist_lt [x,y:varlist] : bool :=
- Cases x y of
- | Nil_var (Cons_var _ _) => true
- | (Cons_var i xrest) (Cons_var j yrest) =>
- if (index_lt i j) then true
- else (andb (index_eq i j) (varlist_lt xrest yrest))
- | _ _ => false
+Fixpoint varlist_lt (x y:varlist) {struct y} : bool :=
+ match x, y with
+ | Nil_var, Cons_var _ _ => true
+ | Cons_var i xrest, Cons_var j yrest =>
+ if index_lt i j
+ then true
+ else andb (index_eq i j) (varlist_lt xrest yrest)
+ | _, _ => false
end.
(* merges two variables lists *)
-Fixpoint varlist_merge [l1:varlist] : varlist -> varlist :=
- Cases l1 of
- | (Cons_var v1 t1) =>
- Fix vm_aux {vm_aux [l2:varlist] : varlist :=
- Cases l2 of
- | (Cons_var v2 t2) =>
- if (index_lt v1 v2)
- then (Cons_var v1 (varlist_merge t1 l2))
- else (Cons_var v2 (vm_aux t2))
- | Nil_var => l1
- end}
- | Nil_var => [l2]l2
+Fixpoint varlist_merge (l1:varlist) : varlist -> varlist :=
+ match l1 with
+ | Cons_var v1 t1 =>
+ (fix vm_aux (l2:varlist) : varlist :=
+ match l2 with
+ | Cons_var v2 t2 =>
+ if index_lt v1 v2
+ then Cons_var v1 (varlist_merge t1 l2)
+ else Cons_var v2 (vm_aux t2)
+ | Nil_var => l1
+ end)
+ | Nil_var => fun l2 => l2
end.
(* returns the sum of two canonical sums *)
-Fixpoint canonical_sum_merge [s1:canonical_sum]
- : canonical_sum -> canonical_sum :=
-Cases s1 of
-| (Cons_monom c1 l1 t1) =>
- Fix csm_aux{csm_aux[s2:canonical_sum] : canonical_sum :=
- Cases s2 of
- | (Cons_monom c2 l2 t2) =>
- if (varlist_eq l1 l2)
- then (Cons_monom (Aplus c1 c2) l1
- (canonical_sum_merge t1 t2))
- else if (varlist_lt l1 l2)
- then (Cons_monom c1 l1 (canonical_sum_merge t1 s2))
- else (Cons_monom c2 l2 (csm_aux t2))
- | (Cons_varlist l2 t2) =>
- if (varlist_eq l1 l2)
- then (Cons_monom (Aplus c1 Aone) l1
- (canonical_sum_merge t1 t2))
- else if (varlist_lt l1 l2)
- then (Cons_monom c1 l1 (canonical_sum_merge t1 s2))
- else (Cons_varlist l2 (csm_aux t2))
- | Nil_monom => s1
- end}
-| (Cons_varlist l1 t1) =>
- Fix csm_aux2{csm_aux2[s2:canonical_sum] : canonical_sum :=
- Cases s2 of
- | (Cons_monom c2 l2 t2) =>
- if (varlist_eq l1 l2)
- then (Cons_monom (Aplus Aone c2) l1
- (canonical_sum_merge t1 t2))
- else if (varlist_lt l1 l2)
- then (Cons_varlist l1 (canonical_sum_merge t1 s2))
- else (Cons_monom c2 l2 (csm_aux2 t2))
- | (Cons_varlist l2 t2) =>
- if (varlist_eq l1 l2)
- then (Cons_monom (Aplus Aone Aone) l1
- (canonical_sum_merge t1 t2))
- else if (varlist_lt l1 l2)
- then (Cons_varlist l1 (canonical_sum_merge t1 s2))
- else (Cons_varlist l2 (csm_aux2 t2))
- | Nil_monom => s1
- end}
-| Nil_monom => [s2]s2
-end.
+Fixpoint canonical_sum_merge (s1:canonical_sum) :
+ canonical_sum -> canonical_sum :=
+ match s1 with
+ | Cons_monom c1 l1 t1 =>
+ (fix csm_aux (s2:canonical_sum) : canonical_sum :=
+ match s2 with
+ | Cons_monom c2 l2 t2 =>
+ if varlist_eq l1 l2
+ then Cons_monom (Aplus c1 c2) l1 (canonical_sum_merge t1 t2)
+ else
+ if varlist_lt l1 l2
+ then Cons_monom c1 l1 (canonical_sum_merge t1 s2)
+ else Cons_monom c2 l2 (csm_aux t2)
+ | Cons_varlist l2 t2 =>
+ if varlist_eq l1 l2
+ then Cons_monom (Aplus c1 Aone) l1 (canonical_sum_merge t1 t2)
+ else
+ if varlist_lt l1 l2
+ then Cons_monom c1 l1 (canonical_sum_merge t1 s2)
+ else Cons_varlist l2 (csm_aux t2)
+ | Nil_monom => s1
+ end)
+ | Cons_varlist l1 t1 =>
+ (fix csm_aux2 (s2:canonical_sum) : canonical_sum :=
+ match s2 with
+ | Cons_monom c2 l2 t2 =>
+ if varlist_eq l1 l2
+ then Cons_monom (Aplus Aone c2) l1 (canonical_sum_merge t1 t2)
+ else
+ if varlist_lt l1 l2
+ then Cons_varlist l1 (canonical_sum_merge t1 s2)
+ else Cons_monom c2 l2 (csm_aux2 t2)
+ | Cons_varlist l2 t2 =>
+ if varlist_eq l1 l2
+ then Cons_monom (Aplus Aone Aone) l1 (canonical_sum_merge t1 t2)
+ else
+ if varlist_lt l1 l2
+ then Cons_varlist l1 (canonical_sum_merge t1 s2)
+ else Cons_varlist l2 (csm_aux2 t2)
+ | Nil_monom => s1
+ end)
+ | Nil_monom => fun s2 => s2
+ end.
(* Insertion of a monom in a canonical sum *)
-Fixpoint monom_insert [c1:A; l1:varlist; s2 : canonical_sum]
- : canonical_sum :=
- Cases s2 of
- | (Cons_monom c2 l2 t2) =>
- if (varlist_eq l1 l2)
- then (Cons_monom (Aplus c1 c2) l1 t2)
- else if (varlist_lt l1 l2)
- then (Cons_monom c1 l1 s2)
- else (Cons_monom c2 l2 (monom_insert c1 l1 t2))
- | (Cons_varlist l2 t2) =>
- if (varlist_eq l1 l2)
- then (Cons_monom (Aplus c1 Aone) l1 t2)
- else if (varlist_lt l1 l2)
- then (Cons_monom c1 l1 s2)
- else (Cons_varlist l2 (monom_insert c1 l1 t2))
- | Nil_monom => (Cons_monom c1 l1 Nil_monom)
+Fixpoint monom_insert (c1:A) (l1:varlist) (s2:canonical_sum) {struct s2} :
+ canonical_sum :=
+ match s2 with
+ | Cons_monom c2 l2 t2 =>
+ if varlist_eq l1 l2
+ then Cons_monom (Aplus c1 c2) l1 t2
+ else
+ if varlist_lt l1 l2
+ then Cons_monom c1 l1 s2
+ else Cons_monom c2 l2 (monom_insert c1 l1 t2)
+ | Cons_varlist l2 t2 =>
+ if varlist_eq l1 l2
+ then Cons_monom (Aplus c1 Aone) l1 t2
+ else
+ if varlist_lt l1 l2
+ then Cons_monom c1 l1 s2
+ else Cons_varlist l2 (monom_insert c1 l1 t2)
+ | Nil_monom => Cons_monom c1 l1 Nil_monom
end.
-Fixpoint varlist_insert [l1:varlist; s2:canonical_sum]
- : canonical_sum :=
- Cases s2 of
- | (Cons_monom c2 l2 t2) =>
- if (varlist_eq l1 l2)
- then (Cons_monom (Aplus Aone c2) l1 t2)
- else if (varlist_lt l1 l2)
- then (Cons_varlist l1 s2)
- else (Cons_monom c2 l2 (varlist_insert l1 t2))
- | (Cons_varlist l2 t2) =>
- if (varlist_eq l1 l2)
- then (Cons_monom (Aplus Aone Aone) l1 t2)
- else if (varlist_lt l1 l2)
- then (Cons_varlist l1 s2)
- else (Cons_varlist l2 (varlist_insert l1 t2))
- | Nil_monom => (Cons_varlist l1 Nil_monom)
+Fixpoint varlist_insert (l1:varlist) (s2:canonical_sum) {struct s2} :
+ canonical_sum :=
+ match s2 with
+ | Cons_monom c2 l2 t2 =>
+ if varlist_eq l1 l2
+ then Cons_monom (Aplus Aone c2) l1 t2
+ else
+ if varlist_lt l1 l2
+ then Cons_varlist l1 s2
+ else Cons_monom c2 l2 (varlist_insert l1 t2)
+ | Cons_varlist l2 t2 =>
+ if varlist_eq l1 l2
+ then Cons_monom (Aplus Aone Aone) l1 t2
+ else
+ if varlist_lt l1 l2
+ then Cons_varlist l1 s2
+ else Cons_varlist l2 (varlist_insert l1 t2)
+ | Nil_monom => Cons_varlist l1 Nil_monom
end.
(* Computes c0*s *)
-Fixpoint canonical_sum_scalar [c0:A; s:canonical_sum] : canonical_sum :=
- Cases s of
- | (Cons_monom c l t) =>
- (Cons_monom (Amult c0 c) l (canonical_sum_scalar c0 t))
- | (Cons_varlist l t) =>
- (Cons_monom c0 l (canonical_sum_scalar c0 t))
- | Nil_monom => Nil_monom
- end.
+Fixpoint canonical_sum_scalar (c0:A) (s:canonical_sum) {struct s} :
+ canonical_sum :=
+ match s with
+ | Cons_monom c l t => Cons_monom (Amult c0 c) l (canonical_sum_scalar c0 t)
+ | Cons_varlist l t => Cons_monom c0 l (canonical_sum_scalar c0 t)
+ | Nil_monom => Nil_monom
+ end.
(* Computes l0*s *)
-Fixpoint canonical_sum_scalar2 [l0:varlist; s:canonical_sum]
- : canonical_sum :=
- Cases s of
- | (Cons_monom c l t) =>
- (monom_insert c (varlist_merge l0 l) (canonical_sum_scalar2 l0 t))
- | (Cons_varlist l t) =>
- (varlist_insert (varlist_merge l0 l) (canonical_sum_scalar2 l0 t))
- | Nil_monom => Nil_monom
- end.
+Fixpoint canonical_sum_scalar2 (l0:varlist) (s:canonical_sum) {struct s} :
+ canonical_sum :=
+ match s with
+ | Cons_monom c l t =>
+ monom_insert c (varlist_merge l0 l) (canonical_sum_scalar2 l0 t)
+ | Cons_varlist l t =>
+ varlist_insert (varlist_merge l0 l) (canonical_sum_scalar2 l0 t)
+ | Nil_monom => Nil_monom
+ end.
(* Computes c0*l0*s *)
-Fixpoint canonical_sum_scalar3 [c0:A;l0:varlist; s:canonical_sum]
- : canonical_sum :=
- Cases s of
- | (Cons_monom c l t) =>
- (monom_insert (Amult c0 c) (varlist_merge l0 l)
- (canonical_sum_scalar3 c0 l0 t))
- | (Cons_varlist l t) =>
- (monom_insert c0 (varlist_merge l0 l)
- (canonical_sum_scalar3 c0 l0 t))
- | Nil_monom => Nil_monom
- end.
+Fixpoint canonical_sum_scalar3 (c0:A) (l0:varlist)
+ (s:canonical_sum) {struct s} : canonical_sum :=
+ match s with
+ | Cons_monom c l t =>
+ monom_insert (Amult c0 c) (varlist_merge l0 l)
+ (canonical_sum_scalar3 c0 l0 t)
+ | Cons_varlist l t =>
+ monom_insert c0 (varlist_merge l0 l) (canonical_sum_scalar3 c0 l0 t)
+ | Nil_monom => Nil_monom
+ end.
(* returns the product of two canonical sums *)
-Fixpoint canonical_sum_prod [s1:canonical_sum]
- : canonical_sum -> canonical_sum :=
- [s2]Cases s1 of
- | (Cons_monom c1 l1 t1) =>
- (canonical_sum_merge (canonical_sum_scalar3 c1 l1 s2)
- (canonical_sum_prod t1 s2))
- | (Cons_varlist l1 t1) =>
- (canonical_sum_merge (canonical_sum_scalar2 l1 s2)
- (canonical_sum_prod t1 s2))
- | Nil_monom => Nil_monom
- end.
+Fixpoint canonical_sum_prod (s1 s2:canonical_sum) {struct s1} :
+ canonical_sum :=
+ match s1 with
+ | Cons_monom c1 l1 t1 =>
+ canonical_sum_merge (canonical_sum_scalar3 c1 l1 s2)
+ (canonical_sum_prod t1 s2)
+ | Cons_varlist l1 t1 =>
+ canonical_sum_merge (canonical_sum_scalar2 l1 s2)
+ (canonical_sum_prod t1 s2)
+ | Nil_monom => Nil_monom
+ end.
(* The type to represent concrete semi-setoid-ring polynomials *)
-Inductive Type setspolynomial :=
- SetSPvar : index -> setspolynomial
-| SetSPconst : A -> setspolynomial
-| SetSPplus : setspolynomial -> setspolynomial -> setspolynomial
-| SetSPmult : setspolynomial -> setspolynomial -> setspolynomial.
-
-Fixpoint setspolynomial_normalize [p:setspolynomial] : canonical_sum :=
- Cases p of
- | (SetSPplus l r) => (canonical_sum_merge (setspolynomial_normalize l) (setspolynomial_normalize r))
- | (SetSPmult l r) => (canonical_sum_prod (setspolynomial_normalize l) (setspolynomial_normalize r))
- | (SetSPconst c) => (Cons_monom c Nil_var Nil_monom)
- | (SetSPvar i) => (Cons_varlist (Cons_var i Nil_var) Nil_monom)
- end.
-
-Fixpoint canonical_sum_simplify [ s:canonical_sum] : canonical_sum :=
- Cases s of
- | (Cons_monom c l t) =>
- if (Aeq c Azero)
- then (canonical_sum_simplify t)
- else if (Aeq c Aone)
- then (Cons_varlist l (canonical_sum_simplify t))
- else (Cons_monom c l (canonical_sum_simplify t))
- | (Cons_varlist l t) => (Cons_varlist l (canonical_sum_simplify t))
+Inductive setspolynomial : Type :=
+ | SetSPvar : index -> setspolynomial
+ | SetSPconst : A -> setspolynomial
+ | SetSPplus : setspolynomial -> setspolynomial -> setspolynomial
+ | SetSPmult : setspolynomial -> setspolynomial -> setspolynomial.
+
+Fixpoint setspolynomial_normalize (p:setspolynomial) : canonical_sum :=
+ match p with
+ | SetSPplus l r =>
+ canonical_sum_merge (setspolynomial_normalize l)
+ (setspolynomial_normalize r)
+ | SetSPmult l r =>
+ canonical_sum_prod (setspolynomial_normalize l)
+ (setspolynomial_normalize r)
+ | SetSPconst c => Cons_monom c Nil_var Nil_monom
+ | SetSPvar i => Cons_varlist (Cons_var i Nil_var) Nil_monom
+ end.
+
+Fixpoint canonical_sum_simplify (s:canonical_sum) : canonical_sum :=
+ match s with
+ | Cons_monom c l t =>
+ if Aeq c Azero
+ then canonical_sum_simplify t
+ else
+ if Aeq c Aone
+ then Cons_varlist l (canonical_sum_simplify t)
+ else Cons_monom c l (canonical_sum_simplify t)
+ | Cons_varlist l t => Cons_varlist l (canonical_sum_simplify t)
| Nil_monom => Nil_monom
end.
-Definition setspolynomial_simplify :=
- [x:setspolynomial] (canonical_sum_simplify (setspolynomial_normalize x)).
+Definition setspolynomial_simplify (x:setspolynomial) :=
+ canonical_sum_simplify (setspolynomial_normalize x).
-Variable vm : (varmap A).
+Variable vm : varmap A.
-Definition interp_var [i:index] := (varmap_find Azero i vm).
+Definition interp_var (i:index) := varmap_find Azero i vm.
-Definition ivl_aux := Fix ivl_aux {ivl_aux[x:index; t:varlist] : A :=
- Cases t of
- | Nil_var => (interp_var x)
- | (Cons_var x' t') => (Amult (interp_var x) (ivl_aux x' t'))
- end}.
+Definition ivl_aux :=
+ (fix ivl_aux (x:index) (t:varlist) {struct t} : A :=
+ match t with
+ | Nil_var => interp_var x
+ | Cons_var x' t' => Amult (interp_var x) (ivl_aux x' t')
+ end).
-Definition interp_vl := [l:varlist]
- Cases l of
+Definition interp_vl (l:varlist) :=
+ match l with
| Nil_var => Aone
- | (Cons_var x t) => (ivl_aux x t)
+ | Cons_var x t => ivl_aux x t
end.
-Definition interp_m := [c:A][l:varlist]
- Cases l of
+Definition interp_m (c:A) (l:varlist) :=
+ match l with
| Nil_var => c
- | (Cons_var x t) =>
- (Amult c (ivl_aux x t))
+ | Cons_var x t => Amult c (ivl_aux x t)
end.
-Definition ics_aux := Fix ics_aux{ics_aux[a:A; s:canonical_sum] : A :=
- Cases s of
- | Nil_monom => a
- | (Cons_varlist l t) => (Aplus a (ics_aux (interp_vl l) t))
- | (Cons_monom c l t) => (Aplus a (ics_aux (interp_m c l) t))
- end}.
+Definition ics_aux :=
+ (fix ics_aux (a:A) (s:canonical_sum) {struct s} : A :=
+ match s with
+ | Nil_monom => a
+ | Cons_varlist l t => Aplus a (ics_aux (interp_vl l) t)
+ | Cons_monom c l t => Aplus a (ics_aux (interp_m c l) t)
+ end).
-Definition interp_setcs : canonical_sum -> A :=
- [s]Cases s of
+Definition interp_setcs (s:canonical_sum) : A :=
+ match s with
| Nil_monom => Azero
- | (Cons_varlist l t) =>
- (ics_aux (interp_vl l) t)
- | (Cons_monom c l t) =>
- (ics_aux (interp_m c l) t)
+ | Cons_varlist l t => ics_aux (interp_vl l) t
+ | Cons_monom c l t => ics_aux (interp_m c l) t
end.
-Fixpoint interp_setsp [p:setspolynomial] : A :=
- Cases p of
- | (SetSPconst c) => c
- | (SetSPvar i) => (interp_var i)
- | (SetSPplus p1 p2) => (Aplus (interp_setsp p1) (interp_setsp p2))
- | (SetSPmult p1 p2) => (Amult (interp_setsp p1) (interp_setsp p2))
- end.
+Fixpoint interp_setsp (p:setspolynomial) : A :=
+ match p with
+ | SetSPconst c => c
+ | SetSPvar i => interp_var i
+ | SetSPplus p1 p2 => Aplus (interp_setsp p1) (interp_setsp p2)
+ | SetSPmult p1 p2 => Amult (interp_setsp p1) (interp_setsp p2)
+ end.
(* End interpretation. *)
@@ -352,655 +361,636 @@ Unset Implicit Arguments.
(* Section properties. *)
-Variable T : (Semi_Setoid_Ring_Theory Aequiv Aplus Amult Aone Azero Aeq).
-
-Hint SSR_plus_sym_T := Resolve (SSR_plus_sym T).
-Hint SSR_plus_assoc_T := Resolve (SSR_plus_assoc T).
-Hint SSR_plus_assoc2_T := Resolve (SSR_plus_assoc2 S T).
-Hint SSR_mult_sym_T := Resolve (SSR_mult_sym T).
-Hint SSR_mult_assoc_T := Resolve (SSR_mult_assoc T).
-Hint SSR_mult_assoc2_T := Resolve (SSR_mult_assoc2 S T).
-Hint SSR_plus_zero_left_T := Resolve (SSR_plus_zero_left T).
-Hint SSR_plus_zero_left2_T := Resolve (SSR_plus_zero_left2 S T).
-Hint SSR_mult_one_left_T := Resolve (SSR_mult_one_left T).
-Hint SSR_mult_one_left2_T := Resolve (SSR_mult_one_left2 S T).
-Hint SSR_mult_zero_left_T := Resolve (SSR_mult_zero_left T).
-Hint SSR_mult_zero_left2_T := Resolve (SSR_mult_zero_left2 S T).
-Hint SSR_distr_left_T := Resolve (SSR_distr_left T).
-Hint SSR_distr_left2_T := Resolve (SSR_distr_left2 S T).
-Hint SSR_plus_reg_left_T := Resolve (SSR_plus_reg_left T).
-Hint SSR_plus_permute_T := Resolve (SSR_plus_permute S plus_morph T).
-Hint SSR_mult_permute_T := Resolve (SSR_mult_permute S mult_morph T).
-Hint SSR_distr_right_T := Resolve (SSR_distr_right S plus_morph T).
-Hint SSR_distr_right2_T := Resolve (SSR_distr_right2 S plus_morph T).
-Hint SSR_mult_zero_right_T := Resolve (SSR_mult_zero_right S T).
-Hint SSR_mult_zero_right2_T := Resolve (SSR_mult_zero_right2 S T).
-Hint SSR_plus_zero_right_T := Resolve (SSR_plus_zero_right S T).
-Hint SSR_plus_zero_right2_T := Resolve (SSR_plus_zero_right2 S T).
-Hint SSR_mult_one_right_T := Resolve (SSR_mult_one_right S T).
-Hint SSR_mult_one_right2_T := Resolve (SSR_mult_one_right2 S T).
-Hint SSR_plus_reg_right_T := Resolve (SSR_plus_reg_right S T).
-Hints Resolve refl_equal sym_equal trans_equal.
+Variable T : Semi_Setoid_Ring_Theory Aequiv Aplus Amult Aone Azero Aeq.
+
+Hint Resolve (SSR_plus_comm T).
+Hint Resolve (SSR_plus_assoc T).
+Hint Resolve (SSR_plus_assoc2 S T).
+Hint Resolve (SSR_mult_comm T).
+Hint Resolve (SSR_mult_assoc T).
+Hint Resolve (SSR_mult_assoc2 S T).
+Hint Resolve (SSR_plus_zero_left T).
+Hint Resolve (SSR_plus_zero_left2 S T).
+Hint Resolve (SSR_mult_one_left T).
+Hint Resolve (SSR_mult_one_left2 S T).
+Hint Resolve (SSR_mult_zero_left T).
+Hint Resolve (SSR_mult_zero_left2 S T).
+Hint Resolve (SSR_distr_left T).
+Hint Resolve (SSR_distr_left2 S T).
+Hint Resolve (SSR_plus_reg_left T).
+Hint Resolve (SSR_plus_permute S plus_morph T).
+Hint Resolve (SSR_mult_permute S mult_morph T).
+Hint Resolve (SSR_distr_right S plus_morph T).
+Hint Resolve (SSR_distr_right2 S plus_morph T).
+Hint Resolve (SSR_mult_zero_right S T).
+Hint Resolve (SSR_mult_zero_right2 S T).
+Hint Resolve (SSR_plus_zero_right S T).
+Hint Resolve (SSR_plus_zero_right2 S T).
+Hint Resolve (SSR_mult_one_right S T).
+Hint Resolve (SSR_mult_one_right2 S T).
+Hint Resolve (SSR_plus_reg_right S T).
+Hint Resolve refl_equal sym_equal trans_equal.
(*Hints Resolve refl_eqT sym_eqT trans_eqT.*)
-Hints Immediate T.
+Hint Immediate T.
-Lemma varlist_eq_prop : (x,y:varlist)
- (Is_true (varlist_eq x y))->x==y.
+Lemma varlist_eq_prop : forall x y:varlist, Is_true (varlist_eq x y) -> x = y.
Proof.
- Induction x; Induction y; Contradiction Orelse Try Reflexivity.
- Simpl; Intros.
- Generalize (andb_prop2 ? ? H1); Intros; Elim H2; Intros.
- Rewrite (index_eq_prop H3); Rewrite (H v0 H4); Reflexivity.
-Save.
-
-Remark ivl_aux_ok : (v:varlist)(i:index)
- (Aequiv (ivl_aux i v) (Amult (interp_var i) (interp_vl v))).
+ simple induction x; simple induction y; contradiction || (try reflexivity).
+ simpl in |- *; intros.
+ generalize (andb_prop2 _ _ H1); intros; elim H2; intros.
+ rewrite (index_eq_prop _ _ H3); rewrite (H v0 H4); reflexivity.
+Qed.
+
+Remark ivl_aux_ok :
+ forall (v:varlist) (i:index),
+ Aequiv (ivl_aux i v) (Amult (interp_var i) (interp_vl v)).
Proof.
- Induction v; Simpl; Intros.
- Trivial.
- Rewrite (H i); Trivial.
-Save.
-
-Lemma varlist_merge_ok : (x,y:varlist)
- (Aequiv (interp_vl (varlist_merge x y)) (Amult (interp_vl x) (interp_vl y))).
+ simple induction v; simpl in |- *; intros.
+ trivial.
+ rewrite (H i); trivial.
+Qed.
+
+Lemma varlist_merge_ok :
+ forall x y:varlist,
+ Aequiv (interp_vl (varlist_merge x y)) (Amult (interp_vl x) (interp_vl y)).
Proof.
- Induction x.
- Simpl; Trivial.
- Induction y.
- Simpl; Trivial.
- Simpl; Intros.
- Elim (index_lt i i0); Simpl; Intros.
-
- Rewrite (ivl_aux_ok v i).
- Rewrite (ivl_aux_ok v0 i0).
- Rewrite (ivl_aux_ok (varlist_merge v (Cons_var i0 v0)) i).
- Rewrite (H (Cons_var i0 v0)).
- Simpl.
- Rewrite (ivl_aux_ok v0 i0).
- EAuto.
-
- Rewrite (ivl_aux_ok v i).
- Rewrite (ivl_aux_ok v0 i0).
- Rewrite (ivl_aux_ok
- (Fix vm_aux
- {vm_aux [l2:varlist] : varlist :=
- Cases (l2) of
- Nil_var => (Cons_var i v)
- | (Cons_var v2 t2) =>
- (if (index_lt i v2)
- then (Cons_var i (varlist_merge v l2))
- else (Cons_var v2 (vm_aux t2)))
- end} v0) i0).
- Rewrite H0.
- Rewrite (ivl_aux_ok v i).
- EAuto.
-Save.
-
-Remark ics_aux_ok : (x:A)(s:canonical_sum)
- (Aequiv (ics_aux x s) (Aplus x (interp_setcs s))).
+ simple induction x.
+ simpl in |- *; trivial.
+ simple induction y.
+ simpl in |- *; trivial.
+ simpl in |- *; intros.
+ elim (index_lt i i0); simpl in |- *; intros.
+
+ rewrite (ivl_aux_ok v i).
+ rewrite (ivl_aux_ok v0 i0).
+ rewrite (ivl_aux_ok (varlist_merge v (Cons_var i0 v0)) i).
+ rewrite (H (Cons_var i0 v0)).
+ simpl in |- *.
+ rewrite (ivl_aux_ok v0 i0).
+ eauto.
+
+ rewrite (ivl_aux_ok v i).
+ rewrite (ivl_aux_ok v0 i0).
+ rewrite
+ (ivl_aux_ok
+ ((fix vm_aux (l2:varlist) : varlist :=
+ match l2 with
+ | Nil_var => Cons_var i v
+ | Cons_var v2 t2 =>
+ if index_lt i v2
+ then Cons_var i (varlist_merge v l2)
+ else Cons_var v2 (vm_aux t2)
+ end) v0) i0).
+ rewrite H0.
+ rewrite (ivl_aux_ok v i).
+ eauto.
+Qed.
+
+Remark ics_aux_ok :
+ forall (x:A) (s:canonical_sum),
+ Aequiv (ics_aux x s) (Aplus x (interp_setcs s)).
Proof.
- Induction s; Simpl; Intros;Trivial.
-Save.
+ simple induction s; simpl in |- *; intros; trivial.
+Qed.
-Remark interp_m_ok : (x:A)(l:varlist)
- (Aequiv (interp_m x l) (Amult x (interp_vl l))).
+Remark interp_m_ok :
+ forall (x:A) (l:varlist), Aequiv (interp_m x l) (Amult x (interp_vl l)).
Proof.
- NewDestruct l;Trivial.
-Save.
+ destruct l as [| i v]; trivial.
+Qed.
-Hint ivl_aux_ok_ := Resolve ivl_aux_ok.
-Hint ics_aux_ok_ := Resolve ics_aux_ok.
-Hint interp_m_ok_ := Resolve interp_m_ok.
+Hint Resolve ivl_aux_ok.
+Hint Resolve ics_aux_ok.
+Hint Resolve interp_m_ok.
(* Hints Resolve ivl_aux_ok ics_aux_ok interp_m_ok. *)
-Lemma canonical_sum_merge_ok : (x,y:canonical_sum)
- (Aequiv (interp_setcs (canonical_sum_merge x y))
- (Aplus (interp_setcs x) (interp_setcs y))).
+Lemma canonical_sum_merge_ok :
+ forall x y:canonical_sum,
+ Aequiv (interp_setcs (canonical_sum_merge x y))
+ (Aplus (interp_setcs x) (interp_setcs y)).
Proof.
-Induction x; Simpl.
-Trivial.
-
-Induction y; Simpl; Intros.
-EAuto.
-
-Generalize (varlist_eq_prop v v0).
-Elim (varlist_eq v v0).
-Intros; Rewrite (H1 I).
-Simpl.
-Rewrite (ics_aux_ok (interp_m a v0) c).
-Rewrite (ics_aux_ok (interp_m a0 v0) c0).
-Rewrite (ics_aux_ok (interp_m (Aplus a a0) v0)
- (canonical_sum_merge c c0)).
-Rewrite (H c0).
-Rewrite (interp_m_ok (Aplus a a0) v0).
-Rewrite (interp_m_ok a v0).
-Rewrite (interp_m_ok a0 v0).
-Setoid_replace (Amult (Aplus a a0) (interp_vl v0))
- with (Aplus (Amult a (interp_vl v0)) (Amult a0 (interp_vl v0))).
-Setoid_replace (Aplus
- (Aplus (Amult a (interp_vl v0))
- (Amult a0 (interp_vl v0)))
- (Aplus (interp_setcs c) (interp_setcs c0)))
- with (Aplus (Amult a (interp_vl v0))
- (Aplus (Amult a0 (interp_vl v0))
- (Aplus (interp_setcs c) (interp_setcs c0)))).
-Setoid_replace (Aplus (Aplus (Amult a (interp_vl v0)) (interp_setcs c))
- (Aplus (Amult a0 (interp_vl v0)) (interp_setcs c0)))
- with (Aplus (Amult a (interp_vl v0))
- (Aplus (interp_setcs c)
- (Aplus (Amult a0 (interp_vl v0)) (interp_setcs c0)))).
-Auto.
-
-Elim (varlist_lt v v0); Simpl.
-Intro.
-Rewrite (ics_aux_ok (interp_m a v)
- (canonical_sum_merge c (Cons_monom a0 v0 c0))).
-Rewrite (ics_aux_ok (interp_m a v) c).
-Rewrite (ics_aux_ok (interp_m a0 v0) c0).
-Rewrite (H (Cons_monom a0 v0 c0)); Simpl.
-Rewrite (ics_aux_ok (interp_m a0 v0) c0); Auto.
-
-Intro.
-Rewrite (ics_aux_ok (interp_m a0 v0)
- (Fix csm_aux
- {csm_aux [s2:canonical_sum] : canonical_sum :=
- Cases (s2) of
- Nil_monom => (Cons_monom a v c)
- | (Cons_monom c2 l2 t2) =>
- (if (varlist_eq v l2)
- then
- (Cons_monom (Aplus a c2) v
- (canonical_sum_merge c t2))
- else
- (if (varlist_lt v l2)
- then
- (Cons_monom a v
- (canonical_sum_merge c s2))
- else (Cons_monom c2 l2 (csm_aux t2))))
- | (Cons_varlist l2 t2) =>
- (if (varlist_eq v l2)
- then
- (Cons_monom (Aplus a Aone) v
- (canonical_sum_merge c t2))
- else
- (if (varlist_lt v l2)
- then
- (Cons_monom a v
- (canonical_sum_merge c s2))
- else (Cons_varlist l2 (csm_aux t2))))
- end} c0)).
-Rewrite H0.
-Rewrite (ics_aux_ok (interp_m a v) c);
-Rewrite (ics_aux_ok (interp_m a0 v0) c0); Simpl; Auto.
-
-Generalize (varlist_eq_prop v v0).
-Elim (varlist_eq v v0).
-Intros; Rewrite (H1 I).
-Simpl.
-Rewrite (ics_aux_ok (interp_m (Aplus a Aone) v0)
- (canonical_sum_merge c c0));
-Rewrite (ics_aux_ok (interp_m a v0) c);
-Rewrite (ics_aux_ok (interp_vl v0) c0).
-Rewrite (H c0).
-Rewrite (interp_m_ok (Aplus a Aone) v0).
-Rewrite (interp_m_ok a v0).
-Setoid_replace (Amult (Aplus a Aone) (interp_vl v0))
- with (Aplus (Amult a (interp_vl v0)) (Amult Aone (interp_vl v0))).
-Setoid_replace (Aplus
- (Aplus (Amult a (interp_vl v0))
- (Amult Aone (interp_vl v0)))
- (Aplus (interp_setcs c) (interp_setcs c0)))
- with (Aplus (Amult a (interp_vl v0))
- (Aplus (Amult Aone (interp_vl v0))
- (Aplus (interp_setcs c) (interp_setcs c0)))).
-Setoid_replace (Aplus (Aplus (Amult a (interp_vl v0)) (interp_setcs c))
- (Aplus (interp_vl v0) (interp_setcs c0)))
- with (Aplus (Amult a (interp_vl v0))
- (Aplus (interp_setcs c) (Aplus (interp_vl v0) (interp_setcs c0)))).
-Setoid_replace (Amult Aone (interp_vl v0)) with (interp_vl v0).
-Auto.
-
-Elim (varlist_lt v v0); Simpl.
-Intro.
-Rewrite (ics_aux_ok (interp_m a v)
- (canonical_sum_merge c (Cons_varlist v0 c0)));
-Rewrite (ics_aux_ok (interp_m a v) c);
-Rewrite (ics_aux_ok (interp_vl v0) c0).
-Rewrite (H (Cons_varlist v0 c0)); Simpl.
-Rewrite (ics_aux_ok (interp_vl v0) c0).
-Auto.
-
-Intro.
-Rewrite (ics_aux_ok (interp_vl v0)
- (Fix csm_aux
- {csm_aux [s2:canonical_sum] : canonical_sum :=
- Cases (s2) of
- Nil_monom => (Cons_monom a v c)
- | (Cons_monom c2 l2 t2) =>
- (if (varlist_eq v l2)
- then
- (Cons_monom (Aplus a c2) v
- (canonical_sum_merge c t2))
- else
- (if (varlist_lt v l2)
- then
- (Cons_monom a v
- (canonical_sum_merge c s2))
- else (Cons_monom c2 l2 (csm_aux t2))))
- | (Cons_varlist l2 t2) =>
- (if (varlist_eq v l2)
- then
- (Cons_monom (Aplus a Aone) v
- (canonical_sum_merge c t2))
- else
- (if (varlist_lt v l2)
- then
- (Cons_monom a v
- (canonical_sum_merge c s2))
- else (Cons_varlist l2 (csm_aux t2))))
- end} c0)); Rewrite H0.
-Rewrite (ics_aux_ok (interp_m a v) c);
-Rewrite (ics_aux_ok (interp_vl v0) c0); Simpl.
-Auto.
-
-Induction y; Simpl; Intros.
-Trivial.
-
-Generalize (varlist_eq_prop v v0).
-Elim (varlist_eq v v0).
-Intros; Rewrite (H1 I).
-Simpl.
-Rewrite (ics_aux_ok (interp_m (Aplus Aone a) v0)
- (canonical_sum_merge c c0));
-Rewrite (ics_aux_ok (interp_vl v0) c);
-Rewrite (ics_aux_ok (interp_m a v0) c0); Rewrite (
-H c0).
-Rewrite (interp_m_ok (Aplus Aone a) v0);
-Rewrite (interp_m_ok a v0).
-Setoid_replace (Amult (Aplus Aone a) (interp_vl v0))
- with (Aplus (Amult Aone (interp_vl v0)) (Amult a (interp_vl v0)));
-Setoid_replace (Aplus
- (Aplus (Amult Aone (interp_vl v0))
- (Amult a (interp_vl v0)))
- (Aplus (interp_setcs c) (interp_setcs c0)))
- with (Aplus (Amult Aone (interp_vl v0))
- (Aplus (Amult a (interp_vl v0))
- (Aplus (interp_setcs c) (interp_setcs c0))));
-Setoid_replace (Aplus (Aplus (interp_vl v0) (interp_setcs c))
- (Aplus (Amult a (interp_vl v0)) (interp_setcs c0)))
- with (Aplus (interp_vl v0)
- (Aplus (interp_setcs c)
- (Aplus (Amult a (interp_vl v0)) (interp_setcs c0)))).
-Auto.
-
-Elim (varlist_lt v v0); Simpl; Intros.
-Rewrite (ics_aux_ok (interp_vl v)
- (canonical_sum_merge c (Cons_monom a v0 c0)));
-Rewrite (ics_aux_ok (interp_vl v) c);
-Rewrite (ics_aux_ok (interp_m a v0) c0).
-Rewrite (H (Cons_monom a v0 c0)); Simpl.
-Rewrite (ics_aux_ok (interp_m a v0) c0); Auto.
-
-Rewrite (ics_aux_ok (interp_m a v0)
- (Fix csm_aux2
- {csm_aux2 [s2:canonical_sum] : canonical_sum :=
- Cases (s2) of
- Nil_monom => (Cons_varlist v c)
- | (Cons_monom c2 l2 t2) =>
- (if (varlist_eq v l2)
- then
- (Cons_monom (Aplus Aone c2) v
- (canonical_sum_merge c t2))
- else
- (if (varlist_lt v l2)
- then
- (Cons_varlist v
- (canonical_sum_merge c s2))
- else (Cons_monom c2 l2 (csm_aux2 t2))))
- | (Cons_varlist l2 t2) =>
- (if (varlist_eq v l2)
- then
- (Cons_monom (Aplus Aone Aone) v
- (canonical_sum_merge c t2))
- else
- (if (varlist_lt v l2)
- then
- (Cons_varlist v
- (canonical_sum_merge c s2))
- else (Cons_varlist l2 (csm_aux2 t2))))
- end} c0)); Rewrite H0.
-Rewrite (ics_aux_ok (interp_vl v) c);
-Rewrite (ics_aux_ok (interp_m a v0) c0); Simpl; Auto.
-
-Generalize (varlist_eq_prop v v0).
-Elim (varlist_eq v v0); Intros.
-Rewrite (H1 I); Simpl.
-Rewrite (ics_aux_ok (interp_m (Aplus Aone Aone) v0)
- (canonical_sum_merge c c0));
-Rewrite (ics_aux_ok (interp_vl v0) c);
-Rewrite (ics_aux_ok (interp_vl v0) c0); Rewrite (
-H c0).
-Rewrite (interp_m_ok (Aplus Aone Aone) v0).
-Setoid_replace (Amult (Aplus Aone Aone) (interp_vl v0))
- with (Aplus (Amult Aone (interp_vl v0)) (Amult Aone (interp_vl v0)));
-Setoid_replace (Aplus
- (Aplus (Amult Aone (interp_vl v0))
- (Amult Aone (interp_vl v0)))
- (Aplus (interp_setcs c) (interp_setcs c0)))
- with (Aplus (Amult Aone (interp_vl v0))
- (Aplus (Amult Aone (interp_vl v0))
- (Aplus (interp_setcs c) (interp_setcs c0))));
-Setoid_replace (Aplus (Aplus (interp_vl v0) (interp_setcs c))
- (Aplus (interp_vl v0) (interp_setcs c0)))
- with (Aplus (interp_vl v0)
- (Aplus (interp_setcs c) (Aplus (interp_vl v0) (interp_setcs c0)))).
-Setoid_replace (Amult Aone (interp_vl v0)) with (interp_vl v0); Auto.
-
-Elim (varlist_lt v v0); Simpl.
-Rewrite (ics_aux_ok (interp_vl v)
- (canonical_sum_merge c (Cons_varlist v0 c0)));
-Rewrite (ics_aux_ok (interp_vl v) c);
-Rewrite (ics_aux_ok (interp_vl v0) c0);
-Rewrite (H (Cons_varlist v0 c0)); Simpl.
-Rewrite (ics_aux_ok (interp_vl v0) c0); Auto.
-
-Rewrite (ics_aux_ok (interp_vl v0)
- (Fix csm_aux2
- {csm_aux2 [s2:canonical_sum] : canonical_sum :=
- Cases (s2) of
- Nil_monom => (Cons_varlist v c)
- | (Cons_monom c2 l2 t2) =>
- (if (varlist_eq v l2)
- then
- (Cons_monom (Aplus Aone c2) v
- (canonical_sum_merge c t2))
- else
- (if (varlist_lt v l2)
- then
- (Cons_varlist v
- (canonical_sum_merge c s2))
- else (Cons_monom c2 l2 (csm_aux2 t2))))
- | (Cons_varlist l2 t2) =>
- (if (varlist_eq v l2)
- then
- (Cons_monom (Aplus Aone Aone) v
- (canonical_sum_merge c t2))
- else
- (if (varlist_lt v l2)
- then
- (Cons_varlist v
- (canonical_sum_merge c s2))
- else (Cons_varlist l2 (csm_aux2 t2))))
- end} c0)); Rewrite H0.
-Rewrite (ics_aux_ok (interp_vl v) c);
-Rewrite (ics_aux_ok (interp_vl v0) c0); Simpl; Auto.
-Save.
-
-Lemma monom_insert_ok: (a:A)(l:varlist)(s:canonical_sum)
- (Aequiv (interp_setcs (monom_insert a l s))
- (Aplus (Amult a (interp_vl l)) (interp_setcs s))).
+simple induction x; simpl in |- *.
+trivial.
+
+simple induction y; simpl in |- *; intros.
+eauto.
+
+generalize (varlist_eq_prop v v0).
+elim (varlist_eq v v0).
+intros; rewrite (H1 I).
+simpl in |- *.
+rewrite (ics_aux_ok (interp_m a v0) c).
+rewrite (ics_aux_ok (interp_m a0 v0) c0).
+rewrite (ics_aux_ok (interp_m (Aplus a a0) v0) (canonical_sum_merge c c0)).
+rewrite (H c0).
+rewrite (interp_m_ok (Aplus a a0) v0).
+rewrite (interp_m_ok a v0).
+rewrite (interp_m_ok a0 v0).
+setoid_replace (Amult (Aplus a a0) (interp_vl v0)) with
+ (Aplus (Amult a (interp_vl v0)) (Amult a0 (interp_vl v0))).
+setoid_replace
+ (Aplus (Aplus (Amult a (interp_vl v0)) (Amult a0 (interp_vl v0)))
+ (Aplus (interp_setcs c) (interp_setcs c0))) with
+ (Aplus (Amult a (interp_vl v0))
+ (Aplus (Amult a0 (interp_vl v0))
+ (Aplus (interp_setcs c) (interp_setcs c0)))).
+setoid_replace
+ (Aplus (Aplus (Amult a (interp_vl v0)) (interp_setcs c))
+ (Aplus (Amult a0 (interp_vl v0)) (interp_setcs c0))) with
+ (Aplus (Amult a (interp_vl v0))
+ (Aplus (interp_setcs c)
+ (Aplus (Amult a0 (interp_vl v0)) (interp_setcs c0)))).
+auto.
+
+elim (varlist_lt v v0); simpl in |- *.
+intro.
+rewrite
+ (ics_aux_ok (interp_m a v) (canonical_sum_merge c (Cons_monom a0 v0 c0)))
+ .
+rewrite (ics_aux_ok (interp_m a v) c).
+rewrite (ics_aux_ok (interp_m a0 v0) c0).
+rewrite (H (Cons_monom a0 v0 c0)); simpl in |- *.
+rewrite (ics_aux_ok (interp_m a0 v0) c0); auto.
+
+intro.
+rewrite
+ (ics_aux_ok (interp_m a0 v0)
+ ((fix csm_aux (s2:canonical_sum) : canonical_sum :=
+ match s2 with
+ | Nil_monom => Cons_monom a v c
+ | Cons_monom c2 l2 t2 =>
+ if varlist_eq v l2
+ then Cons_monom (Aplus a c2) v (canonical_sum_merge c t2)
+ else
+ if varlist_lt v l2
+ then Cons_monom a v (canonical_sum_merge c s2)
+ else Cons_monom c2 l2 (csm_aux t2)
+ | Cons_varlist l2 t2 =>
+ if varlist_eq v l2
+ then Cons_monom (Aplus a Aone) v (canonical_sum_merge c t2)
+ else
+ if varlist_lt v l2
+ then Cons_monom a v (canonical_sum_merge c s2)
+ else Cons_varlist l2 (csm_aux t2)
+ end) c0)).
+rewrite H0.
+rewrite (ics_aux_ok (interp_m a v) c);
+ rewrite (ics_aux_ok (interp_m a0 v0) c0); simpl in |- *;
+ auto.
+
+generalize (varlist_eq_prop v v0).
+elim (varlist_eq v v0).
+intros; rewrite (H1 I).
+simpl in |- *.
+rewrite (ics_aux_ok (interp_m (Aplus a Aone) v0) (canonical_sum_merge c c0));
+ rewrite (ics_aux_ok (interp_m a v0) c);
+ rewrite (ics_aux_ok (interp_vl v0) c0).
+rewrite (H c0).
+rewrite (interp_m_ok (Aplus a Aone) v0).
+rewrite (interp_m_ok a v0).
+setoid_replace (Amult (Aplus a Aone) (interp_vl v0)) with
+ (Aplus (Amult a (interp_vl v0)) (Amult Aone (interp_vl v0))).
+setoid_replace
+ (Aplus (Aplus (Amult a (interp_vl v0)) (Amult Aone (interp_vl v0)))
+ (Aplus (interp_setcs c) (interp_setcs c0))) with
+ (Aplus (Amult a (interp_vl v0))
+ (Aplus (Amult Aone (interp_vl v0))
+ (Aplus (interp_setcs c) (interp_setcs c0)))).
+setoid_replace
+ (Aplus (Aplus (Amult a (interp_vl v0)) (interp_setcs c))
+ (Aplus (interp_vl v0) (interp_setcs c0))) with
+ (Aplus (Amult a (interp_vl v0))
+ (Aplus (interp_setcs c) (Aplus (interp_vl v0) (interp_setcs c0)))).
+setoid_replace (Amult Aone (interp_vl v0)) with (interp_vl v0).
+auto.
+
+elim (varlist_lt v v0); simpl in |- *.
+intro.
+rewrite
+ (ics_aux_ok (interp_m a v) (canonical_sum_merge c (Cons_varlist v0 c0)))
+ ; rewrite (ics_aux_ok (interp_m a v) c);
+ rewrite (ics_aux_ok (interp_vl v0) c0).
+rewrite (H (Cons_varlist v0 c0)); simpl in |- *.
+rewrite (ics_aux_ok (interp_vl v0) c0).
+auto.
+
+intro.
+rewrite
+ (ics_aux_ok (interp_vl v0)
+ ((fix csm_aux (s2:canonical_sum) : canonical_sum :=
+ match s2 with
+ | Nil_monom => Cons_monom a v c
+ | Cons_monom c2 l2 t2 =>
+ if varlist_eq v l2
+ then Cons_monom (Aplus a c2) v (canonical_sum_merge c t2)
+ else
+ if varlist_lt v l2
+ then Cons_monom a v (canonical_sum_merge c s2)
+ else Cons_monom c2 l2 (csm_aux t2)
+ | Cons_varlist l2 t2 =>
+ if varlist_eq v l2
+ then Cons_monom (Aplus a Aone) v (canonical_sum_merge c t2)
+ else
+ if varlist_lt v l2
+ then Cons_monom a v (canonical_sum_merge c s2)
+ else Cons_varlist l2 (csm_aux t2)
+ end) c0)); rewrite H0.
+rewrite (ics_aux_ok (interp_m a v) c); rewrite (ics_aux_ok (interp_vl v0) c0);
+ simpl in |- *.
+auto.
+
+simple induction y; simpl in |- *; intros.
+trivial.
+
+generalize (varlist_eq_prop v v0).
+elim (varlist_eq v v0).
+intros; rewrite (H1 I).
+simpl in |- *.
+rewrite (ics_aux_ok (interp_m (Aplus Aone a) v0) (canonical_sum_merge c c0));
+ rewrite (ics_aux_ok (interp_vl v0) c);
+ rewrite (ics_aux_ok (interp_m a v0) c0); rewrite (H c0).
+rewrite (interp_m_ok (Aplus Aone a) v0); rewrite (interp_m_ok a v0).
+setoid_replace (Amult (Aplus Aone a) (interp_vl v0)) with
+ (Aplus (Amult Aone (interp_vl v0)) (Amult a (interp_vl v0)));
+ setoid_replace
+ (Aplus (Aplus (Amult Aone (interp_vl v0)) (Amult a (interp_vl v0)))
+ (Aplus (interp_setcs c) (interp_setcs c0))) with
+ (Aplus (Amult Aone (interp_vl v0))
+ (Aplus (Amult a (interp_vl v0))
+ (Aplus (interp_setcs c) (interp_setcs c0))));
+ setoid_replace
+ (Aplus (Aplus (interp_vl v0) (interp_setcs c))
+ (Aplus (Amult a (interp_vl v0)) (interp_setcs c0))) with
+ (Aplus (interp_vl v0)
+ (Aplus (interp_setcs c)
+ (Aplus (Amult a (interp_vl v0)) (interp_setcs c0)))).
+auto.
+
+elim (varlist_lt v v0); simpl in |- *; intros.
+rewrite
+ (ics_aux_ok (interp_vl v) (canonical_sum_merge c (Cons_monom a v0 c0)))
+ ; rewrite (ics_aux_ok (interp_vl v) c);
+ rewrite (ics_aux_ok (interp_m a v0) c0).
+rewrite (H (Cons_monom a v0 c0)); simpl in |- *.
+rewrite (ics_aux_ok (interp_m a v0) c0); auto.
+
+rewrite
+ (ics_aux_ok (interp_m a v0)
+ ((fix csm_aux2 (s2:canonical_sum) : canonical_sum :=
+ match s2 with
+ | Nil_monom => Cons_varlist v c
+ | Cons_monom c2 l2 t2 =>
+ if varlist_eq v l2
+ then Cons_monom (Aplus Aone c2) v (canonical_sum_merge c t2)
+ else
+ if varlist_lt v l2
+ then Cons_varlist v (canonical_sum_merge c s2)
+ else Cons_monom c2 l2 (csm_aux2 t2)
+ | Cons_varlist l2 t2 =>
+ if varlist_eq v l2
+ then Cons_monom (Aplus Aone Aone) v (canonical_sum_merge c t2)
+ else
+ if varlist_lt v l2
+ then Cons_varlist v (canonical_sum_merge c s2)
+ else Cons_varlist l2 (csm_aux2 t2)
+ end) c0)); rewrite H0.
+rewrite (ics_aux_ok (interp_vl v) c); rewrite (ics_aux_ok (interp_m a v0) c0);
+ simpl in |- *; auto.
+
+generalize (varlist_eq_prop v v0).
+elim (varlist_eq v v0); intros.
+rewrite (H1 I); simpl in |- *.
+rewrite
+ (ics_aux_ok (interp_m (Aplus Aone Aone) v0) (canonical_sum_merge c c0))
+ ; rewrite (ics_aux_ok (interp_vl v0) c);
+ rewrite (ics_aux_ok (interp_vl v0) c0); rewrite (H c0).
+rewrite (interp_m_ok (Aplus Aone Aone) v0).
+setoid_replace (Amult (Aplus Aone Aone) (interp_vl v0)) with
+ (Aplus (Amult Aone (interp_vl v0)) (Amult Aone (interp_vl v0)));
+ setoid_replace
+ (Aplus (Aplus (Amult Aone (interp_vl v0)) (Amult Aone (interp_vl v0)))
+ (Aplus (interp_setcs c) (interp_setcs c0))) with
+ (Aplus (Amult Aone (interp_vl v0))
+ (Aplus (Amult Aone (interp_vl v0))
+ (Aplus (interp_setcs c) (interp_setcs c0))));
+ setoid_replace
+ (Aplus (Aplus (interp_vl v0) (interp_setcs c))
+ (Aplus (interp_vl v0) (interp_setcs c0))) with
+ (Aplus (interp_vl v0)
+ (Aplus (interp_setcs c) (Aplus (interp_vl v0) (interp_setcs c0)))).
+setoid_replace (Amult Aone (interp_vl v0)) with (interp_vl v0); auto.
+
+elim (varlist_lt v v0); simpl in |- *.
+rewrite
+ (ics_aux_ok (interp_vl v) (canonical_sum_merge c (Cons_varlist v0 c0)))
+ ; rewrite (ics_aux_ok (interp_vl v) c);
+ rewrite (ics_aux_ok (interp_vl v0) c0); rewrite (H (Cons_varlist v0 c0));
+ simpl in |- *.
+rewrite (ics_aux_ok (interp_vl v0) c0); auto.
+
+rewrite
+ (ics_aux_ok (interp_vl v0)
+ ((fix csm_aux2 (s2:canonical_sum) : canonical_sum :=
+ match s2 with
+ | Nil_monom => Cons_varlist v c
+ | Cons_monom c2 l2 t2 =>
+ if varlist_eq v l2
+ then Cons_monom (Aplus Aone c2) v (canonical_sum_merge c t2)
+ else
+ if varlist_lt v l2
+ then Cons_varlist v (canonical_sum_merge c s2)
+ else Cons_monom c2 l2 (csm_aux2 t2)
+ | Cons_varlist l2 t2 =>
+ if varlist_eq v l2
+ then Cons_monom (Aplus Aone Aone) v (canonical_sum_merge c t2)
+ else
+ if varlist_lt v l2
+ then Cons_varlist v (canonical_sum_merge c s2)
+ else Cons_varlist l2 (csm_aux2 t2)
+ end) c0)); rewrite H0.
+rewrite (ics_aux_ok (interp_vl v) c); rewrite (ics_aux_ok (interp_vl v0) c0);
+ simpl in |- *; auto.
+Qed.
+
+Lemma monom_insert_ok :
+ forall (a:A) (l:varlist) (s:canonical_sum),
+ Aequiv (interp_setcs (monom_insert a l s))
+ (Aplus (Amult a (interp_vl l)) (interp_setcs s)).
Proof.
-Induction s; Intros.
-Simpl; Rewrite (interp_m_ok a l); Trivial.
-
-Simpl; Generalize (varlist_eq_prop l v); Elim (varlist_eq l v).
-Intro Hr; Rewrite (Hr I); Simpl.
-Rewrite (ics_aux_ok (interp_m (Aplus a a0) v) c);
-Rewrite (ics_aux_ok (interp_m a0 v) c).
-Rewrite (interp_m_ok (Aplus a a0) v);
-Rewrite (interp_m_ok a0 v).
-Setoid_replace (Amult (Aplus a a0) (interp_vl v))
- with (Aplus (Amult a (interp_vl v)) (Amult a0 (interp_vl v))).
-Auto.
-
-Elim (varlist_lt l v); Simpl; Intros.
-Rewrite (ics_aux_ok (interp_m a0 v) c).
-Rewrite (interp_m_ok a0 v); Rewrite (interp_m_ok a l).
-Auto.
-
-Rewrite (ics_aux_ok (interp_m a0 v) (monom_insert a l c));
-Rewrite (ics_aux_ok (interp_m a0 v) c); Rewrite H.
-Auto.
-
-Simpl.
-Generalize (varlist_eq_prop l v); Elim (varlist_eq l v).
-Intro Hr; Rewrite (Hr I); Simpl.
-Rewrite (ics_aux_ok (interp_m (Aplus a Aone) v) c);
-Rewrite (ics_aux_ok (interp_vl v) c).
-Rewrite (interp_m_ok (Aplus a Aone) v).
-Setoid_replace (Amult (Aplus a Aone) (interp_vl v))
- with (Aplus (Amult a (interp_vl v)) (Amult Aone (interp_vl v))).
-Setoid_replace (Amult Aone (interp_vl v)) with (interp_vl v).
-Auto.
-
-Elim (varlist_lt l v); Simpl; Intros; Auto.
-Rewrite (ics_aux_ok (interp_vl v) (monom_insert a l c));
-Rewrite H.
-Rewrite (ics_aux_ok (interp_vl v) c); Auto.
-Save.
+simple induction s; intros.
+simpl in |- *; rewrite (interp_m_ok a l); trivial.
+
+simpl in |- *; generalize (varlist_eq_prop l v); elim (varlist_eq l v).
+intro Hr; rewrite (Hr I); simpl in |- *.
+rewrite (ics_aux_ok (interp_m (Aplus a a0) v) c);
+ rewrite (ics_aux_ok (interp_m a0 v) c).
+rewrite (interp_m_ok (Aplus a a0) v); rewrite (interp_m_ok a0 v).
+setoid_replace (Amult (Aplus a a0) (interp_vl v)) with
+ (Aplus (Amult a (interp_vl v)) (Amult a0 (interp_vl v))).
+auto.
+
+elim (varlist_lt l v); simpl in |- *; intros.
+rewrite (ics_aux_ok (interp_m a0 v) c).
+rewrite (interp_m_ok a0 v); rewrite (interp_m_ok a l).
+auto.
+
+rewrite (ics_aux_ok (interp_m a0 v) (monom_insert a l c));
+ rewrite (ics_aux_ok (interp_m a0 v) c); rewrite H.
+auto.
+
+simpl in |- *.
+generalize (varlist_eq_prop l v); elim (varlist_eq l v).
+intro Hr; rewrite (Hr I); simpl in |- *.
+rewrite (ics_aux_ok (interp_m (Aplus a Aone) v) c);
+ rewrite (ics_aux_ok (interp_vl v) c).
+rewrite (interp_m_ok (Aplus a Aone) v).
+setoid_replace (Amult (Aplus a Aone) (interp_vl v)) with
+ (Aplus (Amult a (interp_vl v)) (Amult Aone (interp_vl v))).
+setoid_replace (Amult Aone (interp_vl v)) with (interp_vl v).
+auto.
+
+elim (varlist_lt l v); simpl in |- *; intros; auto.
+rewrite (ics_aux_ok (interp_vl v) (monom_insert a l c)); rewrite H.
+rewrite (ics_aux_ok (interp_vl v) c); auto.
+Qed.
Lemma varlist_insert_ok :
- (l:varlist)(s:canonical_sum)
- (Aequiv (interp_setcs (varlist_insert l s))
- (Aplus (interp_vl l) (interp_setcs s))).
+ forall (l:varlist) (s:canonical_sum),
+ Aequiv (interp_setcs (varlist_insert l s))
+ (Aplus (interp_vl l) (interp_setcs s)).
Proof.
-Induction s; Simpl; Intros.
-Trivial.
-
-Generalize (varlist_eq_prop l v); Elim (varlist_eq l v).
-Intro Hr; Rewrite (Hr I); Simpl.
-Rewrite (ics_aux_ok (interp_m (Aplus Aone a) v) c);
-Rewrite (ics_aux_ok (interp_m a v) c).
-Rewrite (interp_m_ok (Aplus Aone a) v);
-Rewrite (interp_m_ok a v).
-Setoid_replace (Amult (Aplus Aone a) (interp_vl v))
- with (Aplus (Amult Aone (interp_vl v)) (Amult a (interp_vl v))).
-Setoid_replace (Amult Aone (interp_vl v)) with (interp_vl v); Auto.
-
-Elim (varlist_lt l v); Simpl; Intros; Auto.
-Rewrite (ics_aux_ok (interp_m a v) (varlist_insert l c));
-Rewrite (ics_aux_ok (interp_m a v) c).
-Rewrite (interp_m_ok a v).
-Rewrite H; Auto.
-
-Generalize (varlist_eq_prop l v); Elim (varlist_eq l v).
-Intro Hr; Rewrite (Hr I); Simpl.
-Rewrite (ics_aux_ok (interp_m (Aplus Aone Aone) v) c);
-Rewrite (ics_aux_ok (interp_vl v) c).
-Rewrite (interp_m_ok (Aplus Aone Aone) v).
-Setoid_replace (Amult (Aplus Aone Aone) (interp_vl v))
- with (Aplus (Amult Aone (interp_vl v)) (Amult Aone (interp_vl v))).
-Setoid_replace (Amult Aone (interp_vl v)) with (interp_vl v); Auto.
-
-Elim (varlist_lt l v); Simpl; Intros; Auto.
-Rewrite (ics_aux_ok (interp_vl v) (varlist_insert l c)).
-Rewrite H.
-Rewrite (ics_aux_ok (interp_vl v) c); Auto.
-Save.
-
-Lemma canonical_sum_scalar_ok : (a:A)(s:canonical_sum)
- (Aequiv (interp_setcs (canonical_sum_scalar a s)) (Amult a (interp_setcs s))).
+simple induction s; simpl in |- *; intros.
+trivial.
+
+generalize (varlist_eq_prop l v); elim (varlist_eq l v).
+intro Hr; rewrite (Hr I); simpl in |- *.
+rewrite (ics_aux_ok (interp_m (Aplus Aone a) v) c);
+ rewrite (ics_aux_ok (interp_m a v) c).
+rewrite (interp_m_ok (Aplus Aone a) v); rewrite (interp_m_ok a v).
+setoid_replace (Amult (Aplus Aone a) (interp_vl v)) with
+ (Aplus (Amult Aone (interp_vl v)) (Amult a (interp_vl v))).
+setoid_replace (Amult Aone (interp_vl v)) with (interp_vl v); auto.
+
+elim (varlist_lt l v); simpl in |- *; intros; auto.
+rewrite (ics_aux_ok (interp_m a v) (varlist_insert l c));
+ rewrite (ics_aux_ok (interp_m a v) c).
+rewrite (interp_m_ok a v).
+rewrite H; auto.
+
+generalize (varlist_eq_prop l v); elim (varlist_eq l v).
+intro Hr; rewrite (Hr I); simpl in |- *.
+rewrite (ics_aux_ok (interp_m (Aplus Aone Aone) v) c);
+ rewrite (ics_aux_ok (interp_vl v) c).
+rewrite (interp_m_ok (Aplus Aone Aone) v).
+setoid_replace (Amult (Aplus Aone Aone) (interp_vl v)) with
+ (Aplus (Amult Aone (interp_vl v)) (Amult Aone (interp_vl v))).
+setoid_replace (Amult Aone (interp_vl v)) with (interp_vl v); auto.
+
+elim (varlist_lt l v); simpl in |- *; intros; auto.
+rewrite (ics_aux_ok (interp_vl v) (varlist_insert l c)).
+rewrite H.
+rewrite (ics_aux_ok (interp_vl v) c); auto.
+Qed.
+
+Lemma canonical_sum_scalar_ok :
+ forall (a:A) (s:canonical_sum),
+ Aequiv (interp_setcs (canonical_sum_scalar a s))
+ (Amult a (interp_setcs s)).
Proof.
-Induction s; Simpl; Intros.
-Trivial.
-
-Rewrite (ics_aux_ok (interp_m (Amult a a0) v)
- (canonical_sum_scalar a c));
-Rewrite (ics_aux_ok (interp_m a0 v) c).
-Rewrite (interp_m_ok (Amult a a0) v);
-Rewrite (interp_m_ok a0 v).
-Rewrite H.
-Setoid_replace (Amult a (Aplus (Amult a0 (interp_vl v)) (interp_setcs c)))
+simple induction s; simpl in |- *; intros.
+trivial.
+
+rewrite (ics_aux_ok (interp_m (Amult a a0) v) (canonical_sum_scalar a c));
+ rewrite (ics_aux_ok (interp_m a0 v) c).
+rewrite (interp_m_ok (Amult a a0) v); rewrite (interp_m_ok a0 v).
+rewrite H.
+setoid_replace (Amult a (Aplus (Amult a0 (interp_vl v)) (interp_setcs c)))
with (Aplus (Amult a (Amult a0 (interp_vl v))) (Amult a (interp_setcs c))).
-Auto.
-
-Rewrite (ics_aux_ok (interp_m a v) (canonical_sum_scalar a c));
-Rewrite (ics_aux_ok (interp_vl v) c); Rewrite H.
-Rewrite (interp_m_ok a v).
-Auto.
-Save.
-
-Lemma canonical_sum_scalar2_ok : (l:varlist; s:canonical_sum)
- (Aequiv (interp_setcs (canonical_sum_scalar2 l s)) (Amult (interp_vl l) (interp_setcs s))).
+auto.
+
+rewrite (ics_aux_ok (interp_m a v) (canonical_sum_scalar a c));
+ rewrite (ics_aux_ok (interp_vl v) c); rewrite H.
+rewrite (interp_m_ok a v).
+auto.
+Qed.
+
+Lemma canonical_sum_scalar2_ok :
+ forall (l:varlist) (s:canonical_sum),
+ Aequiv (interp_setcs (canonical_sum_scalar2 l s))
+ (Amult (interp_vl l) (interp_setcs s)).
Proof.
-Induction s; Simpl; Intros; Auto.
-Rewrite (monom_insert_ok a (varlist_merge l v)
- (canonical_sum_scalar2 l c)).
-Rewrite (ics_aux_ok (interp_m a v) c).
-Rewrite (interp_m_ok a v).
-Rewrite H.
-Rewrite (varlist_merge_ok l v).
-Setoid_replace (Amult (interp_vl l)
- (Aplus (Amult a (interp_vl v)) (interp_setcs c)))
- with (Aplus (Amult (interp_vl l) (Amult a (interp_vl v)))
- (Amult (interp_vl l) (interp_setcs c))).
-Auto.
-
-Rewrite (varlist_insert_ok (varlist_merge l v)
- (canonical_sum_scalar2 l c)).
-Rewrite (ics_aux_ok (interp_vl v) c).
-Rewrite H.
-Rewrite (varlist_merge_ok l v).
-Auto.
-Save.
-
-Lemma canonical_sum_scalar3_ok : (c:A; l:varlist; s:canonical_sum)
- (Aequiv (interp_setcs (canonical_sum_scalar3 c l s)) (Amult c (Amult (interp_vl l) (interp_setcs s)))).
+simple induction s; simpl in |- *; intros; auto.
+rewrite (monom_insert_ok a (varlist_merge l v) (canonical_sum_scalar2 l c)).
+rewrite (ics_aux_ok (interp_m a v) c).
+rewrite (interp_m_ok a v).
+rewrite H.
+rewrite (varlist_merge_ok l v).
+setoid_replace
+ (Amult (interp_vl l) (Aplus (Amult a (interp_vl v)) (interp_setcs c))) with
+ (Aplus (Amult (interp_vl l) (Amult a (interp_vl v)))
+ (Amult (interp_vl l) (interp_setcs c))).
+auto.
+
+rewrite (varlist_insert_ok (varlist_merge l v) (canonical_sum_scalar2 l c)).
+rewrite (ics_aux_ok (interp_vl v) c).
+rewrite H.
+rewrite (varlist_merge_ok l v).
+auto.
+Qed.
+
+Lemma canonical_sum_scalar3_ok :
+ forall (c:A) (l:varlist) (s:canonical_sum),
+ Aequiv (interp_setcs (canonical_sum_scalar3 c l s))
+ (Amult c (Amult (interp_vl l) (interp_setcs s))).
Proof.
-Induction s; Simpl; Intros.
-Rewrite (SSR_mult_zero_right S T (interp_vl l)).
-Auto.
-
-Rewrite (monom_insert_ok (Amult c a) (varlist_merge l v)
- (canonical_sum_scalar3 c l c0)).
-Rewrite (ics_aux_ok (interp_m a v) c0).
-Rewrite (interp_m_ok a v).
-Rewrite H.
-Rewrite (varlist_merge_ok l v).
-Setoid_replace (Amult (interp_vl l)
- (Aplus (Amult a (interp_vl v)) (interp_setcs c0)))
- with (Aplus (Amult (interp_vl l) (Amult a (interp_vl v)))
- (Amult (interp_vl l) (interp_setcs c0))).
-Setoid_replace (Amult c
- (Aplus (Amult (interp_vl l) (Amult a (interp_vl v)))
- (Amult (interp_vl l) (interp_setcs c0))))
- with (Aplus (Amult c (Amult (interp_vl l) (Amult a (interp_vl v))))
- (Amult c (Amult (interp_vl l) (interp_setcs c0)))).
-Setoid_replace (Amult (Amult c a) (Amult (interp_vl l) (interp_vl v)))
- with (Amult c (Amult a (Amult (interp_vl l) (interp_vl v)))).
-Auto.
-
-Rewrite (monom_insert_ok c (varlist_merge l v)
- (canonical_sum_scalar3 c l c0)).
-Rewrite (ics_aux_ok (interp_vl v) c0).
-Rewrite H.
-Rewrite (varlist_merge_ok l v).
-Setoid_replace (Aplus (Amult c (Amult (interp_vl l) (interp_vl v)))
- (Amult c (Amult (interp_vl l) (interp_setcs c0))))
- with (Amult c
- (Aplus (Amult (interp_vl l) (interp_vl v))
- (Amult (interp_vl l) (interp_setcs c0)))).
-Auto.
-Save.
-
-Lemma canonical_sum_prod_ok : (x,y:canonical_sum)
- (Aequiv (interp_setcs (canonical_sum_prod x y)) (Amult (interp_setcs x) (interp_setcs y))).
+simple induction s; simpl in |- *; intros.
+rewrite (SSR_mult_zero_right S T (interp_vl l)).
+auto.
+
+rewrite
+ (monom_insert_ok (Amult c a) (varlist_merge l v)
+ (canonical_sum_scalar3 c l c0)).
+rewrite (ics_aux_ok (interp_m a v) c0).
+rewrite (interp_m_ok a v).
+rewrite H.
+rewrite (varlist_merge_ok l v).
+setoid_replace
+ (Amult (interp_vl l) (Aplus (Amult a (interp_vl v)) (interp_setcs c0))) with
+ (Aplus (Amult (interp_vl l) (Amult a (interp_vl v)))
+ (Amult (interp_vl l) (interp_setcs c0))).
+setoid_replace
+ (Amult c
+ (Aplus (Amult (interp_vl l) (Amult a (interp_vl v)))
+ (Amult (interp_vl l) (interp_setcs c0)))) with
+ (Aplus (Amult c (Amult (interp_vl l) (Amult a (interp_vl v))))
+ (Amult c (Amult (interp_vl l) (interp_setcs c0)))).
+setoid_replace (Amult (Amult c a) (Amult (interp_vl l) (interp_vl v))) with
+ (Amult c (Amult a (Amult (interp_vl l) (interp_vl v)))).
+auto.
+
+rewrite
+ (monom_insert_ok c (varlist_merge l v) (canonical_sum_scalar3 c l c0))
+ .
+rewrite (ics_aux_ok (interp_vl v) c0).
+rewrite H.
+rewrite (varlist_merge_ok l v).
+setoid_replace
+ (Aplus (Amult c (Amult (interp_vl l) (interp_vl v)))
+ (Amult c (Amult (interp_vl l) (interp_setcs c0)))) with
+ (Amult c
+ (Aplus (Amult (interp_vl l) (interp_vl v))
+ (Amult (interp_vl l) (interp_setcs c0)))).
+auto.
+Qed.
+
+Lemma canonical_sum_prod_ok :
+ forall x y:canonical_sum,
+ Aequiv (interp_setcs (canonical_sum_prod x y))
+ (Amult (interp_setcs x) (interp_setcs y)).
Proof.
-Induction x; Simpl; Intros.
-Trivial.
-
-Rewrite (canonical_sum_merge_ok (canonical_sum_scalar3 a v y)
- (canonical_sum_prod c y)).
-Rewrite (canonical_sum_scalar3_ok a v y).
-Rewrite (ics_aux_ok (interp_m a v) c).
-Rewrite (interp_m_ok a v).
-Rewrite (H y).
-Setoid_replace (Amult a (Amult (interp_vl v) (interp_setcs y)))
- with (Amult (Amult a (interp_vl v)) (interp_setcs y)).
-Setoid_replace (Amult (Aplus (Amult a (interp_vl v)) (interp_setcs c))
- (interp_setcs y))
- with (Aplus (Amult (Amult a (interp_vl v)) (interp_setcs y))
- (Amult (interp_setcs c) (interp_setcs y))).
-Trivial.
-
-Rewrite (canonical_sum_merge_ok (canonical_sum_scalar2 v y)
- (canonical_sum_prod c y)).
-Rewrite (canonical_sum_scalar2_ok v y).
-Rewrite (ics_aux_ok (interp_vl v) c).
-Rewrite (H y).
-Trivial.
-Save.
-
-Theorem setspolynomial_normalize_ok : (p:setspolynomial)
- (Aequiv (interp_setcs (setspolynomial_normalize p)) (interp_setsp p)).
+simple induction x; simpl in |- *; intros.
+trivial.
+
+rewrite
+ (canonical_sum_merge_ok (canonical_sum_scalar3 a v y)
+ (canonical_sum_prod c y)).
+rewrite (canonical_sum_scalar3_ok a v y).
+rewrite (ics_aux_ok (interp_m a v) c).
+rewrite (interp_m_ok a v).
+rewrite (H y).
+setoid_replace (Amult a (Amult (interp_vl v) (interp_setcs y))) with
+ (Amult (Amult a (interp_vl v)) (interp_setcs y)).
+setoid_replace
+ (Amult (Aplus (Amult a (interp_vl v)) (interp_setcs c)) (interp_setcs y))
+ with
+ (Aplus (Amult (Amult a (interp_vl v)) (interp_setcs y))
+ (Amult (interp_setcs c) (interp_setcs y))).
+trivial.
+
+rewrite
+ (canonical_sum_merge_ok (canonical_sum_scalar2 v y) (canonical_sum_prod c y))
+ .
+rewrite (canonical_sum_scalar2_ok v y).
+rewrite (ics_aux_ok (interp_vl v) c).
+rewrite (H y).
+trivial.
+Qed.
+
+Theorem setspolynomial_normalize_ok :
+ forall p:setspolynomial,
+ Aequiv (interp_setcs (setspolynomial_normalize p)) (interp_setsp p).
Proof.
-Induction p; Simpl; Intros; Trivial.
-Rewrite (canonical_sum_merge_ok (setspolynomial_normalize s)
- (setspolynomial_normalize s0)).
-Rewrite H; Rewrite H0; Trivial.
-
-Rewrite (canonical_sum_prod_ok (setspolynomial_normalize s)
- (setspolynomial_normalize s0)).
-Rewrite H; Rewrite H0; Trivial.
-Save.
-
-Lemma canonical_sum_simplify_ok : (s:canonical_sum)
- (Aequiv (interp_setcs (canonical_sum_simplify s)) (interp_setcs s)).
+simple induction p; simpl in |- *; intros; trivial.
+rewrite
+ (canonical_sum_merge_ok (setspolynomial_normalize s)
+ (setspolynomial_normalize s0)).
+rewrite H; rewrite H0; trivial.
+
+rewrite
+ (canonical_sum_prod_ok (setspolynomial_normalize s)
+ (setspolynomial_normalize s0)).
+rewrite H; rewrite H0; trivial.
+Qed.
+
+Lemma canonical_sum_simplify_ok :
+ forall s:canonical_sum,
+ Aequiv (interp_setcs (canonical_sum_simplify s)) (interp_setcs s).
Proof.
-Induction s; Simpl; Intros.
-Trivial.
-
-Generalize (SSR_eq_prop T 9!a 10!Azero).
-Elim (Aeq a Azero).
-Simpl.
-Intros.
-Rewrite (ics_aux_ok (interp_m a v) c).
-Rewrite (interp_m_ok a v).
-Rewrite (H0 I).
-Setoid_replace (Amult Azero (interp_vl v)) with Azero.
-Rewrite H.
-Trivial.
-
-Intros; Simpl.
-Generalize (SSR_eq_prop T 9!a 10!Aone).
-Elim (Aeq a Aone).
-Intros.
-Rewrite (ics_aux_ok (interp_m a v) c).
-Rewrite (interp_m_ok a v).
-Rewrite (H1 I).
-Simpl.
-Rewrite (ics_aux_ok (interp_vl v) (canonical_sum_simplify c)).
-Rewrite H.
-Auto.
-
-Simpl.
-Intros.
-Rewrite (ics_aux_ok (interp_m a v) (canonical_sum_simplify c)).
-Rewrite (ics_aux_ok (interp_m a v) c).
-Rewrite H; Trivial.
-
-Rewrite (ics_aux_ok (interp_vl v) (canonical_sum_simplify c)).
-Rewrite H.
-Auto.
-Save.
-
-Theorem setspolynomial_simplify_ok : (p:setspolynomial)
- (Aequiv (interp_setcs (setspolynomial_simplify p)) (interp_setsp p)).
+simple induction s; simpl in |- *; intros.
+trivial.
+
+generalize (SSR_eq_prop T a Azero).
+elim (Aeq a Azero).
+simpl in |- *.
+intros.
+rewrite (ics_aux_ok (interp_m a v) c).
+rewrite (interp_m_ok a v).
+rewrite (H0 I).
+setoid_replace (Amult Azero (interp_vl v)) with Azero.
+rewrite H.
+trivial.
+
+intros; simpl in |- *.
+generalize (SSR_eq_prop T a Aone).
+elim (Aeq a Aone).
+intros.
+rewrite (ics_aux_ok (interp_m a v) c).
+rewrite (interp_m_ok a v).
+rewrite (H1 I).
+simpl in |- *.
+rewrite (ics_aux_ok (interp_vl v) (canonical_sum_simplify c)).
+rewrite H.
+auto.
+
+simpl in |- *.
+intros.
+rewrite (ics_aux_ok (interp_m a v) (canonical_sum_simplify c)).
+rewrite (ics_aux_ok (interp_m a v) c).
+rewrite H; trivial.
+
+rewrite (ics_aux_ok (interp_vl v) (canonical_sum_simplify c)).
+rewrite H.
+auto.
+Qed.
+
+Theorem setspolynomial_simplify_ok :
+ forall p:setspolynomial,
+ Aequiv (interp_setcs (setspolynomial_simplify p)) (interp_setsp p).
Proof.
-Intro.
-Unfold setspolynomial_simplify.
-Rewrite (canonical_sum_simplify_ok (setspolynomial_normalize p)).
-Exact (setspolynomial_normalize_ok p).
-Save.
+intro.
+unfold setspolynomial_simplify in |- *.
+rewrite (canonical_sum_simplify_ok (setspolynomial_normalize p)).
+exact (setspolynomial_normalize_ok p).
+Qed.
End semi_setoid_rings.
-Implicits Cons_varlist.
-Implicits Cons_monom.
-Implicits SetSPconst.
-Implicits SetSPplus.
-Implicits SetSPmult.
+Implicit Arguments Cons_varlist.
+Implicit Arguments Cons_monom.
+Implicit Arguments SetSPconst.
+Implicit Arguments SetSPplus.
+Implicit Arguments SetSPmult.
@@ -1008,134 +998,140 @@ Section setoid_rings.
Set Implicit Arguments.
-Variable vm : (varmap A).
-Variable T : (Setoid_Ring_Theory Aequiv Aplus Amult Aone Azero Aopp Aeq).
-
-Hint STh_plus_sym_T := Resolve (STh_plus_sym T).
-Hint STh_plus_assoc_T := Resolve (STh_plus_assoc T).
-Hint STh_plus_assoc2_T := Resolve (STh_plus_assoc2 S T).
-Hint STh_mult_sym_T := Resolve (STh_mult_sym T).
-Hint STh_mult_assoc_T := Resolve (STh_mult_assoc T).
-Hint STh_mult_assoc2_T := Resolve (STh_mult_assoc2 S T).
-Hint STh_plus_zero_left_T := Resolve (STh_plus_zero_left T).
-Hint STh_plus_zero_left2_T := Resolve (STh_plus_zero_left2 S T).
-Hint STh_mult_one_left_T := Resolve (STh_mult_one_left T).
-Hint STh_mult_one_left2_T := Resolve (STh_mult_one_left2 S T).
-Hint STh_mult_zero_left_T := Resolve (STh_mult_zero_left S plus_morph mult_morph T).
-Hint STh_mult_zero_left2_T := Resolve (STh_mult_zero_left2 S plus_morph mult_morph T).
-Hint STh_distr_left_T := Resolve (STh_distr_left T).
-Hint STh_distr_left2_T := Resolve (STh_distr_left2 S T).
-Hint STh_plus_reg_left_T := Resolve (STh_plus_reg_left S plus_morph T).
-Hint STh_plus_permute_T := Resolve (STh_plus_permute S plus_morph T).
-Hint STh_mult_permute_T := Resolve (STh_mult_permute S mult_morph T).
-Hint STh_distr_right_T := Resolve (STh_distr_right S plus_morph T).
-Hint STh_distr_right2_T := Resolve (STh_distr_right2 S plus_morph T).
-Hint STh_mult_zero_right_T := Resolve (STh_mult_zero_right S plus_morph mult_morph T).
-Hint STh_mult_zero_right2_T := Resolve (STh_mult_zero_right2 S plus_morph mult_morph T).
-Hint STh_plus_zero_right_T := Resolve (STh_plus_zero_right S T).
-Hint STh_plus_zero_right2_T := Resolve (STh_plus_zero_right2 S T).
-Hint STh_mult_one_right_T := Resolve (STh_mult_one_right S T).
-Hint STh_mult_one_right2_T := Resolve (STh_mult_one_right2 S T).
-Hint STh_plus_reg_right_T := Resolve (STh_plus_reg_right S plus_morph T).
-Hints Resolve refl_equal sym_equal trans_equal.
+Variable vm : varmap A.
+Variable T : Setoid_Ring_Theory Aequiv Aplus Amult Aone Azero Aopp Aeq.
+
+Hint Resolve (STh_plus_comm T).
+Hint Resolve (STh_plus_assoc T).
+Hint Resolve (STh_plus_assoc2 S T).
+Hint Resolve (STh_mult_sym T).
+Hint Resolve (STh_mult_assoc T).
+Hint Resolve (STh_mult_assoc2 S T).
+Hint Resolve (STh_plus_zero_left T).
+Hint Resolve (STh_plus_zero_left2 S T).
+Hint Resolve (STh_mult_one_left T).
+Hint Resolve (STh_mult_one_left2 S T).
+Hint Resolve (STh_mult_zero_left S plus_morph mult_morph T).
+Hint Resolve (STh_mult_zero_left2 S plus_morph mult_morph T).
+Hint Resolve (STh_distr_left T).
+Hint Resolve (STh_distr_left2 S T).
+Hint Resolve (STh_plus_reg_left S plus_morph T).
+Hint Resolve (STh_plus_permute S plus_morph T).
+Hint Resolve (STh_mult_permute S mult_morph T).
+Hint Resolve (STh_distr_right S plus_morph T).
+Hint Resolve (STh_distr_right2 S plus_morph T).
+Hint Resolve (STh_mult_zero_right S plus_morph mult_morph T).
+Hint Resolve (STh_mult_zero_right2 S plus_morph mult_morph T).
+Hint Resolve (STh_plus_zero_right S T).
+Hint Resolve (STh_plus_zero_right2 S T).
+Hint Resolve (STh_mult_one_right S T).
+Hint Resolve (STh_mult_one_right2 S T).
+Hint Resolve (STh_plus_reg_right S plus_morph T).
+Hint Resolve refl_equal sym_equal trans_equal.
(*Hints Resolve refl_eqT sym_eqT trans_eqT.*)
-Hints Immediate T.
+Hint Immediate T.
(*** Definitions *)
-Inductive Type setpolynomial :=
- SetPvar : index -> setpolynomial
-| SetPconst : A -> setpolynomial
-| SetPplus : setpolynomial -> setpolynomial -> setpolynomial
-| SetPmult : setpolynomial -> setpolynomial -> setpolynomial
-| SetPopp : setpolynomial -> setpolynomial.
-
-Fixpoint setpolynomial_normalize [x:setpolynomial] : canonical_sum :=
- Cases x of
- | (SetPplus l r) => (canonical_sum_merge
- (setpolynomial_normalize l)
- (setpolynomial_normalize r))
- | (SetPmult l r) => (canonical_sum_prod
- (setpolynomial_normalize l)
- (setpolynomial_normalize r))
- | (SetPconst c) => (Cons_monom c Nil_var Nil_monom)
- | (SetPvar i) => (Cons_varlist (Cons_var i Nil_var) Nil_monom)
- | (SetPopp p) => (canonical_sum_scalar3
- (Aopp Aone) Nil_var
- (setpolynomial_normalize p))
- end.
-
-Definition setpolynomial_simplify :=
- [x:setpolynomial](canonical_sum_simplify (setpolynomial_normalize x)).
-
-Fixpoint setspolynomial_of [x:setpolynomial] : setspolynomial :=
- Cases x of
- | (SetPplus l r) => (SetSPplus (setspolynomial_of l) (setspolynomial_of r))
- | (SetPmult l r) => (SetSPmult (setspolynomial_of l) (setspolynomial_of r))
- | (SetPconst c) => (SetSPconst c)
- | (SetPvar i) => (SetSPvar i)
- | (SetPopp p) => (SetSPmult (SetSPconst (Aopp Aone)) (setspolynomial_of p))
- end.
+Inductive setpolynomial : Type :=
+ | SetPvar : index -> setpolynomial
+ | SetPconst : A -> setpolynomial
+ | SetPplus : setpolynomial -> setpolynomial -> setpolynomial
+ | SetPmult : setpolynomial -> setpolynomial -> setpolynomial
+ | SetPopp : setpolynomial -> setpolynomial.
+
+Fixpoint setpolynomial_normalize (x:setpolynomial) : canonical_sum :=
+ match x with
+ | SetPplus l r =>
+ canonical_sum_merge (setpolynomial_normalize l)
+ (setpolynomial_normalize r)
+ | SetPmult l r =>
+ canonical_sum_prod (setpolynomial_normalize l)
+ (setpolynomial_normalize r)
+ | SetPconst c => Cons_monom c Nil_var Nil_monom
+ | SetPvar i => Cons_varlist (Cons_var i Nil_var) Nil_monom
+ | SetPopp p =>
+ canonical_sum_scalar3 (Aopp Aone) Nil_var (setpolynomial_normalize p)
+ end.
+
+Definition setpolynomial_simplify (x:setpolynomial) :=
+ canonical_sum_simplify (setpolynomial_normalize x).
+
+Fixpoint setspolynomial_of (x:setpolynomial) : setspolynomial :=
+ match x with
+ | SetPplus l r => SetSPplus (setspolynomial_of l) (setspolynomial_of r)
+ | SetPmult l r => SetSPmult (setspolynomial_of l) (setspolynomial_of r)
+ | SetPconst c => SetSPconst c
+ | SetPvar i => SetSPvar i
+ | SetPopp p => SetSPmult (SetSPconst (Aopp Aone)) (setspolynomial_of p)
+ end.
(*** Interpretation *)
-Fixpoint interp_setp [p:setpolynomial] : A :=
- Cases p of
- | (SetPconst c) => c
- | (SetPvar i) => (varmap_find Azero i vm)
- | (SetPplus p1 p2) => (Aplus (interp_setp p1) (interp_setp p2))
- | (SetPmult p1 p2) => (Amult (interp_setp p1) (interp_setp p2))
- | (SetPopp p1) => (Aopp (interp_setp p1))
- end.
+Fixpoint interp_setp (p:setpolynomial) : A :=
+ match p with
+ | SetPconst c => c
+ | SetPvar i => varmap_find Azero i vm
+ | SetPplus p1 p2 => Aplus (interp_setp p1) (interp_setp p2)
+ | SetPmult p1 p2 => Amult (interp_setp p1) (interp_setp p2)
+ | SetPopp p1 => Aopp (interp_setp p1)
+ end.
(*** Properties *)
Unset Implicit Arguments.
-Lemma setspolynomial_of_ok : (p:setpolynomial)
- (Aequiv (interp_setp p) (interp_setsp vm (setspolynomial_of p))).
-Induction p; Trivial; Simpl; Intros.
-Rewrite H; Rewrite H0; Trivial.
-Rewrite H; Rewrite H0; Trivial.
-Rewrite H.
-Rewrite (STh_opp_mult_left2 S plus_morph mult_morph T Aone
- (interp_setsp vm (setspolynomial_of s))).
-Rewrite (STh_mult_one_left T
- (interp_setsp vm (setspolynomial_of s))).
-Trivial.
-Save.
-
-Theorem setpolynomial_normalize_ok : (p:setpolynomial)
- (setpolynomial_normalize p)
- ==(setspolynomial_normalize (setspolynomial_of p)).
-Induction p; Trivial; Simpl; Intros.
-Rewrite H; Rewrite H0; Reflexivity.
-Rewrite H; Rewrite H0; Reflexivity.
-Rewrite H; Simpl.
-Elim (canonical_sum_scalar3 (Aopp Aone) Nil_var
- (setspolynomial_normalize (setspolynomial_of s)));
- [ Reflexivity
- | Simpl; Intros; Rewrite H0; Reflexivity
- | Simpl; Intros; Rewrite H0; Reflexivity ].
-Save.
-
-Theorem setpolynomial_simplify_ok : (p:setpolynomial)
- (Aequiv (interp_setcs vm (setpolynomial_simplify p)) (interp_setp p)).
-Intro.
-Unfold setpolynomial_simplify.
-Rewrite (setspolynomial_of_ok p).
-Rewrite setpolynomial_normalize_ok.
-Rewrite (canonical_sum_simplify_ok vm
- (Semi_Setoid_Ring_Theory_of A Aequiv S Aplus Amult Aone Azero Aopp
- Aeq plus_morph mult_morph T)
- (setspolynomial_normalize (setspolynomial_of p))).
-Rewrite (setspolynomial_normalize_ok vm
- (Semi_Setoid_Ring_Theory_of A Aequiv S Aplus Amult Aone Azero Aopp
- Aeq plus_morph mult_morph T) (setspolynomial_of p)).
-Trivial.
-Save.
+Lemma setspolynomial_of_ok :
+ forall p:setpolynomial,
+ Aequiv (interp_setp p) (interp_setsp vm (setspolynomial_of p)).
+simple induction p; trivial; simpl in |- *; intros.
+rewrite H; rewrite H0; trivial.
+rewrite H; rewrite H0; trivial.
+rewrite H.
+rewrite
+ (STh_opp_mult_left2 S plus_morph mult_morph T Aone
+ (interp_setsp vm (setspolynomial_of s))).
+rewrite (STh_mult_one_left T (interp_setsp vm (setspolynomial_of s))).
+trivial.
+Qed.
+
+Theorem setpolynomial_normalize_ok :
+ forall p:setpolynomial,
+ setpolynomial_normalize p = setspolynomial_normalize (setspolynomial_of p).
+simple induction p; trivial; simpl in |- *; intros.
+rewrite H; rewrite H0; reflexivity.
+rewrite H; rewrite H0; reflexivity.
+rewrite H; simpl in |- *.
+elim
+ (canonical_sum_scalar3 (Aopp Aone) Nil_var
+ (setspolynomial_normalize (setspolynomial_of s)));
+ [ reflexivity
+ | simpl in |- *; intros; rewrite H0; reflexivity
+ | simpl in |- *; intros; rewrite H0; reflexivity ].
+Qed.
+
+Theorem setpolynomial_simplify_ok :
+ forall p:setpolynomial,
+ Aequiv (interp_setcs vm (setpolynomial_simplify p)) (interp_setp p).
+intro.
+unfold setpolynomial_simplify in |- *.
+rewrite (setspolynomial_of_ok p).
+rewrite setpolynomial_normalize_ok.
+rewrite
+ (canonical_sum_simplify_ok vm
+ (Semi_Setoid_Ring_Theory_of A Aequiv S Aplus Amult Aone Azero Aopp Aeq
+ plus_morph mult_morph T)
+ (setspolynomial_normalize (setspolynomial_of p)))
+ .
+rewrite
+ (setspolynomial_normalize_ok vm
+ (Semi_Setoid_Ring_Theory_of A Aequiv S Aplus Amult Aone Azero Aopp Aeq
+ plus_morph mult_morph T) (setspolynomial_of p))
+ .
+trivial.
+Qed.
End setoid_rings.
-End setoid.
+End setoid. \ No newline at end of file