diff options
Diffstat (limited to 'contrib/ring/Setoid_ring_normalize.v')
| -rw-r--r-- | contrib/ring/Setoid_ring_normalize.v | 1930 |
1 files changed, 963 insertions, 967 deletions
diff --git a/contrib/ring/Setoid_ring_normalize.v b/contrib/ring/Setoid_ring_normalize.v index bbebde4223..c619f32654 100644 --- a/contrib/ring/Setoid_ring_normalize.v +++ b/contrib/ring/Setoid_ring_normalize.v @@ -8,17 +8,18 @@ (* $Id$ *) -Require Setoid_ring_theory. -Require Quote. +Require Import Setoid_ring_theory. +Require Import Quote. Set Implicit Arguments. -Lemma index_eq_prop: (n,m:index)(Is_true (index_eq n m)) -> n=m. +Lemma index_eq_prop : forall n m:index, Is_true (index_eq n m) -> n = m. Proof. - Induction n; Induction m; Simpl; Try (Reflexivity Orelse Contradiction). - Intros; Rewrite (H i0); Trivial. - Intros; Rewrite (H i0); Trivial. -Save. + simple induction n; simple induction m; simpl in |- *; + try reflexivity || contradiction. + intros; rewrite (H i0); trivial. + intros; rewrite (H i0); trivial. +Qed. Section setoid. @@ -31,35 +32,38 @@ Variable Azero : A. Variable Aopp : A -> A. Variable Aeq : A -> A -> bool. -Variable S : (Setoid_Theory A Aequiv). +Variable S : Setoid_Theory A Aequiv. Add Setoid A Aequiv S. -Variable plus_morph : (a,a0,a1,a2:A) - (Aequiv a a0)->(Aequiv a1 a2)->(Aequiv (Aplus a a1) (Aplus a0 a2)). -Variable mult_morph : (a,a0,a1,a2:A) - (Aequiv a a0)->(Aequiv a1 a2)->(Aequiv (Amult a a1) (Amult a0 a2)). -Variable opp_morph : (a,a0:A) - (Aequiv a a0)->(Aequiv (Aopp a) (Aopp a0)). +Variable + plus_morph : + forall a a0 a1 a2:A, + Aequiv a a0 -> Aequiv a1 a2 -> Aequiv (Aplus a a1) (Aplus a0 a2). +Variable + mult_morph : + forall a a0 a1 a2:A, + Aequiv a a0 -> Aequiv a1 a2 -> Aequiv (Amult a a1) (Amult a0 a2). +Variable opp_morph : forall a a0:A, Aequiv a a0 -> Aequiv (Aopp a) (Aopp a0). Add Morphism Aplus : Aplus_ext. -Exact plus_morph. -Save. +exact plus_morph. +Qed. Add Morphism Amult : Amult_ext. -Exact mult_morph. -Save. +exact mult_morph. +Qed. Add Morphism Aopp : Aopp_ext. -Exact opp_morph. -Save. +exact opp_morph. +Qed. -Local equiv_refl := (Seq_refl A Aequiv S). -Local equiv_sym := (Seq_sym A Aequiv S). -Local equiv_trans := (Seq_trans A Aequiv S). +Let equiv_refl := Seq_refl A Aequiv S. +Let equiv_sym := Seq_sym A Aequiv S. +Let equiv_trans := Seq_trans A Aequiv S. -Hints Resolve equiv_refl equiv_trans. -Hints Immediate equiv_sym. +Hint Resolve equiv_refl equiv_trans. +Hint Immediate equiv_sym. Section semi_setoid_rings. @@ -81,16 +85,14 @@ Section semi_setoid_rings. (* varlist is isomorphic to (list var), but we built a special inductive for efficiency *) -Inductive varlist : Type := -| Nil_var : varlist -| Cons_var : index -> varlist -> varlist -. +Inductive varlist : Type := + | Nil_var : varlist + | Cons_var : index -> varlist -> varlist. -Inductive canonical_sum : Type := -| Nil_monom : canonical_sum -| Cons_monom : A -> varlist -> canonical_sum -> canonical_sum -| Cons_varlist : varlist -> canonical_sum -> canonical_sum -. +Inductive canonical_sum : Type := + | Nil_monom : canonical_sum + | Cons_monom : A -> varlist -> canonical_sum -> canonical_sum + | Cons_varlist : varlist -> canonical_sum -> canonical_sum. (* Order on monoms *) @@ -107,244 +109,251 @@ Inductive canonical_sum : Type := 4*x*y < 59*x*y*y*z *) -Fixpoint varlist_eq [x,y:varlist] : bool := - Cases x y of - | Nil_var Nil_var => true - | (Cons_var i xrest) (Cons_var j yrest) => - (andb (index_eq i j) (varlist_eq xrest yrest)) - | _ _ => false +Fixpoint varlist_eq (x y:varlist) {struct y} : bool := + match x, y with + | Nil_var, Nil_var => true + | Cons_var i xrest, Cons_var j yrest => + andb (index_eq i j) (varlist_eq xrest yrest) + | _, _ => false end. -Fixpoint varlist_lt [x,y:varlist] : bool := - Cases x y of - | Nil_var (Cons_var _ _) => true - | (Cons_var i xrest) (Cons_var j yrest) => - if (index_lt i j) then true - else (andb (index_eq i j) (varlist_lt xrest yrest)) - | _ _ => false +Fixpoint varlist_lt (x y:varlist) {struct y} : bool := + match x, y with + | Nil_var, Cons_var _ _ => true + | Cons_var i xrest, Cons_var j yrest => + if index_lt i j + then true + else andb (index_eq i j) (varlist_lt xrest yrest) + | _, _ => false end. (* merges two variables lists *) -Fixpoint varlist_merge [l1:varlist] : varlist -> varlist := - Cases l1 of - | (Cons_var v1 t1) => - Fix vm_aux {vm_aux [l2:varlist] : varlist := - Cases l2 of - | (Cons_var v2 t2) => - if (index_lt v1 v2) - then (Cons_var v1 (varlist_merge t1 l2)) - else (Cons_var v2 (vm_aux t2)) - | Nil_var => l1 - end} - | Nil_var => [l2]l2 +Fixpoint varlist_merge (l1:varlist) : varlist -> varlist := + match l1 with + | Cons_var v1 t1 => + (fix vm_aux (l2:varlist) : varlist := + match l2 with + | Cons_var v2 t2 => + if index_lt v1 v2 + then Cons_var v1 (varlist_merge t1 l2) + else Cons_var v2 (vm_aux t2) + | Nil_var => l1 + end) + | Nil_var => fun l2 => l2 end. (* returns the sum of two canonical sums *) -Fixpoint canonical_sum_merge [s1:canonical_sum] - : canonical_sum -> canonical_sum := -Cases s1 of -| (Cons_monom c1 l1 t1) => - Fix csm_aux{csm_aux[s2:canonical_sum] : canonical_sum := - Cases s2 of - | (Cons_monom c2 l2 t2) => - if (varlist_eq l1 l2) - then (Cons_monom (Aplus c1 c2) l1 - (canonical_sum_merge t1 t2)) - else if (varlist_lt l1 l2) - then (Cons_monom c1 l1 (canonical_sum_merge t1 s2)) - else (Cons_monom c2 l2 (csm_aux t2)) - | (Cons_varlist l2 t2) => - if (varlist_eq l1 l2) - then (Cons_monom (Aplus c1 Aone) l1 - (canonical_sum_merge t1 t2)) - else if (varlist_lt l1 l2) - then (Cons_monom c1 l1 (canonical_sum_merge t1 s2)) - else (Cons_varlist l2 (csm_aux t2)) - | Nil_monom => s1 - end} -| (Cons_varlist l1 t1) => - Fix csm_aux2{csm_aux2[s2:canonical_sum] : canonical_sum := - Cases s2 of - | (Cons_monom c2 l2 t2) => - if (varlist_eq l1 l2) - then (Cons_monom (Aplus Aone c2) l1 - (canonical_sum_merge t1 t2)) - else if (varlist_lt l1 l2) - then (Cons_varlist l1 (canonical_sum_merge t1 s2)) - else (Cons_monom c2 l2 (csm_aux2 t2)) - | (Cons_varlist l2 t2) => - if (varlist_eq l1 l2) - then (Cons_monom (Aplus Aone Aone) l1 - (canonical_sum_merge t1 t2)) - else if (varlist_lt l1 l2) - then (Cons_varlist l1 (canonical_sum_merge t1 s2)) - else (Cons_varlist l2 (csm_aux2 t2)) - | Nil_monom => s1 - end} -| Nil_monom => [s2]s2 -end. +Fixpoint canonical_sum_merge (s1:canonical_sum) : + canonical_sum -> canonical_sum := + match s1 with + | Cons_monom c1 l1 t1 => + (fix csm_aux (s2:canonical_sum) : canonical_sum := + match s2 with + | Cons_monom c2 l2 t2 => + if varlist_eq l1 l2 + then Cons_monom (Aplus c1 c2) l1 (canonical_sum_merge t1 t2) + else + if varlist_lt l1 l2 + then Cons_monom c1 l1 (canonical_sum_merge t1 s2) + else Cons_monom c2 l2 (csm_aux t2) + | Cons_varlist l2 t2 => + if varlist_eq l1 l2 + then Cons_monom (Aplus c1 Aone) l1 (canonical_sum_merge t1 t2) + else + if varlist_lt l1 l2 + then Cons_monom c1 l1 (canonical_sum_merge t1 s2) + else Cons_varlist l2 (csm_aux t2) + | Nil_monom => s1 + end) + | Cons_varlist l1 t1 => + (fix csm_aux2 (s2:canonical_sum) : canonical_sum := + match s2 with + | Cons_monom c2 l2 t2 => + if varlist_eq l1 l2 + then Cons_monom (Aplus Aone c2) l1 (canonical_sum_merge t1 t2) + else + if varlist_lt l1 l2 + then Cons_varlist l1 (canonical_sum_merge t1 s2) + else Cons_monom c2 l2 (csm_aux2 t2) + | Cons_varlist l2 t2 => + if varlist_eq l1 l2 + then Cons_monom (Aplus Aone Aone) l1 (canonical_sum_merge t1 t2) + else + if varlist_lt l1 l2 + then Cons_varlist l1 (canonical_sum_merge t1 s2) + else Cons_varlist l2 (csm_aux2 t2) + | Nil_monom => s1 + end) + | Nil_monom => fun s2 => s2 + end. (* Insertion of a monom in a canonical sum *) -Fixpoint monom_insert [c1:A; l1:varlist; s2 : canonical_sum] - : canonical_sum := - Cases s2 of - | (Cons_monom c2 l2 t2) => - if (varlist_eq l1 l2) - then (Cons_monom (Aplus c1 c2) l1 t2) - else if (varlist_lt l1 l2) - then (Cons_monom c1 l1 s2) - else (Cons_monom c2 l2 (monom_insert c1 l1 t2)) - | (Cons_varlist l2 t2) => - if (varlist_eq l1 l2) - then (Cons_monom (Aplus c1 Aone) l1 t2) - else if (varlist_lt l1 l2) - then (Cons_monom c1 l1 s2) - else (Cons_varlist l2 (monom_insert c1 l1 t2)) - | Nil_monom => (Cons_monom c1 l1 Nil_monom) +Fixpoint monom_insert (c1:A) (l1:varlist) (s2:canonical_sum) {struct s2} : + canonical_sum := + match s2 with + | Cons_monom c2 l2 t2 => + if varlist_eq l1 l2 + then Cons_monom (Aplus c1 c2) l1 t2 + else + if varlist_lt l1 l2 + then Cons_monom c1 l1 s2 + else Cons_monom c2 l2 (monom_insert c1 l1 t2) + | Cons_varlist l2 t2 => + if varlist_eq l1 l2 + then Cons_monom (Aplus c1 Aone) l1 t2 + else + if varlist_lt l1 l2 + then Cons_monom c1 l1 s2 + else Cons_varlist l2 (monom_insert c1 l1 t2) + | Nil_monom => Cons_monom c1 l1 Nil_monom end. -Fixpoint varlist_insert [l1:varlist; s2:canonical_sum] - : canonical_sum := - Cases s2 of - | (Cons_monom c2 l2 t2) => - if (varlist_eq l1 l2) - then (Cons_monom (Aplus Aone c2) l1 t2) - else if (varlist_lt l1 l2) - then (Cons_varlist l1 s2) - else (Cons_monom c2 l2 (varlist_insert l1 t2)) - | (Cons_varlist l2 t2) => - if (varlist_eq l1 l2) - then (Cons_monom (Aplus Aone Aone) l1 t2) - else if (varlist_lt l1 l2) - then (Cons_varlist l1 s2) - else (Cons_varlist l2 (varlist_insert l1 t2)) - | Nil_monom => (Cons_varlist l1 Nil_monom) +Fixpoint varlist_insert (l1:varlist) (s2:canonical_sum) {struct s2} : + canonical_sum := + match s2 with + | Cons_monom c2 l2 t2 => + if varlist_eq l1 l2 + then Cons_monom (Aplus Aone c2) l1 t2 + else + if varlist_lt l1 l2 + then Cons_varlist l1 s2 + else Cons_monom c2 l2 (varlist_insert l1 t2) + | Cons_varlist l2 t2 => + if varlist_eq l1 l2 + then Cons_monom (Aplus Aone Aone) l1 t2 + else + if varlist_lt l1 l2 + then Cons_varlist l1 s2 + else Cons_varlist l2 (varlist_insert l1 t2) + | Nil_monom => Cons_varlist l1 Nil_monom end. (* Computes c0*s *) -Fixpoint canonical_sum_scalar [c0:A; s:canonical_sum] : canonical_sum := - Cases s of - | (Cons_monom c l t) => - (Cons_monom (Amult c0 c) l (canonical_sum_scalar c0 t)) - | (Cons_varlist l t) => - (Cons_monom c0 l (canonical_sum_scalar c0 t)) - | Nil_monom => Nil_monom - end. +Fixpoint canonical_sum_scalar (c0:A) (s:canonical_sum) {struct s} : + canonical_sum := + match s with + | Cons_monom c l t => Cons_monom (Amult c0 c) l (canonical_sum_scalar c0 t) + | Cons_varlist l t => Cons_monom c0 l (canonical_sum_scalar c0 t) + | Nil_monom => Nil_monom + end. (* Computes l0*s *) -Fixpoint canonical_sum_scalar2 [l0:varlist; s:canonical_sum] - : canonical_sum := - Cases s of - | (Cons_monom c l t) => - (monom_insert c (varlist_merge l0 l) (canonical_sum_scalar2 l0 t)) - | (Cons_varlist l t) => - (varlist_insert (varlist_merge l0 l) (canonical_sum_scalar2 l0 t)) - | Nil_monom => Nil_monom - end. +Fixpoint canonical_sum_scalar2 (l0:varlist) (s:canonical_sum) {struct s} : + canonical_sum := + match s with + | Cons_monom c l t => + monom_insert c (varlist_merge l0 l) (canonical_sum_scalar2 l0 t) + | Cons_varlist l t => + varlist_insert (varlist_merge l0 l) (canonical_sum_scalar2 l0 t) + | Nil_monom => Nil_monom + end. (* Computes c0*l0*s *) -Fixpoint canonical_sum_scalar3 [c0:A;l0:varlist; s:canonical_sum] - : canonical_sum := - Cases s of - | (Cons_monom c l t) => - (monom_insert (Amult c0 c) (varlist_merge l0 l) - (canonical_sum_scalar3 c0 l0 t)) - | (Cons_varlist l t) => - (monom_insert c0 (varlist_merge l0 l) - (canonical_sum_scalar3 c0 l0 t)) - | Nil_monom => Nil_monom - end. +Fixpoint canonical_sum_scalar3 (c0:A) (l0:varlist) + (s:canonical_sum) {struct s} : canonical_sum := + match s with + | Cons_monom c l t => + monom_insert (Amult c0 c) (varlist_merge l0 l) + (canonical_sum_scalar3 c0 l0 t) + | Cons_varlist l t => + monom_insert c0 (varlist_merge l0 l) (canonical_sum_scalar3 c0 l0 t) + | Nil_monom => Nil_monom + end. (* returns the product of two canonical sums *) -Fixpoint canonical_sum_prod [s1:canonical_sum] - : canonical_sum -> canonical_sum := - [s2]Cases s1 of - | (Cons_monom c1 l1 t1) => - (canonical_sum_merge (canonical_sum_scalar3 c1 l1 s2) - (canonical_sum_prod t1 s2)) - | (Cons_varlist l1 t1) => - (canonical_sum_merge (canonical_sum_scalar2 l1 s2) - (canonical_sum_prod t1 s2)) - | Nil_monom => Nil_monom - end. +Fixpoint canonical_sum_prod (s1 s2:canonical_sum) {struct s1} : + canonical_sum := + match s1 with + | Cons_monom c1 l1 t1 => + canonical_sum_merge (canonical_sum_scalar3 c1 l1 s2) + (canonical_sum_prod t1 s2) + | Cons_varlist l1 t1 => + canonical_sum_merge (canonical_sum_scalar2 l1 s2) + (canonical_sum_prod t1 s2) + | Nil_monom => Nil_monom + end. (* The type to represent concrete semi-setoid-ring polynomials *) -Inductive Type setspolynomial := - SetSPvar : index -> setspolynomial -| SetSPconst : A -> setspolynomial -| SetSPplus : setspolynomial -> setspolynomial -> setspolynomial -| SetSPmult : setspolynomial -> setspolynomial -> setspolynomial. - -Fixpoint setspolynomial_normalize [p:setspolynomial] : canonical_sum := - Cases p of - | (SetSPplus l r) => (canonical_sum_merge (setspolynomial_normalize l) (setspolynomial_normalize r)) - | (SetSPmult l r) => (canonical_sum_prod (setspolynomial_normalize l) (setspolynomial_normalize r)) - | (SetSPconst c) => (Cons_monom c Nil_var Nil_monom) - | (SetSPvar i) => (Cons_varlist (Cons_var i Nil_var) Nil_monom) - end. - -Fixpoint canonical_sum_simplify [ s:canonical_sum] : canonical_sum := - Cases s of - | (Cons_monom c l t) => - if (Aeq c Azero) - then (canonical_sum_simplify t) - else if (Aeq c Aone) - then (Cons_varlist l (canonical_sum_simplify t)) - else (Cons_monom c l (canonical_sum_simplify t)) - | (Cons_varlist l t) => (Cons_varlist l (canonical_sum_simplify t)) +Inductive setspolynomial : Type := + | SetSPvar : index -> setspolynomial + | SetSPconst : A -> setspolynomial + | SetSPplus : setspolynomial -> setspolynomial -> setspolynomial + | SetSPmult : setspolynomial -> setspolynomial -> setspolynomial. + +Fixpoint setspolynomial_normalize (p:setspolynomial) : canonical_sum := + match p with + | SetSPplus l r => + canonical_sum_merge (setspolynomial_normalize l) + (setspolynomial_normalize r) + | SetSPmult l r => + canonical_sum_prod (setspolynomial_normalize l) + (setspolynomial_normalize r) + | SetSPconst c => Cons_monom c Nil_var Nil_monom + | SetSPvar i => Cons_varlist (Cons_var i Nil_var) Nil_monom + end. + +Fixpoint canonical_sum_simplify (s:canonical_sum) : canonical_sum := + match s with + | Cons_monom c l t => + if Aeq c Azero + then canonical_sum_simplify t + else + if Aeq c Aone + then Cons_varlist l (canonical_sum_simplify t) + else Cons_monom c l (canonical_sum_simplify t) + | Cons_varlist l t => Cons_varlist l (canonical_sum_simplify t) | Nil_monom => Nil_monom end. -Definition setspolynomial_simplify := - [x:setspolynomial] (canonical_sum_simplify (setspolynomial_normalize x)). +Definition setspolynomial_simplify (x:setspolynomial) := + canonical_sum_simplify (setspolynomial_normalize x). -Variable vm : (varmap A). +Variable vm : varmap A. -Definition interp_var [i:index] := (varmap_find Azero i vm). +Definition interp_var (i:index) := varmap_find Azero i vm. -Definition ivl_aux := Fix ivl_aux {ivl_aux[x:index; t:varlist] : A := - Cases t of - | Nil_var => (interp_var x) - | (Cons_var x' t') => (Amult (interp_var x) (ivl_aux x' t')) - end}. +Definition ivl_aux := + (fix ivl_aux (x:index) (t:varlist) {struct t} : A := + match t with + | Nil_var => interp_var x + | Cons_var x' t' => Amult (interp_var x) (ivl_aux x' t') + end). -Definition interp_vl := [l:varlist] - Cases l of +Definition interp_vl (l:varlist) := + match l with | Nil_var => Aone - | (Cons_var x t) => (ivl_aux x t) + | Cons_var x t => ivl_aux x t end. -Definition interp_m := [c:A][l:varlist] - Cases l of +Definition interp_m (c:A) (l:varlist) := + match l with | Nil_var => c - | (Cons_var x t) => - (Amult c (ivl_aux x t)) + | Cons_var x t => Amult c (ivl_aux x t) end. -Definition ics_aux := Fix ics_aux{ics_aux[a:A; s:canonical_sum] : A := - Cases s of - | Nil_monom => a - | (Cons_varlist l t) => (Aplus a (ics_aux (interp_vl l) t)) - | (Cons_monom c l t) => (Aplus a (ics_aux (interp_m c l) t)) - end}. +Definition ics_aux := + (fix ics_aux (a:A) (s:canonical_sum) {struct s} : A := + match s with + | Nil_monom => a + | Cons_varlist l t => Aplus a (ics_aux (interp_vl l) t) + | Cons_monom c l t => Aplus a (ics_aux (interp_m c l) t) + end). -Definition interp_setcs : canonical_sum -> A := - [s]Cases s of +Definition interp_setcs (s:canonical_sum) : A := + match s with | Nil_monom => Azero - | (Cons_varlist l t) => - (ics_aux (interp_vl l) t) - | (Cons_monom c l t) => - (ics_aux (interp_m c l) t) + | Cons_varlist l t => ics_aux (interp_vl l) t + | Cons_monom c l t => ics_aux (interp_m c l) t end. -Fixpoint interp_setsp [p:setspolynomial] : A := - Cases p of - | (SetSPconst c) => c - | (SetSPvar i) => (interp_var i) - | (SetSPplus p1 p2) => (Aplus (interp_setsp p1) (interp_setsp p2)) - | (SetSPmult p1 p2) => (Amult (interp_setsp p1) (interp_setsp p2)) - end. +Fixpoint interp_setsp (p:setspolynomial) : A := + match p with + | SetSPconst c => c + | SetSPvar i => interp_var i + | SetSPplus p1 p2 => Aplus (interp_setsp p1) (interp_setsp p2) + | SetSPmult p1 p2 => Amult (interp_setsp p1) (interp_setsp p2) + end. (* End interpretation. *) @@ -352,655 +361,636 @@ Unset Implicit Arguments. (* Section properties. *) -Variable T : (Semi_Setoid_Ring_Theory Aequiv Aplus Amult Aone Azero Aeq). - -Hint SSR_plus_sym_T := Resolve (SSR_plus_sym T). -Hint SSR_plus_assoc_T := Resolve (SSR_plus_assoc T). -Hint SSR_plus_assoc2_T := Resolve (SSR_plus_assoc2 S T). -Hint SSR_mult_sym_T := Resolve (SSR_mult_sym T). -Hint SSR_mult_assoc_T := Resolve (SSR_mult_assoc T). -Hint SSR_mult_assoc2_T := Resolve (SSR_mult_assoc2 S T). -Hint SSR_plus_zero_left_T := Resolve (SSR_plus_zero_left T). -Hint SSR_plus_zero_left2_T := Resolve (SSR_plus_zero_left2 S T). -Hint SSR_mult_one_left_T := Resolve (SSR_mult_one_left T). -Hint SSR_mult_one_left2_T := Resolve (SSR_mult_one_left2 S T). -Hint SSR_mult_zero_left_T := Resolve (SSR_mult_zero_left T). -Hint SSR_mult_zero_left2_T := Resolve (SSR_mult_zero_left2 S T). -Hint SSR_distr_left_T := Resolve (SSR_distr_left T). -Hint SSR_distr_left2_T := Resolve (SSR_distr_left2 S T). -Hint SSR_plus_reg_left_T := Resolve (SSR_plus_reg_left T). -Hint SSR_plus_permute_T := Resolve (SSR_plus_permute S plus_morph T). -Hint SSR_mult_permute_T := Resolve (SSR_mult_permute S mult_morph T). -Hint SSR_distr_right_T := Resolve (SSR_distr_right S plus_morph T). -Hint SSR_distr_right2_T := Resolve (SSR_distr_right2 S plus_morph T). -Hint SSR_mult_zero_right_T := Resolve (SSR_mult_zero_right S T). -Hint SSR_mult_zero_right2_T := Resolve (SSR_mult_zero_right2 S T). -Hint SSR_plus_zero_right_T := Resolve (SSR_plus_zero_right S T). -Hint SSR_plus_zero_right2_T := Resolve (SSR_plus_zero_right2 S T). -Hint SSR_mult_one_right_T := Resolve (SSR_mult_one_right S T). -Hint SSR_mult_one_right2_T := Resolve (SSR_mult_one_right2 S T). -Hint SSR_plus_reg_right_T := Resolve (SSR_plus_reg_right S T). -Hints Resolve refl_equal sym_equal trans_equal. +Variable T : Semi_Setoid_Ring_Theory Aequiv Aplus Amult Aone Azero Aeq. + +Hint Resolve (SSR_plus_comm T). +Hint Resolve (SSR_plus_assoc T). +Hint Resolve (SSR_plus_assoc2 S T). +Hint Resolve (SSR_mult_comm T). +Hint Resolve (SSR_mult_assoc T). +Hint Resolve (SSR_mult_assoc2 S T). +Hint Resolve (SSR_plus_zero_left T). +Hint Resolve (SSR_plus_zero_left2 S T). +Hint Resolve (SSR_mult_one_left T). +Hint Resolve (SSR_mult_one_left2 S T). +Hint Resolve (SSR_mult_zero_left T). +Hint Resolve (SSR_mult_zero_left2 S T). +Hint Resolve (SSR_distr_left T). +Hint Resolve (SSR_distr_left2 S T). +Hint Resolve (SSR_plus_reg_left T). +Hint Resolve (SSR_plus_permute S plus_morph T). +Hint Resolve (SSR_mult_permute S mult_morph T). +Hint Resolve (SSR_distr_right S plus_morph T). +Hint Resolve (SSR_distr_right2 S plus_morph T). +Hint Resolve (SSR_mult_zero_right S T). +Hint Resolve (SSR_mult_zero_right2 S T). +Hint Resolve (SSR_plus_zero_right S T). +Hint Resolve (SSR_plus_zero_right2 S T). +Hint Resolve (SSR_mult_one_right S T). +Hint Resolve (SSR_mult_one_right2 S T). +Hint Resolve (SSR_plus_reg_right S T). +Hint Resolve refl_equal sym_equal trans_equal. (*Hints Resolve refl_eqT sym_eqT trans_eqT.*) -Hints Immediate T. +Hint Immediate T. -Lemma varlist_eq_prop : (x,y:varlist) - (Is_true (varlist_eq x y))->x==y. +Lemma varlist_eq_prop : forall x y:varlist, Is_true (varlist_eq x y) -> x = y. Proof. - Induction x; Induction y; Contradiction Orelse Try Reflexivity. - Simpl; Intros. - Generalize (andb_prop2 ? ? H1); Intros; Elim H2; Intros. - Rewrite (index_eq_prop H3); Rewrite (H v0 H4); Reflexivity. -Save. - -Remark ivl_aux_ok : (v:varlist)(i:index) - (Aequiv (ivl_aux i v) (Amult (interp_var i) (interp_vl v))). + simple induction x; simple induction y; contradiction || (try reflexivity). + simpl in |- *; intros. + generalize (andb_prop2 _ _ H1); intros; elim H2; intros. + rewrite (index_eq_prop _ _ H3); rewrite (H v0 H4); reflexivity. +Qed. + +Remark ivl_aux_ok : + forall (v:varlist) (i:index), + Aequiv (ivl_aux i v) (Amult (interp_var i) (interp_vl v)). Proof. - Induction v; Simpl; Intros. - Trivial. - Rewrite (H i); Trivial. -Save. - -Lemma varlist_merge_ok : (x,y:varlist) - (Aequiv (interp_vl (varlist_merge x y)) (Amult (interp_vl x) (interp_vl y))). + simple induction v; simpl in |- *; intros. + trivial. + rewrite (H i); trivial. +Qed. + +Lemma varlist_merge_ok : + forall x y:varlist, + Aequiv (interp_vl (varlist_merge x y)) (Amult (interp_vl x) (interp_vl y)). Proof. - Induction x. - Simpl; Trivial. - Induction y. - Simpl; Trivial. - Simpl; Intros. - Elim (index_lt i i0); Simpl; Intros. - - Rewrite (ivl_aux_ok v i). - Rewrite (ivl_aux_ok v0 i0). - Rewrite (ivl_aux_ok (varlist_merge v (Cons_var i0 v0)) i). - Rewrite (H (Cons_var i0 v0)). - Simpl. - Rewrite (ivl_aux_ok v0 i0). - EAuto. - - Rewrite (ivl_aux_ok v i). - Rewrite (ivl_aux_ok v0 i0). - Rewrite (ivl_aux_ok - (Fix vm_aux - {vm_aux [l2:varlist] : varlist := - Cases (l2) of - Nil_var => (Cons_var i v) - | (Cons_var v2 t2) => - (if (index_lt i v2) - then (Cons_var i (varlist_merge v l2)) - else (Cons_var v2 (vm_aux t2))) - end} v0) i0). - Rewrite H0. - Rewrite (ivl_aux_ok v i). - EAuto. -Save. - -Remark ics_aux_ok : (x:A)(s:canonical_sum) - (Aequiv (ics_aux x s) (Aplus x (interp_setcs s))). + simple induction x. + simpl in |- *; trivial. + simple induction y. + simpl in |- *; trivial. + simpl in |- *; intros. + elim (index_lt i i0); simpl in |- *; intros. + + rewrite (ivl_aux_ok v i). + rewrite (ivl_aux_ok v0 i0). + rewrite (ivl_aux_ok (varlist_merge v (Cons_var i0 v0)) i). + rewrite (H (Cons_var i0 v0)). + simpl in |- *. + rewrite (ivl_aux_ok v0 i0). + eauto. + + rewrite (ivl_aux_ok v i). + rewrite (ivl_aux_ok v0 i0). + rewrite + (ivl_aux_ok + ((fix vm_aux (l2:varlist) : varlist := + match l2 with + | Nil_var => Cons_var i v + | Cons_var v2 t2 => + if index_lt i v2 + then Cons_var i (varlist_merge v l2) + else Cons_var v2 (vm_aux t2) + end) v0) i0). + rewrite H0. + rewrite (ivl_aux_ok v i). + eauto. +Qed. + +Remark ics_aux_ok : + forall (x:A) (s:canonical_sum), + Aequiv (ics_aux x s) (Aplus x (interp_setcs s)). Proof. - Induction s; Simpl; Intros;Trivial. -Save. + simple induction s; simpl in |- *; intros; trivial. +Qed. -Remark interp_m_ok : (x:A)(l:varlist) - (Aequiv (interp_m x l) (Amult x (interp_vl l))). +Remark interp_m_ok : + forall (x:A) (l:varlist), Aequiv (interp_m x l) (Amult x (interp_vl l)). Proof. - NewDestruct l;Trivial. -Save. + destruct l as [| i v]; trivial. +Qed. -Hint ivl_aux_ok_ := Resolve ivl_aux_ok. -Hint ics_aux_ok_ := Resolve ics_aux_ok. -Hint interp_m_ok_ := Resolve interp_m_ok. +Hint Resolve ivl_aux_ok. +Hint Resolve ics_aux_ok. +Hint Resolve interp_m_ok. (* Hints Resolve ivl_aux_ok ics_aux_ok interp_m_ok. *) -Lemma canonical_sum_merge_ok : (x,y:canonical_sum) - (Aequiv (interp_setcs (canonical_sum_merge x y)) - (Aplus (interp_setcs x) (interp_setcs y))). +Lemma canonical_sum_merge_ok : + forall x y:canonical_sum, + Aequiv (interp_setcs (canonical_sum_merge x y)) + (Aplus (interp_setcs x) (interp_setcs y)). Proof. -Induction x; Simpl. -Trivial. - -Induction y; Simpl; Intros. -EAuto. - -Generalize (varlist_eq_prop v v0). -Elim (varlist_eq v v0). -Intros; Rewrite (H1 I). -Simpl. -Rewrite (ics_aux_ok (interp_m a v0) c). -Rewrite (ics_aux_ok (interp_m a0 v0) c0). -Rewrite (ics_aux_ok (interp_m (Aplus a a0) v0) - (canonical_sum_merge c c0)). -Rewrite (H c0). -Rewrite (interp_m_ok (Aplus a a0) v0). -Rewrite (interp_m_ok a v0). -Rewrite (interp_m_ok a0 v0). -Setoid_replace (Amult (Aplus a a0) (interp_vl v0)) - with (Aplus (Amult a (interp_vl v0)) (Amult a0 (interp_vl v0))). -Setoid_replace (Aplus - (Aplus (Amult a (interp_vl v0)) - (Amult a0 (interp_vl v0))) - (Aplus (interp_setcs c) (interp_setcs c0))) - with (Aplus (Amult a (interp_vl v0)) - (Aplus (Amult a0 (interp_vl v0)) - (Aplus (interp_setcs c) (interp_setcs c0)))). -Setoid_replace (Aplus (Aplus (Amult a (interp_vl v0)) (interp_setcs c)) - (Aplus (Amult a0 (interp_vl v0)) (interp_setcs c0))) - with (Aplus (Amult a (interp_vl v0)) - (Aplus (interp_setcs c) - (Aplus (Amult a0 (interp_vl v0)) (interp_setcs c0)))). -Auto. - -Elim (varlist_lt v v0); Simpl. -Intro. -Rewrite (ics_aux_ok (interp_m a v) - (canonical_sum_merge c (Cons_monom a0 v0 c0))). -Rewrite (ics_aux_ok (interp_m a v) c). -Rewrite (ics_aux_ok (interp_m a0 v0) c0). -Rewrite (H (Cons_monom a0 v0 c0)); Simpl. -Rewrite (ics_aux_ok (interp_m a0 v0) c0); Auto. - -Intro. -Rewrite (ics_aux_ok (interp_m a0 v0) - (Fix csm_aux - {csm_aux [s2:canonical_sum] : canonical_sum := - Cases (s2) of - Nil_monom => (Cons_monom a v c) - | (Cons_monom c2 l2 t2) => - (if (varlist_eq v l2) - then - (Cons_monom (Aplus a c2) v - (canonical_sum_merge c t2)) - else - (if (varlist_lt v l2) - then - (Cons_monom a v - (canonical_sum_merge c s2)) - else (Cons_monom c2 l2 (csm_aux t2)))) - | (Cons_varlist l2 t2) => - (if (varlist_eq v l2) - then - (Cons_monom (Aplus a Aone) v - (canonical_sum_merge c t2)) - else - (if (varlist_lt v l2) - then - (Cons_monom a v - (canonical_sum_merge c s2)) - else (Cons_varlist l2 (csm_aux t2)))) - end} c0)). -Rewrite H0. -Rewrite (ics_aux_ok (interp_m a v) c); -Rewrite (ics_aux_ok (interp_m a0 v0) c0); Simpl; Auto. - -Generalize (varlist_eq_prop v v0). -Elim (varlist_eq v v0). -Intros; Rewrite (H1 I). -Simpl. -Rewrite (ics_aux_ok (interp_m (Aplus a Aone) v0) - (canonical_sum_merge c c0)); -Rewrite (ics_aux_ok (interp_m a v0) c); -Rewrite (ics_aux_ok (interp_vl v0) c0). -Rewrite (H c0). -Rewrite (interp_m_ok (Aplus a Aone) v0). -Rewrite (interp_m_ok a v0). -Setoid_replace (Amult (Aplus a Aone) (interp_vl v0)) - with (Aplus (Amult a (interp_vl v0)) (Amult Aone (interp_vl v0))). -Setoid_replace (Aplus - (Aplus (Amult a (interp_vl v0)) - (Amult Aone (interp_vl v0))) - (Aplus (interp_setcs c) (interp_setcs c0))) - with (Aplus (Amult a (interp_vl v0)) - (Aplus (Amult Aone (interp_vl v0)) - (Aplus (interp_setcs c) (interp_setcs c0)))). -Setoid_replace (Aplus (Aplus (Amult a (interp_vl v0)) (interp_setcs c)) - (Aplus (interp_vl v0) (interp_setcs c0))) - with (Aplus (Amult a (interp_vl v0)) - (Aplus (interp_setcs c) (Aplus (interp_vl v0) (interp_setcs c0)))). -Setoid_replace (Amult Aone (interp_vl v0)) with (interp_vl v0). -Auto. - -Elim (varlist_lt v v0); Simpl. -Intro. -Rewrite (ics_aux_ok (interp_m a v) - (canonical_sum_merge c (Cons_varlist v0 c0))); -Rewrite (ics_aux_ok (interp_m a v) c); -Rewrite (ics_aux_ok (interp_vl v0) c0). -Rewrite (H (Cons_varlist v0 c0)); Simpl. -Rewrite (ics_aux_ok (interp_vl v0) c0). -Auto. - -Intro. -Rewrite (ics_aux_ok (interp_vl v0) - (Fix csm_aux - {csm_aux [s2:canonical_sum] : canonical_sum := - Cases (s2) of - Nil_monom => (Cons_monom a v c) - | (Cons_monom c2 l2 t2) => - (if (varlist_eq v l2) - then - (Cons_monom (Aplus a c2) v - (canonical_sum_merge c t2)) - else - (if (varlist_lt v l2) - then - (Cons_monom a v - (canonical_sum_merge c s2)) - else (Cons_monom c2 l2 (csm_aux t2)))) - | (Cons_varlist l2 t2) => - (if (varlist_eq v l2) - then - (Cons_monom (Aplus a Aone) v - (canonical_sum_merge c t2)) - else - (if (varlist_lt v l2) - then - (Cons_monom a v - (canonical_sum_merge c s2)) - else (Cons_varlist l2 (csm_aux t2)))) - end} c0)); Rewrite H0. -Rewrite (ics_aux_ok (interp_m a v) c); -Rewrite (ics_aux_ok (interp_vl v0) c0); Simpl. -Auto. - -Induction y; Simpl; Intros. -Trivial. - -Generalize (varlist_eq_prop v v0). -Elim (varlist_eq v v0). -Intros; Rewrite (H1 I). -Simpl. -Rewrite (ics_aux_ok (interp_m (Aplus Aone a) v0) - (canonical_sum_merge c c0)); -Rewrite (ics_aux_ok (interp_vl v0) c); -Rewrite (ics_aux_ok (interp_m a v0) c0); Rewrite ( -H c0). -Rewrite (interp_m_ok (Aplus Aone a) v0); -Rewrite (interp_m_ok a v0). -Setoid_replace (Amult (Aplus Aone a) (interp_vl v0)) - with (Aplus (Amult Aone (interp_vl v0)) (Amult a (interp_vl v0))); -Setoid_replace (Aplus - (Aplus (Amult Aone (interp_vl v0)) - (Amult a (interp_vl v0))) - (Aplus (interp_setcs c) (interp_setcs c0))) - with (Aplus (Amult Aone (interp_vl v0)) - (Aplus (Amult a (interp_vl v0)) - (Aplus (interp_setcs c) (interp_setcs c0)))); -Setoid_replace (Aplus (Aplus (interp_vl v0) (interp_setcs c)) - (Aplus (Amult a (interp_vl v0)) (interp_setcs c0))) - with (Aplus (interp_vl v0) - (Aplus (interp_setcs c) - (Aplus (Amult a (interp_vl v0)) (interp_setcs c0)))). -Auto. - -Elim (varlist_lt v v0); Simpl; Intros. -Rewrite (ics_aux_ok (interp_vl v) - (canonical_sum_merge c (Cons_monom a v0 c0))); -Rewrite (ics_aux_ok (interp_vl v) c); -Rewrite (ics_aux_ok (interp_m a v0) c0). -Rewrite (H (Cons_monom a v0 c0)); Simpl. -Rewrite (ics_aux_ok (interp_m a v0) c0); Auto. - -Rewrite (ics_aux_ok (interp_m a v0) - (Fix csm_aux2 - {csm_aux2 [s2:canonical_sum] : canonical_sum := - Cases (s2) of - Nil_monom => (Cons_varlist v c) - | (Cons_monom c2 l2 t2) => - (if (varlist_eq v l2) - then - (Cons_monom (Aplus Aone c2) v - (canonical_sum_merge c t2)) - else - (if (varlist_lt v l2) - then - (Cons_varlist v - (canonical_sum_merge c s2)) - else (Cons_monom c2 l2 (csm_aux2 t2)))) - | (Cons_varlist l2 t2) => - (if (varlist_eq v l2) - then - (Cons_monom (Aplus Aone Aone) v - (canonical_sum_merge c t2)) - else - (if (varlist_lt v l2) - then - (Cons_varlist v - (canonical_sum_merge c s2)) - else (Cons_varlist l2 (csm_aux2 t2)))) - end} c0)); Rewrite H0. -Rewrite (ics_aux_ok (interp_vl v) c); -Rewrite (ics_aux_ok (interp_m a v0) c0); Simpl; Auto. - -Generalize (varlist_eq_prop v v0). -Elim (varlist_eq v v0); Intros. -Rewrite (H1 I); Simpl. -Rewrite (ics_aux_ok (interp_m (Aplus Aone Aone) v0) - (canonical_sum_merge c c0)); -Rewrite (ics_aux_ok (interp_vl v0) c); -Rewrite (ics_aux_ok (interp_vl v0) c0); Rewrite ( -H c0). -Rewrite (interp_m_ok (Aplus Aone Aone) v0). -Setoid_replace (Amult (Aplus Aone Aone) (interp_vl v0)) - with (Aplus (Amult Aone (interp_vl v0)) (Amult Aone (interp_vl v0))); -Setoid_replace (Aplus - (Aplus (Amult Aone (interp_vl v0)) - (Amult Aone (interp_vl v0))) - (Aplus (interp_setcs c) (interp_setcs c0))) - with (Aplus (Amult Aone (interp_vl v0)) - (Aplus (Amult Aone (interp_vl v0)) - (Aplus (interp_setcs c) (interp_setcs c0)))); -Setoid_replace (Aplus (Aplus (interp_vl v0) (interp_setcs c)) - (Aplus (interp_vl v0) (interp_setcs c0))) - with (Aplus (interp_vl v0) - (Aplus (interp_setcs c) (Aplus (interp_vl v0) (interp_setcs c0)))). -Setoid_replace (Amult Aone (interp_vl v0)) with (interp_vl v0); Auto. - -Elim (varlist_lt v v0); Simpl. -Rewrite (ics_aux_ok (interp_vl v) - (canonical_sum_merge c (Cons_varlist v0 c0))); -Rewrite (ics_aux_ok (interp_vl v) c); -Rewrite (ics_aux_ok (interp_vl v0) c0); -Rewrite (H (Cons_varlist v0 c0)); Simpl. -Rewrite (ics_aux_ok (interp_vl v0) c0); Auto. - -Rewrite (ics_aux_ok (interp_vl v0) - (Fix csm_aux2 - {csm_aux2 [s2:canonical_sum] : canonical_sum := - Cases (s2) of - Nil_monom => (Cons_varlist v c) - | (Cons_monom c2 l2 t2) => - (if (varlist_eq v l2) - then - (Cons_monom (Aplus Aone c2) v - (canonical_sum_merge c t2)) - else - (if (varlist_lt v l2) - then - (Cons_varlist v - (canonical_sum_merge c s2)) - else (Cons_monom c2 l2 (csm_aux2 t2)))) - | (Cons_varlist l2 t2) => - (if (varlist_eq v l2) - then - (Cons_monom (Aplus Aone Aone) v - (canonical_sum_merge c t2)) - else - (if (varlist_lt v l2) - then - (Cons_varlist v - (canonical_sum_merge c s2)) - else (Cons_varlist l2 (csm_aux2 t2)))) - end} c0)); Rewrite H0. -Rewrite (ics_aux_ok (interp_vl v) c); -Rewrite (ics_aux_ok (interp_vl v0) c0); Simpl; Auto. -Save. - -Lemma monom_insert_ok: (a:A)(l:varlist)(s:canonical_sum) - (Aequiv (interp_setcs (monom_insert a l s)) - (Aplus (Amult a (interp_vl l)) (interp_setcs s))). +simple induction x; simpl in |- *. +trivial. + +simple induction y; simpl in |- *; intros. +eauto. + +generalize (varlist_eq_prop v v0). +elim (varlist_eq v v0). +intros; rewrite (H1 I). +simpl in |- *. +rewrite (ics_aux_ok (interp_m a v0) c). +rewrite (ics_aux_ok (interp_m a0 v0) c0). +rewrite (ics_aux_ok (interp_m (Aplus a a0) v0) (canonical_sum_merge c c0)). +rewrite (H c0). +rewrite (interp_m_ok (Aplus a a0) v0). +rewrite (interp_m_ok a v0). +rewrite (interp_m_ok a0 v0). +setoid_replace (Amult (Aplus a a0) (interp_vl v0)) with + (Aplus (Amult a (interp_vl v0)) (Amult a0 (interp_vl v0))). +setoid_replace + (Aplus (Aplus (Amult a (interp_vl v0)) (Amult a0 (interp_vl v0))) + (Aplus (interp_setcs c) (interp_setcs c0))) with + (Aplus (Amult a (interp_vl v0)) + (Aplus (Amult a0 (interp_vl v0)) + (Aplus (interp_setcs c) (interp_setcs c0)))). +setoid_replace + (Aplus (Aplus (Amult a (interp_vl v0)) (interp_setcs c)) + (Aplus (Amult a0 (interp_vl v0)) (interp_setcs c0))) with + (Aplus (Amult a (interp_vl v0)) + (Aplus (interp_setcs c) + (Aplus (Amult a0 (interp_vl v0)) (interp_setcs c0)))). +auto. + +elim (varlist_lt v v0); simpl in |- *. +intro. +rewrite + (ics_aux_ok (interp_m a v) (canonical_sum_merge c (Cons_monom a0 v0 c0))) + . +rewrite (ics_aux_ok (interp_m a v) c). +rewrite (ics_aux_ok (interp_m a0 v0) c0). +rewrite (H (Cons_monom a0 v0 c0)); simpl in |- *. +rewrite (ics_aux_ok (interp_m a0 v0) c0); auto. + +intro. +rewrite + (ics_aux_ok (interp_m a0 v0) + ((fix csm_aux (s2:canonical_sum) : canonical_sum := + match s2 with + | Nil_monom => Cons_monom a v c + | Cons_monom c2 l2 t2 => + if varlist_eq v l2 + then Cons_monom (Aplus a c2) v (canonical_sum_merge c t2) + else + if varlist_lt v l2 + then Cons_monom a v (canonical_sum_merge c s2) + else Cons_monom c2 l2 (csm_aux t2) + | Cons_varlist l2 t2 => + if varlist_eq v l2 + then Cons_monom (Aplus a Aone) v (canonical_sum_merge c t2) + else + if varlist_lt v l2 + then Cons_monom a v (canonical_sum_merge c s2) + else Cons_varlist l2 (csm_aux t2) + end) c0)). +rewrite H0. +rewrite (ics_aux_ok (interp_m a v) c); + rewrite (ics_aux_ok (interp_m a0 v0) c0); simpl in |- *; + auto. + +generalize (varlist_eq_prop v v0). +elim (varlist_eq v v0). +intros; rewrite (H1 I). +simpl in |- *. +rewrite (ics_aux_ok (interp_m (Aplus a Aone) v0) (canonical_sum_merge c c0)); + rewrite (ics_aux_ok (interp_m a v0) c); + rewrite (ics_aux_ok (interp_vl v0) c0). +rewrite (H c0). +rewrite (interp_m_ok (Aplus a Aone) v0). +rewrite (interp_m_ok a v0). +setoid_replace (Amult (Aplus a Aone) (interp_vl v0)) with + (Aplus (Amult a (interp_vl v0)) (Amult Aone (interp_vl v0))). +setoid_replace + (Aplus (Aplus (Amult a (interp_vl v0)) (Amult Aone (interp_vl v0))) + (Aplus (interp_setcs c) (interp_setcs c0))) with + (Aplus (Amult a (interp_vl v0)) + (Aplus (Amult Aone (interp_vl v0)) + (Aplus (interp_setcs c) (interp_setcs c0)))). +setoid_replace + (Aplus (Aplus (Amult a (interp_vl v0)) (interp_setcs c)) + (Aplus (interp_vl v0) (interp_setcs c0))) with + (Aplus (Amult a (interp_vl v0)) + (Aplus (interp_setcs c) (Aplus (interp_vl v0) (interp_setcs c0)))). +setoid_replace (Amult Aone (interp_vl v0)) with (interp_vl v0). +auto. + +elim (varlist_lt v v0); simpl in |- *. +intro. +rewrite + (ics_aux_ok (interp_m a v) (canonical_sum_merge c (Cons_varlist v0 c0))) + ; rewrite (ics_aux_ok (interp_m a v) c); + rewrite (ics_aux_ok (interp_vl v0) c0). +rewrite (H (Cons_varlist v0 c0)); simpl in |- *. +rewrite (ics_aux_ok (interp_vl v0) c0). +auto. + +intro. +rewrite + (ics_aux_ok (interp_vl v0) + ((fix csm_aux (s2:canonical_sum) : canonical_sum := + match s2 with + | Nil_monom => Cons_monom a v c + | Cons_monom c2 l2 t2 => + if varlist_eq v l2 + then Cons_monom (Aplus a c2) v (canonical_sum_merge c t2) + else + if varlist_lt v l2 + then Cons_monom a v (canonical_sum_merge c s2) + else Cons_monom c2 l2 (csm_aux t2) + | Cons_varlist l2 t2 => + if varlist_eq v l2 + then Cons_monom (Aplus a Aone) v (canonical_sum_merge c t2) + else + if varlist_lt v l2 + then Cons_monom a v (canonical_sum_merge c s2) + else Cons_varlist l2 (csm_aux t2) + end) c0)); rewrite H0. +rewrite (ics_aux_ok (interp_m a v) c); rewrite (ics_aux_ok (interp_vl v0) c0); + simpl in |- *. +auto. + +simple induction y; simpl in |- *; intros. +trivial. + +generalize (varlist_eq_prop v v0). +elim (varlist_eq v v0). +intros; rewrite (H1 I). +simpl in |- *. +rewrite (ics_aux_ok (interp_m (Aplus Aone a) v0) (canonical_sum_merge c c0)); + rewrite (ics_aux_ok (interp_vl v0) c); + rewrite (ics_aux_ok (interp_m a v0) c0); rewrite (H c0). +rewrite (interp_m_ok (Aplus Aone a) v0); rewrite (interp_m_ok a v0). +setoid_replace (Amult (Aplus Aone a) (interp_vl v0)) with + (Aplus (Amult Aone (interp_vl v0)) (Amult a (interp_vl v0))); + setoid_replace + (Aplus (Aplus (Amult Aone (interp_vl v0)) (Amult a (interp_vl v0))) + (Aplus (interp_setcs c) (interp_setcs c0))) with + (Aplus (Amult Aone (interp_vl v0)) + (Aplus (Amult a (interp_vl v0)) + (Aplus (interp_setcs c) (interp_setcs c0)))); + setoid_replace + (Aplus (Aplus (interp_vl v0) (interp_setcs c)) + (Aplus (Amult a (interp_vl v0)) (interp_setcs c0))) with + (Aplus (interp_vl v0) + (Aplus (interp_setcs c) + (Aplus (Amult a (interp_vl v0)) (interp_setcs c0)))). +auto. + +elim (varlist_lt v v0); simpl in |- *; intros. +rewrite + (ics_aux_ok (interp_vl v) (canonical_sum_merge c (Cons_monom a v0 c0))) + ; rewrite (ics_aux_ok (interp_vl v) c); + rewrite (ics_aux_ok (interp_m a v0) c0). +rewrite (H (Cons_monom a v0 c0)); simpl in |- *. +rewrite (ics_aux_ok (interp_m a v0) c0); auto. + +rewrite + (ics_aux_ok (interp_m a v0) + ((fix csm_aux2 (s2:canonical_sum) : canonical_sum := + match s2 with + | Nil_monom => Cons_varlist v c + | Cons_monom c2 l2 t2 => + if varlist_eq v l2 + then Cons_monom (Aplus Aone c2) v (canonical_sum_merge c t2) + else + if varlist_lt v l2 + then Cons_varlist v (canonical_sum_merge c s2) + else Cons_monom c2 l2 (csm_aux2 t2) + | Cons_varlist l2 t2 => + if varlist_eq v l2 + then Cons_monom (Aplus Aone Aone) v (canonical_sum_merge c t2) + else + if varlist_lt v l2 + then Cons_varlist v (canonical_sum_merge c s2) + else Cons_varlist l2 (csm_aux2 t2) + end) c0)); rewrite H0. +rewrite (ics_aux_ok (interp_vl v) c); rewrite (ics_aux_ok (interp_m a v0) c0); + simpl in |- *; auto. + +generalize (varlist_eq_prop v v0). +elim (varlist_eq v v0); intros. +rewrite (H1 I); simpl in |- *. +rewrite + (ics_aux_ok (interp_m (Aplus Aone Aone) v0) (canonical_sum_merge c c0)) + ; rewrite (ics_aux_ok (interp_vl v0) c); + rewrite (ics_aux_ok (interp_vl v0) c0); rewrite (H c0). +rewrite (interp_m_ok (Aplus Aone Aone) v0). +setoid_replace (Amult (Aplus Aone Aone) (interp_vl v0)) with + (Aplus (Amult Aone (interp_vl v0)) (Amult Aone (interp_vl v0))); + setoid_replace + (Aplus (Aplus (Amult Aone (interp_vl v0)) (Amult Aone (interp_vl v0))) + (Aplus (interp_setcs c) (interp_setcs c0))) with + (Aplus (Amult Aone (interp_vl v0)) + (Aplus (Amult Aone (interp_vl v0)) + (Aplus (interp_setcs c) (interp_setcs c0)))); + setoid_replace + (Aplus (Aplus (interp_vl v0) (interp_setcs c)) + (Aplus (interp_vl v0) (interp_setcs c0))) with + (Aplus (interp_vl v0) + (Aplus (interp_setcs c) (Aplus (interp_vl v0) (interp_setcs c0)))). +setoid_replace (Amult Aone (interp_vl v0)) with (interp_vl v0); auto. + +elim (varlist_lt v v0); simpl in |- *. +rewrite + (ics_aux_ok (interp_vl v) (canonical_sum_merge c (Cons_varlist v0 c0))) + ; rewrite (ics_aux_ok (interp_vl v) c); + rewrite (ics_aux_ok (interp_vl v0) c0); rewrite (H (Cons_varlist v0 c0)); + simpl in |- *. +rewrite (ics_aux_ok (interp_vl v0) c0); auto. + +rewrite + (ics_aux_ok (interp_vl v0) + ((fix csm_aux2 (s2:canonical_sum) : canonical_sum := + match s2 with + | Nil_monom => Cons_varlist v c + | Cons_monom c2 l2 t2 => + if varlist_eq v l2 + then Cons_monom (Aplus Aone c2) v (canonical_sum_merge c t2) + else + if varlist_lt v l2 + then Cons_varlist v (canonical_sum_merge c s2) + else Cons_monom c2 l2 (csm_aux2 t2) + | Cons_varlist l2 t2 => + if varlist_eq v l2 + then Cons_monom (Aplus Aone Aone) v (canonical_sum_merge c t2) + else + if varlist_lt v l2 + then Cons_varlist v (canonical_sum_merge c s2) + else Cons_varlist l2 (csm_aux2 t2) + end) c0)); rewrite H0. +rewrite (ics_aux_ok (interp_vl v) c); rewrite (ics_aux_ok (interp_vl v0) c0); + simpl in |- *; auto. +Qed. + +Lemma monom_insert_ok : + forall (a:A) (l:varlist) (s:canonical_sum), + Aequiv (interp_setcs (monom_insert a l s)) + (Aplus (Amult a (interp_vl l)) (interp_setcs s)). Proof. -Induction s; Intros. -Simpl; Rewrite (interp_m_ok a l); Trivial. - -Simpl; Generalize (varlist_eq_prop l v); Elim (varlist_eq l v). -Intro Hr; Rewrite (Hr I); Simpl. -Rewrite (ics_aux_ok (interp_m (Aplus a a0) v) c); -Rewrite (ics_aux_ok (interp_m a0 v) c). -Rewrite (interp_m_ok (Aplus a a0) v); -Rewrite (interp_m_ok a0 v). -Setoid_replace (Amult (Aplus a a0) (interp_vl v)) - with (Aplus (Amult a (interp_vl v)) (Amult a0 (interp_vl v))). -Auto. - -Elim (varlist_lt l v); Simpl; Intros. -Rewrite (ics_aux_ok (interp_m a0 v) c). -Rewrite (interp_m_ok a0 v); Rewrite (interp_m_ok a l). -Auto. - -Rewrite (ics_aux_ok (interp_m a0 v) (monom_insert a l c)); -Rewrite (ics_aux_ok (interp_m a0 v) c); Rewrite H. -Auto. - -Simpl. -Generalize (varlist_eq_prop l v); Elim (varlist_eq l v). -Intro Hr; Rewrite (Hr I); Simpl. -Rewrite (ics_aux_ok (interp_m (Aplus a Aone) v) c); -Rewrite (ics_aux_ok (interp_vl v) c). -Rewrite (interp_m_ok (Aplus a Aone) v). -Setoid_replace (Amult (Aplus a Aone) (interp_vl v)) - with (Aplus (Amult a (interp_vl v)) (Amult Aone (interp_vl v))). -Setoid_replace (Amult Aone (interp_vl v)) with (interp_vl v). -Auto. - -Elim (varlist_lt l v); Simpl; Intros; Auto. -Rewrite (ics_aux_ok (interp_vl v) (monom_insert a l c)); -Rewrite H. -Rewrite (ics_aux_ok (interp_vl v) c); Auto. -Save. +simple induction s; intros. +simpl in |- *; rewrite (interp_m_ok a l); trivial. + +simpl in |- *; generalize (varlist_eq_prop l v); elim (varlist_eq l v). +intro Hr; rewrite (Hr I); simpl in |- *. +rewrite (ics_aux_ok (interp_m (Aplus a a0) v) c); + rewrite (ics_aux_ok (interp_m a0 v) c). +rewrite (interp_m_ok (Aplus a a0) v); rewrite (interp_m_ok a0 v). +setoid_replace (Amult (Aplus a a0) (interp_vl v)) with + (Aplus (Amult a (interp_vl v)) (Amult a0 (interp_vl v))). +auto. + +elim (varlist_lt l v); simpl in |- *; intros. +rewrite (ics_aux_ok (interp_m a0 v) c). +rewrite (interp_m_ok a0 v); rewrite (interp_m_ok a l). +auto. + +rewrite (ics_aux_ok (interp_m a0 v) (monom_insert a l c)); + rewrite (ics_aux_ok (interp_m a0 v) c); rewrite H. +auto. + +simpl in |- *. +generalize (varlist_eq_prop l v); elim (varlist_eq l v). +intro Hr; rewrite (Hr I); simpl in |- *. +rewrite (ics_aux_ok (interp_m (Aplus a Aone) v) c); + rewrite (ics_aux_ok (interp_vl v) c). +rewrite (interp_m_ok (Aplus a Aone) v). +setoid_replace (Amult (Aplus a Aone) (interp_vl v)) with + (Aplus (Amult a (interp_vl v)) (Amult Aone (interp_vl v))). +setoid_replace (Amult Aone (interp_vl v)) with (interp_vl v). +auto. + +elim (varlist_lt l v); simpl in |- *; intros; auto. +rewrite (ics_aux_ok (interp_vl v) (monom_insert a l c)); rewrite H. +rewrite (ics_aux_ok (interp_vl v) c); auto. +Qed. Lemma varlist_insert_ok : - (l:varlist)(s:canonical_sum) - (Aequiv (interp_setcs (varlist_insert l s)) - (Aplus (interp_vl l) (interp_setcs s))). + forall (l:varlist) (s:canonical_sum), + Aequiv (interp_setcs (varlist_insert l s)) + (Aplus (interp_vl l) (interp_setcs s)). Proof. -Induction s; Simpl; Intros. -Trivial. - -Generalize (varlist_eq_prop l v); Elim (varlist_eq l v). -Intro Hr; Rewrite (Hr I); Simpl. -Rewrite (ics_aux_ok (interp_m (Aplus Aone a) v) c); -Rewrite (ics_aux_ok (interp_m a v) c). -Rewrite (interp_m_ok (Aplus Aone a) v); -Rewrite (interp_m_ok a v). -Setoid_replace (Amult (Aplus Aone a) (interp_vl v)) - with (Aplus (Amult Aone (interp_vl v)) (Amult a (interp_vl v))). -Setoid_replace (Amult Aone (interp_vl v)) with (interp_vl v); Auto. - -Elim (varlist_lt l v); Simpl; Intros; Auto. -Rewrite (ics_aux_ok (interp_m a v) (varlist_insert l c)); -Rewrite (ics_aux_ok (interp_m a v) c). -Rewrite (interp_m_ok a v). -Rewrite H; Auto. - -Generalize (varlist_eq_prop l v); Elim (varlist_eq l v). -Intro Hr; Rewrite (Hr I); Simpl. -Rewrite (ics_aux_ok (interp_m (Aplus Aone Aone) v) c); -Rewrite (ics_aux_ok (interp_vl v) c). -Rewrite (interp_m_ok (Aplus Aone Aone) v). -Setoid_replace (Amult (Aplus Aone Aone) (interp_vl v)) - with (Aplus (Amult Aone (interp_vl v)) (Amult Aone (interp_vl v))). -Setoid_replace (Amult Aone (interp_vl v)) with (interp_vl v); Auto. - -Elim (varlist_lt l v); Simpl; Intros; Auto. -Rewrite (ics_aux_ok (interp_vl v) (varlist_insert l c)). -Rewrite H. -Rewrite (ics_aux_ok (interp_vl v) c); Auto. -Save. - -Lemma canonical_sum_scalar_ok : (a:A)(s:canonical_sum) - (Aequiv (interp_setcs (canonical_sum_scalar a s)) (Amult a (interp_setcs s))). +simple induction s; simpl in |- *; intros. +trivial. + +generalize (varlist_eq_prop l v); elim (varlist_eq l v). +intro Hr; rewrite (Hr I); simpl in |- *. +rewrite (ics_aux_ok (interp_m (Aplus Aone a) v) c); + rewrite (ics_aux_ok (interp_m a v) c). +rewrite (interp_m_ok (Aplus Aone a) v); rewrite (interp_m_ok a v). +setoid_replace (Amult (Aplus Aone a) (interp_vl v)) with + (Aplus (Amult Aone (interp_vl v)) (Amult a (interp_vl v))). +setoid_replace (Amult Aone (interp_vl v)) with (interp_vl v); auto. + +elim (varlist_lt l v); simpl in |- *; intros; auto. +rewrite (ics_aux_ok (interp_m a v) (varlist_insert l c)); + rewrite (ics_aux_ok (interp_m a v) c). +rewrite (interp_m_ok a v). +rewrite H; auto. + +generalize (varlist_eq_prop l v); elim (varlist_eq l v). +intro Hr; rewrite (Hr I); simpl in |- *. +rewrite (ics_aux_ok (interp_m (Aplus Aone Aone) v) c); + rewrite (ics_aux_ok (interp_vl v) c). +rewrite (interp_m_ok (Aplus Aone Aone) v). +setoid_replace (Amult (Aplus Aone Aone) (interp_vl v)) with + (Aplus (Amult Aone (interp_vl v)) (Amult Aone (interp_vl v))). +setoid_replace (Amult Aone (interp_vl v)) with (interp_vl v); auto. + +elim (varlist_lt l v); simpl in |- *; intros; auto. +rewrite (ics_aux_ok (interp_vl v) (varlist_insert l c)). +rewrite H. +rewrite (ics_aux_ok (interp_vl v) c); auto. +Qed. + +Lemma canonical_sum_scalar_ok : + forall (a:A) (s:canonical_sum), + Aequiv (interp_setcs (canonical_sum_scalar a s)) + (Amult a (interp_setcs s)). Proof. -Induction s; Simpl; Intros. -Trivial. - -Rewrite (ics_aux_ok (interp_m (Amult a a0) v) - (canonical_sum_scalar a c)); -Rewrite (ics_aux_ok (interp_m a0 v) c). -Rewrite (interp_m_ok (Amult a a0) v); -Rewrite (interp_m_ok a0 v). -Rewrite H. -Setoid_replace (Amult a (Aplus (Amult a0 (interp_vl v)) (interp_setcs c))) +simple induction s; simpl in |- *; intros. +trivial. + +rewrite (ics_aux_ok (interp_m (Amult a a0) v) (canonical_sum_scalar a c)); + rewrite (ics_aux_ok (interp_m a0 v) c). +rewrite (interp_m_ok (Amult a a0) v); rewrite (interp_m_ok a0 v). +rewrite H. +setoid_replace (Amult a (Aplus (Amult a0 (interp_vl v)) (interp_setcs c))) with (Aplus (Amult a (Amult a0 (interp_vl v))) (Amult a (interp_setcs c))). -Auto. - -Rewrite (ics_aux_ok (interp_m a v) (canonical_sum_scalar a c)); -Rewrite (ics_aux_ok (interp_vl v) c); Rewrite H. -Rewrite (interp_m_ok a v). -Auto. -Save. - -Lemma canonical_sum_scalar2_ok : (l:varlist; s:canonical_sum) - (Aequiv (interp_setcs (canonical_sum_scalar2 l s)) (Amult (interp_vl l) (interp_setcs s))). +auto. + +rewrite (ics_aux_ok (interp_m a v) (canonical_sum_scalar a c)); + rewrite (ics_aux_ok (interp_vl v) c); rewrite H. +rewrite (interp_m_ok a v). +auto. +Qed. + +Lemma canonical_sum_scalar2_ok : + forall (l:varlist) (s:canonical_sum), + Aequiv (interp_setcs (canonical_sum_scalar2 l s)) + (Amult (interp_vl l) (interp_setcs s)). Proof. -Induction s; Simpl; Intros; Auto. -Rewrite (monom_insert_ok a (varlist_merge l v) - (canonical_sum_scalar2 l c)). -Rewrite (ics_aux_ok (interp_m a v) c). -Rewrite (interp_m_ok a v). -Rewrite H. -Rewrite (varlist_merge_ok l v). -Setoid_replace (Amult (interp_vl l) - (Aplus (Amult a (interp_vl v)) (interp_setcs c))) - with (Aplus (Amult (interp_vl l) (Amult a (interp_vl v))) - (Amult (interp_vl l) (interp_setcs c))). -Auto. - -Rewrite (varlist_insert_ok (varlist_merge l v) - (canonical_sum_scalar2 l c)). -Rewrite (ics_aux_ok (interp_vl v) c). -Rewrite H. -Rewrite (varlist_merge_ok l v). -Auto. -Save. - -Lemma canonical_sum_scalar3_ok : (c:A; l:varlist; s:canonical_sum) - (Aequiv (interp_setcs (canonical_sum_scalar3 c l s)) (Amult c (Amult (interp_vl l) (interp_setcs s)))). +simple induction s; simpl in |- *; intros; auto. +rewrite (monom_insert_ok a (varlist_merge l v) (canonical_sum_scalar2 l c)). +rewrite (ics_aux_ok (interp_m a v) c). +rewrite (interp_m_ok a v). +rewrite H. +rewrite (varlist_merge_ok l v). +setoid_replace + (Amult (interp_vl l) (Aplus (Amult a (interp_vl v)) (interp_setcs c))) with + (Aplus (Amult (interp_vl l) (Amult a (interp_vl v))) + (Amult (interp_vl l) (interp_setcs c))). +auto. + +rewrite (varlist_insert_ok (varlist_merge l v) (canonical_sum_scalar2 l c)). +rewrite (ics_aux_ok (interp_vl v) c). +rewrite H. +rewrite (varlist_merge_ok l v). +auto. +Qed. + +Lemma canonical_sum_scalar3_ok : + forall (c:A) (l:varlist) (s:canonical_sum), + Aequiv (interp_setcs (canonical_sum_scalar3 c l s)) + (Amult c (Amult (interp_vl l) (interp_setcs s))). Proof. -Induction s; Simpl; Intros. -Rewrite (SSR_mult_zero_right S T (interp_vl l)). -Auto. - -Rewrite (monom_insert_ok (Amult c a) (varlist_merge l v) - (canonical_sum_scalar3 c l c0)). -Rewrite (ics_aux_ok (interp_m a v) c0). -Rewrite (interp_m_ok a v). -Rewrite H. -Rewrite (varlist_merge_ok l v). -Setoid_replace (Amult (interp_vl l) - (Aplus (Amult a (interp_vl v)) (interp_setcs c0))) - with (Aplus (Amult (interp_vl l) (Amult a (interp_vl v))) - (Amult (interp_vl l) (interp_setcs c0))). -Setoid_replace (Amult c - (Aplus (Amult (interp_vl l) (Amult a (interp_vl v))) - (Amult (interp_vl l) (interp_setcs c0)))) - with (Aplus (Amult c (Amult (interp_vl l) (Amult a (interp_vl v)))) - (Amult c (Amult (interp_vl l) (interp_setcs c0)))). -Setoid_replace (Amult (Amult c a) (Amult (interp_vl l) (interp_vl v))) - with (Amult c (Amult a (Amult (interp_vl l) (interp_vl v)))). -Auto. - -Rewrite (monom_insert_ok c (varlist_merge l v) - (canonical_sum_scalar3 c l c0)). -Rewrite (ics_aux_ok (interp_vl v) c0). -Rewrite H. -Rewrite (varlist_merge_ok l v). -Setoid_replace (Aplus (Amult c (Amult (interp_vl l) (interp_vl v))) - (Amult c (Amult (interp_vl l) (interp_setcs c0)))) - with (Amult c - (Aplus (Amult (interp_vl l) (interp_vl v)) - (Amult (interp_vl l) (interp_setcs c0)))). -Auto. -Save. - -Lemma canonical_sum_prod_ok : (x,y:canonical_sum) - (Aequiv (interp_setcs (canonical_sum_prod x y)) (Amult (interp_setcs x) (interp_setcs y))). +simple induction s; simpl in |- *; intros. +rewrite (SSR_mult_zero_right S T (interp_vl l)). +auto. + +rewrite + (monom_insert_ok (Amult c a) (varlist_merge l v) + (canonical_sum_scalar3 c l c0)). +rewrite (ics_aux_ok (interp_m a v) c0). +rewrite (interp_m_ok a v). +rewrite H. +rewrite (varlist_merge_ok l v). +setoid_replace + (Amult (interp_vl l) (Aplus (Amult a (interp_vl v)) (interp_setcs c0))) with + (Aplus (Amult (interp_vl l) (Amult a (interp_vl v))) + (Amult (interp_vl l) (interp_setcs c0))). +setoid_replace + (Amult c + (Aplus (Amult (interp_vl l) (Amult a (interp_vl v))) + (Amult (interp_vl l) (interp_setcs c0)))) with + (Aplus (Amult c (Amult (interp_vl l) (Amult a (interp_vl v)))) + (Amult c (Amult (interp_vl l) (interp_setcs c0)))). +setoid_replace (Amult (Amult c a) (Amult (interp_vl l) (interp_vl v))) with + (Amult c (Amult a (Amult (interp_vl l) (interp_vl v)))). +auto. + +rewrite + (monom_insert_ok c (varlist_merge l v) (canonical_sum_scalar3 c l c0)) + . +rewrite (ics_aux_ok (interp_vl v) c0). +rewrite H. +rewrite (varlist_merge_ok l v). +setoid_replace + (Aplus (Amult c (Amult (interp_vl l) (interp_vl v))) + (Amult c (Amult (interp_vl l) (interp_setcs c0)))) with + (Amult c + (Aplus (Amult (interp_vl l) (interp_vl v)) + (Amult (interp_vl l) (interp_setcs c0)))). +auto. +Qed. + +Lemma canonical_sum_prod_ok : + forall x y:canonical_sum, + Aequiv (interp_setcs (canonical_sum_prod x y)) + (Amult (interp_setcs x) (interp_setcs y)). Proof. -Induction x; Simpl; Intros. -Trivial. - -Rewrite (canonical_sum_merge_ok (canonical_sum_scalar3 a v y) - (canonical_sum_prod c y)). -Rewrite (canonical_sum_scalar3_ok a v y). -Rewrite (ics_aux_ok (interp_m a v) c). -Rewrite (interp_m_ok a v). -Rewrite (H y). -Setoid_replace (Amult a (Amult (interp_vl v) (interp_setcs y))) - with (Amult (Amult a (interp_vl v)) (interp_setcs y)). -Setoid_replace (Amult (Aplus (Amult a (interp_vl v)) (interp_setcs c)) - (interp_setcs y)) - with (Aplus (Amult (Amult a (interp_vl v)) (interp_setcs y)) - (Amult (interp_setcs c) (interp_setcs y))). -Trivial. - -Rewrite (canonical_sum_merge_ok (canonical_sum_scalar2 v y) - (canonical_sum_prod c y)). -Rewrite (canonical_sum_scalar2_ok v y). -Rewrite (ics_aux_ok (interp_vl v) c). -Rewrite (H y). -Trivial. -Save. - -Theorem setspolynomial_normalize_ok : (p:setspolynomial) - (Aequiv (interp_setcs (setspolynomial_normalize p)) (interp_setsp p)). +simple induction x; simpl in |- *; intros. +trivial. + +rewrite + (canonical_sum_merge_ok (canonical_sum_scalar3 a v y) + (canonical_sum_prod c y)). +rewrite (canonical_sum_scalar3_ok a v y). +rewrite (ics_aux_ok (interp_m a v) c). +rewrite (interp_m_ok a v). +rewrite (H y). +setoid_replace (Amult a (Amult (interp_vl v) (interp_setcs y))) with + (Amult (Amult a (interp_vl v)) (interp_setcs y)). +setoid_replace + (Amult (Aplus (Amult a (interp_vl v)) (interp_setcs c)) (interp_setcs y)) + with + (Aplus (Amult (Amult a (interp_vl v)) (interp_setcs y)) + (Amult (interp_setcs c) (interp_setcs y))). +trivial. + +rewrite + (canonical_sum_merge_ok (canonical_sum_scalar2 v y) (canonical_sum_prod c y)) + . +rewrite (canonical_sum_scalar2_ok v y). +rewrite (ics_aux_ok (interp_vl v) c). +rewrite (H y). +trivial. +Qed. + +Theorem setspolynomial_normalize_ok : + forall p:setspolynomial, + Aequiv (interp_setcs (setspolynomial_normalize p)) (interp_setsp p). Proof. -Induction p; Simpl; Intros; Trivial. -Rewrite (canonical_sum_merge_ok (setspolynomial_normalize s) - (setspolynomial_normalize s0)). -Rewrite H; Rewrite H0; Trivial. - -Rewrite (canonical_sum_prod_ok (setspolynomial_normalize s) - (setspolynomial_normalize s0)). -Rewrite H; Rewrite H0; Trivial. -Save. - -Lemma canonical_sum_simplify_ok : (s:canonical_sum) - (Aequiv (interp_setcs (canonical_sum_simplify s)) (interp_setcs s)). +simple induction p; simpl in |- *; intros; trivial. +rewrite + (canonical_sum_merge_ok (setspolynomial_normalize s) + (setspolynomial_normalize s0)). +rewrite H; rewrite H0; trivial. + +rewrite + (canonical_sum_prod_ok (setspolynomial_normalize s) + (setspolynomial_normalize s0)). +rewrite H; rewrite H0; trivial. +Qed. + +Lemma canonical_sum_simplify_ok : + forall s:canonical_sum, + Aequiv (interp_setcs (canonical_sum_simplify s)) (interp_setcs s). Proof. -Induction s; Simpl; Intros. -Trivial. - -Generalize (SSR_eq_prop T 9!a 10!Azero). -Elim (Aeq a Azero). -Simpl. -Intros. -Rewrite (ics_aux_ok (interp_m a v) c). -Rewrite (interp_m_ok a v). -Rewrite (H0 I). -Setoid_replace (Amult Azero (interp_vl v)) with Azero. -Rewrite H. -Trivial. - -Intros; Simpl. -Generalize (SSR_eq_prop T 9!a 10!Aone). -Elim (Aeq a Aone). -Intros. -Rewrite (ics_aux_ok (interp_m a v) c). -Rewrite (interp_m_ok a v). -Rewrite (H1 I). -Simpl. -Rewrite (ics_aux_ok (interp_vl v) (canonical_sum_simplify c)). -Rewrite H. -Auto. - -Simpl. -Intros. -Rewrite (ics_aux_ok (interp_m a v) (canonical_sum_simplify c)). -Rewrite (ics_aux_ok (interp_m a v) c). -Rewrite H; Trivial. - -Rewrite (ics_aux_ok (interp_vl v) (canonical_sum_simplify c)). -Rewrite H. -Auto. -Save. - -Theorem setspolynomial_simplify_ok : (p:setspolynomial) - (Aequiv (interp_setcs (setspolynomial_simplify p)) (interp_setsp p)). +simple induction s; simpl in |- *; intros. +trivial. + +generalize (SSR_eq_prop T a Azero). +elim (Aeq a Azero). +simpl in |- *. +intros. +rewrite (ics_aux_ok (interp_m a v) c). +rewrite (interp_m_ok a v). +rewrite (H0 I). +setoid_replace (Amult Azero (interp_vl v)) with Azero. +rewrite H. +trivial. + +intros; simpl in |- *. +generalize (SSR_eq_prop T a Aone). +elim (Aeq a Aone). +intros. +rewrite (ics_aux_ok (interp_m a v) c). +rewrite (interp_m_ok a v). +rewrite (H1 I). +simpl in |- *. +rewrite (ics_aux_ok (interp_vl v) (canonical_sum_simplify c)). +rewrite H. +auto. + +simpl in |- *. +intros. +rewrite (ics_aux_ok (interp_m a v) (canonical_sum_simplify c)). +rewrite (ics_aux_ok (interp_m a v) c). +rewrite H; trivial. + +rewrite (ics_aux_ok (interp_vl v) (canonical_sum_simplify c)). +rewrite H. +auto. +Qed. + +Theorem setspolynomial_simplify_ok : + forall p:setspolynomial, + Aequiv (interp_setcs (setspolynomial_simplify p)) (interp_setsp p). Proof. -Intro. -Unfold setspolynomial_simplify. -Rewrite (canonical_sum_simplify_ok (setspolynomial_normalize p)). -Exact (setspolynomial_normalize_ok p). -Save. +intro. +unfold setspolynomial_simplify in |- *. +rewrite (canonical_sum_simplify_ok (setspolynomial_normalize p)). +exact (setspolynomial_normalize_ok p). +Qed. End semi_setoid_rings. -Implicits Cons_varlist. -Implicits Cons_monom. -Implicits SetSPconst. -Implicits SetSPplus. -Implicits SetSPmult. +Implicit Arguments Cons_varlist. +Implicit Arguments Cons_monom. +Implicit Arguments SetSPconst. +Implicit Arguments SetSPplus. +Implicit Arguments SetSPmult. @@ -1008,134 +998,140 @@ Section setoid_rings. Set Implicit Arguments. -Variable vm : (varmap A). -Variable T : (Setoid_Ring_Theory Aequiv Aplus Amult Aone Azero Aopp Aeq). - -Hint STh_plus_sym_T := Resolve (STh_plus_sym T). -Hint STh_plus_assoc_T := Resolve (STh_plus_assoc T). -Hint STh_plus_assoc2_T := Resolve (STh_plus_assoc2 S T). -Hint STh_mult_sym_T := Resolve (STh_mult_sym T). -Hint STh_mult_assoc_T := Resolve (STh_mult_assoc T). -Hint STh_mult_assoc2_T := Resolve (STh_mult_assoc2 S T). -Hint STh_plus_zero_left_T := Resolve (STh_plus_zero_left T). -Hint STh_plus_zero_left2_T := Resolve (STh_plus_zero_left2 S T). -Hint STh_mult_one_left_T := Resolve (STh_mult_one_left T). -Hint STh_mult_one_left2_T := Resolve (STh_mult_one_left2 S T). -Hint STh_mult_zero_left_T := Resolve (STh_mult_zero_left S plus_morph mult_morph T). -Hint STh_mult_zero_left2_T := Resolve (STh_mult_zero_left2 S plus_morph mult_morph T). -Hint STh_distr_left_T := Resolve (STh_distr_left T). -Hint STh_distr_left2_T := Resolve (STh_distr_left2 S T). -Hint STh_plus_reg_left_T := Resolve (STh_plus_reg_left S plus_morph T). -Hint STh_plus_permute_T := Resolve (STh_plus_permute S plus_morph T). -Hint STh_mult_permute_T := Resolve (STh_mult_permute S mult_morph T). -Hint STh_distr_right_T := Resolve (STh_distr_right S plus_morph T). -Hint STh_distr_right2_T := Resolve (STh_distr_right2 S plus_morph T). -Hint STh_mult_zero_right_T := Resolve (STh_mult_zero_right S plus_morph mult_morph T). -Hint STh_mult_zero_right2_T := Resolve (STh_mult_zero_right2 S plus_morph mult_morph T). -Hint STh_plus_zero_right_T := Resolve (STh_plus_zero_right S T). -Hint STh_plus_zero_right2_T := Resolve (STh_plus_zero_right2 S T). -Hint STh_mult_one_right_T := Resolve (STh_mult_one_right S T). -Hint STh_mult_one_right2_T := Resolve (STh_mult_one_right2 S T). -Hint STh_plus_reg_right_T := Resolve (STh_plus_reg_right S plus_morph T). -Hints Resolve refl_equal sym_equal trans_equal. +Variable vm : varmap A. +Variable T : Setoid_Ring_Theory Aequiv Aplus Amult Aone Azero Aopp Aeq. + +Hint Resolve (STh_plus_comm T). +Hint Resolve (STh_plus_assoc T). +Hint Resolve (STh_plus_assoc2 S T). +Hint Resolve (STh_mult_sym T). +Hint Resolve (STh_mult_assoc T). +Hint Resolve (STh_mult_assoc2 S T). +Hint Resolve (STh_plus_zero_left T). +Hint Resolve (STh_plus_zero_left2 S T). +Hint Resolve (STh_mult_one_left T). +Hint Resolve (STh_mult_one_left2 S T). +Hint Resolve (STh_mult_zero_left S plus_morph mult_morph T). +Hint Resolve (STh_mult_zero_left2 S plus_morph mult_morph T). +Hint Resolve (STh_distr_left T). +Hint Resolve (STh_distr_left2 S T). +Hint Resolve (STh_plus_reg_left S plus_morph T). +Hint Resolve (STh_plus_permute S plus_morph T). +Hint Resolve (STh_mult_permute S mult_morph T). +Hint Resolve (STh_distr_right S plus_morph T). +Hint Resolve (STh_distr_right2 S plus_morph T). +Hint Resolve (STh_mult_zero_right S plus_morph mult_morph T). +Hint Resolve (STh_mult_zero_right2 S plus_morph mult_morph T). +Hint Resolve (STh_plus_zero_right S T). +Hint Resolve (STh_plus_zero_right2 S T). +Hint Resolve (STh_mult_one_right S T). +Hint Resolve (STh_mult_one_right2 S T). +Hint Resolve (STh_plus_reg_right S plus_morph T). +Hint Resolve refl_equal sym_equal trans_equal. (*Hints Resolve refl_eqT sym_eqT trans_eqT.*) -Hints Immediate T. +Hint Immediate T. (*** Definitions *) -Inductive Type setpolynomial := - SetPvar : index -> setpolynomial -| SetPconst : A -> setpolynomial -| SetPplus : setpolynomial -> setpolynomial -> setpolynomial -| SetPmult : setpolynomial -> setpolynomial -> setpolynomial -| SetPopp : setpolynomial -> setpolynomial. - -Fixpoint setpolynomial_normalize [x:setpolynomial] : canonical_sum := - Cases x of - | (SetPplus l r) => (canonical_sum_merge - (setpolynomial_normalize l) - (setpolynomial_normalize r)) - | (SetPmult l r) => (canonical_sum_prod - (setpolynomial_normalize l) - (setpolynomial_normalize r)) - | (SetPconst c) => (Cons_monom c Nil_var Nil_monom) - | (SetPvar i) => (Cons_varlist (Cons_var i Nil_var) Nil_monom) - | (SetPopp p) => (canonical_sum_scalar3 - (Aopp Aone) Nil_var - (setpolynomial_normalize p)) - end. - -Definition setpolynomial_simplify := - [x:setpolynomial](canonical_sum_simplify (setpolynomial_normalize x)). - -Fixpoint setspolynomial_of [x:setpolynomial] : setspolynomial := - Cases x of - | (SetPplus l r) => (SetSPplus (setspolynomial_of l) (setspolynomial_of r)) - | (SetPmult l r) => (SetSPmult (setspolynomial_of l) (setspolynomial_of r)) - | (SetPconst c) => (SetSPconst c) - | (SetPvar i) => (SetSPvar i) - | (SetPopp p) => (SetSPmult (SetSPconst (Aopp Aone)) (setspolynomial_of p)) - end. +Inductive setpolynomial : Type := + | SetPvar : index -> setpolynomial + | SetPconst : A -> setpolynomial + | SetPplus : setpolynomial -> setpolynomial -> setpolynomial + | SetPmult : setpolynomial -> setpolynomial -> setpolynomial + | SetPopp : setpolynomial -> setpolynomial. + +Fixpoint setpolynomial_normalize (x:setpolynomial) : canonical_sum := + match x with + | SetPplus l r => + canonical_sum_merge (setpolynomial_normalize l) + (setpolynomial_normalize r) + | SetPmult l r => + canonical_sum_prod (setpolynomial_normalize l) + (setpolynomial_normalize r) + | SetPconst c => Cons_monom c Nil_var Nil_monom + | SetPvar i => Cons_varlist (Cons_var i Nil_var) Nil_monom + | SetPopp p => + canonical_sum_scalar3 (Aopp Aone) Nil_var (setpolynomial_normalize p) + end. + +Definition setpolynomial_simplify (x:setpolynomial) := + canonical_sum_simplify (setpolynomial_normalize x). + +Fixpoint setspolynomial_of (x:setpolynomial) : setspolynomial := + match x with + | SetPplus l r => SetSPplus (setspolynomial_of l) (setspolynomial_of r) + | SetPmult l r => SetSPmult (setspolynomial_of l) (setspolynomial_of r) + | SetPconst c => SetSPconst c + | SetPvar i => SetSPvar i + | SetPopp p => SetSPmult (SetSPconst (Aopp Aone)) (setspolynomial_of p) + end. (*** Interpretation *) -Fixpoint interp_setp [p:setpolynomial] : A := - Cases p of - | (SetPconst c) => c - | (SetPvar i) => (varmap_find Azero i vm) - | (SetPplus p1 p2) => (Aplus (interp_setp p1) (interp_setp p2)) - | (SetPmult p1 p2) => (Amult (interp_setp p1) (interp_setp p2)) - | (SetPopp p1) => (Aopp (interp_setp p1)) - end. +Fixpoint interp_setp (p:setpolynomial) : A := + match p with + | SetPconst c => c + | SetPvar i => varmap_find Azero i vm + | SetPplus p1 p2 => Aplus (interp_setp p1) (interp_setp p2) + | SetPmult p1 p2 => Amult (interp_setp p1) (interp_setp p2) + | SetPopp p1 => Aopp (interp_setp p1) + end. (*** Properties *) Unset Implicit Arguments. -Lemma setspolynomial_of_ok : (p:setpolynomial) - (Aequiv (interp_setp p) (interp_setsp vm (setspolynomial_of p))). -Induction p; Trivial; Simpl; Intros. -Rewrite H; Rewrite H0; Trivial. -Rewrite H; Rewrite H0; Trivial. -Rewrite H. -Rewrite (STh_opp_mult_left2 S plus_morph mult_morph T Aone - (interp_setsp vm (setspolynomial_of s))). -Rewrite (STh_mult_one_left T - (interp_setsp vm (setspolynomial_of s))). -Trivial. -Save. - -Theorem setpolynomial_normalize_ok : (p:setpolynomial) - (setpolynomial_normalize p) - ==(setspolynomial_normalize (setspolynomial_of p)). -Induction p; Trivial; Simpl; Intros. -Rewrite H; Rewrite H0; Reflexivity. -Rewrite H; Rewrite H0; Reflexivity. -Rewrite H; Simpl. -Elim (canonical_sum_scalar3 (Aopp Aone) Nil_var - (setspolynomial_normalize (setspolynomial_of s))); - [ Reflexivity - | Simpl; Intros; Rewrite H0; Reflexivity - | Simpl; Intros; Rewrite H0; Reflexivity ]. -Save. - -Theorem setpolynomial_simplify_ok : (p:setpolynomial) - (Aequiv (interp_setcs vm (setpolynomial_simplify p)) (interp_setp p)). -Intro. -Unfold setpolynomial_simplify. -Rewrite (setspolynomial_of_ok p). -Rewrite setpolynomial_normalize_ok. -Rewrite (canonical_sum_simplify_ok vm - (Semi_Setoid_Ring_Theory_of A Aequiv S Aplus Amult Aone Azero Aopp - Aeq plus_morph mult_morph T) - (setspolynomial_normalize (setspolynomial_of p))). -Rewrite (setspolynomial_normalize_ok vm - (Semi_Setoid_Ring_Theory_of A Aequiv S Aplus Amult Aone Azero Aopp - Aeq plus_morph mult_morph T) (setspolynomial_of p)). -Trivial. -Save. +Lemma setspolynomial_of_ok : + forall p:setpolynomial, + Aequiv (interp_setp p) (interp_setsp vm (setspolynomial_of p)). +simple induction p; trivial; simpl in |- *; intros. +rewrite H; rewrite H0; trivial. +rewrite H; rewrite H0; trivial. +rewrite H. +rewrite + (STh_opp_mult_left2 S plus_morph mult_morph T Aone + (interp_setsp vm (setspolynomial_of s))). +rewrite (STh_mult_one_left T (interp_setsp vm (setspolynomial_of s))). +trivial. +Qed. + +Theorem setpolynomial_normalize_ok : + forall p:setpolynomial, + setpolynomial_normalize p = setspolynomial_normalize (setspolynomial_of p). +simple induction p; trivial; simpl in |- *; intros. +rewrite H; rewrite H0; reflexivity. +rewrite H; rewrite H0; reflexivity. +rewrite H; simpl in |- *. +elim + (canonical_sum_scalar3 (Aopp Aone) Nil_var + (setspolynomial_normalize (setspolynomial_of s))); + [ reflexivity + | simpl in |- *; intros; rewrite H0; reflexivity + | simpl in |- *; intros; rewrite H0; reflexivity ]. +Qed. + +Theorem setpolynomial_simplify_ok : + forall p:setpolynomial, + Aequiv (interp_setcs vm (setpolynomial_simplify p)) (interp_setp p). +intro. +unfold setpolynomial_simplify in |- *. +rewrite (setspolynomial_of_ok p). +rewrite setpolynomial_normalize_ok. +rewrite + (canonical_sum_simplify_ok vm + (Semi_Setoid_Ring_Theory_of A Aequiv S Aplus Amult Aone Azero Aopp Aeq + plus_morph mult_morph T) + (setspolynomial_normalize (setspolynomial_of p))) + . +rewrite + (setspolynomial_normalize_ok vm + (Semi_Setoid_Ring_Theory_of A Aequiv S Aplus Amult Aone Azero Aopp Aeq + plus_morph mult_morph T) (setspolynomial_of p)) + . +trivial. +Qed. End setoid_rings. -End setoid. +End setoid.
\ No newline at end of file |
