aboutsummaryrefslogtreecommitdiff
path: root/contrib/correctness/Exchange.v
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/correctness/Exchange.v')
-rw-r--r--contrib/correctness/Exchange.v107
1 files changed, 54 insertions, 53 deletions
diff --git a/contrib/correctness/Exchange.v b/contrib/correctness/Exchange.v
index 85c19b48bc..8016a29271 100644
--- a/contrib/correctness/Exchange.v
+++ b/contrib/correctness/Exchange.v
@@ -15,80 +15,81 @@
(* Definition and properties *)
(****************************************************************************)
-Require ProgInt.
-Require Arrays.
+Require Import ProgInt.
+Require Import Arrays.
Set Implicit Arguments.
(* Definition *)
-Inductive exchange [n:Z; A:Set; t,t':(array n A); i,j:Z] : Prop :=
- exchange_c :
- `0<=i<n` -> `0<=j<n` ->
- (#t[i] = #t'[j]) ->
- (#t[j] = #t'[i]) ->
- ((k:Z)`0<=k<n` -> `k<>i` -> `k<>j` -> #t[k] = #t'[k]) ->
- (exchange t t' i j).
+Inductive exchange (n:Z) (A:Set) (t t':array n A) (i j:Z) : Prop :=
+ exchange_c :
+ (0 <= i < n)%Z ->
+ (0 <= j < n)%Z ->
+ #t [i] = #t' [j] ->
+ #t [j] = #t' [i] ->
+ (forall k:Z, (0 <= k < n)%Z -> k <> i -> k <> j -> #t [k] = #t' [k]) ->
+ exchange t t' i j.
(* Properties about exchanges *)
-Lemma exchange_1 : (n:Z)(A:Set)(t:(array n A))
- (i,j:Z) `0<=i<n` -> `0<=j<n` ->
- (access (store (store t i #t[j]) j #t[i]) i) = #t[j].
+Lemma exchange_1 :
+ forall (n:Z) (A:Set) (t:array n A) (i j:Z),
+ (0 <= i < n)%Z ->
+ (0 <= j < n)%Z -> #(store (store t i #t [j]) j #t [i]) [i] = #t [j].
Proof.
-Intros n A t i j H_i H_j.
-Case (dec_eq j i).
-Intro eq_i_j. Rewrite eq_i_j.
-Auto with datatypes.
-Intro not_j_i.
-Rewrite (store_def_2 (store t i #t[j]) #t[i] H_j H_i not_j_i).
-Auto with datatypes.
-Save.
+intros n A t i j H_i H_j.
+case (dec_eq j i).
+intro eq_i_j. rewrite eq_i_j.
+auto with datatypes.
+intro not_j_i.
+rewrite (store_def_2 (store t i #t [j]) #t [i] H_j H_i not_j_i).
+auto with datatypes.
+Qed.
-Hints Resolve exchange_1 : v62 datatypes.
+Hint Resolve exchange_1: v62 datatypes.
Lemma exchange_proof :
- (n:Z)(A:Set)(t:(array n A))
- (i,j:Z) `0<=i<n` -> `0<=j<n` ->
- (exchange (store (store t i (access t j)) j (access t i)) t i j).
+ forall (n:Z) (A:Set) (t:array n A) (i j:Z),
+ (0 <= i < n)%Z ->
+ (0 <= j < n)%Z -> exchange (store (store t i #t [j]) j #t [i]) t i j.
Proof.
-Intros n A t i j H_i H_j.
-Apply exchange_c; Auto with datatypes.
-Intros k H_k not_k_i not_k_j.
-Cut ~j=k; Auto with datatypes. Intro not_j_k.
-Rewrite (store_def_2 (store t i (access t j)) (access t i) H_j H_k not_j_k).
-Auto with datatypes.
-Save.
+intros n A t i j H_i H_j.
+apply exchange_c; auto with datatypes.
+intros k H_k not_k_i not_k_j.
+cut (j <> k); auto with datatypes. intro not_j_k.
+rewrite (store_def_2 (store t i #t [j]) #t [i] H_j H_k not_j_k).
+auto with datatypes.
+Qed.
-Hints Resolve exchange_proof : v62 datatypes.
+Hint Resolve exchange_proof: v62 datatypes.
Lemma exchange_sym :
- (n:Z)(A:Set)(t,t':(array n A))(i,j:Z)
- (exchange t t' i j) -> (exchange t' t i j).
+ forall (n:Z) (A:Set) (t t':array n A) (i j:Z),
+ exchange t t' i j -> exchange t' t i j.
Proof.
-Intros n A t t' i j H1.
-Elim H1. Clear H1. Intros.
-Constructor 1; Auto with datatypes.
-Intros. Rewrite (H3 k); Auto with datatypes.
-Save.
+intros n A t t' i j H1.
+elim H1. clear H1. intros.
+constructor 1; auto with datatypes.
+intros. rewrite (H3 k); auto with datatypes.
+Qed.
-Hints Resolve exchange_sym : v62 datatypes.
+Hint Resolve exchange_sym: v62 datatypes.
Lemma exchange_id :
- (n:Z)(A:Set)(t,t':(array n A))(i,j:Z)
- (exchange t t' i j) ->
- i=j ->
- (k:Z) `0 <= k < n` -> (access t k)=(access t' k).
+ forall (n:Z) (A:Set) (t t':array n A) (i j:Z),
+ exchange t t' i j ->
+ i = j -> forall k:Z, (0 <= k < n)%Z -> #t [k] = #t' [k].
Proof.
-Intros n A t t' i j Hex Heq k Hk.
-Elim Hex. Clear Hex. Intros.
-Rewrite Heq in H1. Rewrite Heq in H2.
-Case (Z_eq_dec k j).
- Intro Heq'. Rewrite Heq'. Assumption.
- Intro Hnoteq. Apply (H3 k); Auto with datatypes. Rewrite Heq. Assumption.
-Save.
-
-Hints Resolve exchange_id : v62 datatypes.
+intros n A t t' i j Hex Heq k Hk.
+elim Hex. clear Hex. intros.
+rewrite Heq in H1. rewrite Heq in H2.
+case (Z_eq_dec k j).
+ intro Heq'. rewrite Heq'. assumption.
+ intro Hnoteq. apply (H3 k); auto with datatypes. rewrite Heq. assumption.
+Qed.
+
+Hint Resolve exchange_id: v62 datatypes. \ No newline at end of file