diff options
| -rw-r--r-- | theories/Numbers/Integer/Abstract/ZLcm.v | 12 |
1 files changed, 6 insertions, 6 deletions
diff --git a/theories/Numbers/Integer/Abstract/ZLcm.v b/theories/Numbers/Integer/Abstract/ZLcm.v index 6aa828ebfc..c45ea12868 100644 --- a/theories/Numbers/Integer/Abstract/ZLcm.v +++ b/theories/Numbers/Integer/Abstract/ZLcm.v @@ -33,14 +33,14 @@ Module Type ZLcmProp Lemma quot_div_nonneg : forall a b, 0<=a -> 0<b -> a÷b == a/b. Proof. - intros. apply div_unique_pos with (a rem b). + intros a b **. apply div_unique_pos with (a rem b). now apply rem_bound_pos. apply quot_rem. order. Qed. Lemma rem_mod_nonneg : forall a b, 0<=a -> 0<b -> a rem b == a mod b. Proof. - intros. apply mod_unique_pos with (a÷b). + intros a b **. apply mod_unique_pos with (a÷b). now apply rem_bound_pos. apply quot_rem. order. Qed. @@ -290,7 +290,7 @@ Qed. Lemma lcm_divide_iff : forall n m p, (lcm n m | p) <-> (n | p) /\ (m | p). Proof. - intros. split. split. + intros n m p. split. split. transitivity (lcm n m); trivial using divide_lcm_l. transitivity (lcm n m); trivial using divide_lcm_r. intros (H,H'). now apply lcm_least. @@ -387,7 +387,7 @@ Qed. Lemma lcm_abs_l : forall n m, lcm (abs n) m == lcm n m. Proof. - intros. destruct (abs_eq_or_opp n) as [H|H]; rewrite H. + intros n m. destruct (abs_eq_or_opp n) as [H|H]; rewrite H. easy. apply lcm_opp_l. Qed. @@ -438,7 +438,7 @@ Qed. Lemma lcm_mul_mono_l_nonneg : forall n m p, 0<=p -> lcm (p*n) (p*m) == p * lcm n m. Proof. - intros. rewrite <- (abs_eq p) at 3; trivial. apply lcm_mul_mono_l. + intros n m p ?. rewrite <- (abs_eq p) at 3; trivial. apply lcm_mul_mono_l. Qed. Lemma lcm_mul_mono_r : @@ -450,7 +450,7 @@ Qed. Lemma lcm_mul_mono_r_nonneg : forall n m p, 0<=p -> lcm (n*p) (m*p) == lcm n m * p. Proof. - intros. rewrite <- (abs_eq p) at 3; trivial. apply lcm_mul_mono_r. + intros n m p ?. rewrite <- (abs_eq p) at 3; trivial. apply lcm_mul_mono_r. Qed. Lemma gcd_1_lcm_mul : forall n m, n~=0 -> m~=0 -> |
