aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--contrib/ring/ArithRing.v2
-rw-r--r--contrib/ring/Ring_abstract.v4
2 files changed, 3 insertions, 3 deletions
diff --git a/contrib/ring/ArithRing.v b/contrib/ring/ArithRing.v
index 9b6a695e77..14d69e2b02 100644
--- a/contrib/ring/ArithRing.v
+++ b/contrib/ring/ArithRing.v
@@ -38,4 +38,4 @@ Goal (n:nat)(S n)=(plus (S O) n).
Intro; Reflexivity.
Save S_to_plus_one.
-Meta Definition NatRing := (Repeat Rewrite S_to_plus_one); Ring.
+Tactic Definition NatRing := (Repeat Rewrite S_to_plus_one); Ring.
diff --git a/contrib/ring/Ring_abstract.v b/contrib/ring/Ring_abstract.v
index 4150efc2d6..6bb1f5aa9a 100644
--- a/contrib/ring/Ring_abstract.v
+++ b/contrib/ring/Ring_abstract.v
@@ -443,7 +443,7 @@ Save.
Hint rew_isacs_aux : core := Extern 10 (eqT A ? ?) Rewrite isacs_aux_ok.
-Meta Definition Solve1 :=
+Tactic Definition Solve1 :=
Simpl; Elim (varlist_lt v v0); Simpl; Rewrite isacs_aux_ok;
[Rewrite H; Simpl; Auto
|Simpl in H0; Rewrite H0; Auto ].
@@ -499,7 +499,7 @@ Lemma signed_sum_merge_ok : (x,y:signed_sum)
Save.
-Meta Definition Solve2 :=
+Tactic Definition Solve2 :=
Elim (varlist_lt l v); Simpl; Rewrite isacs_aux_ok;
[ Auto
| Rewrite H; Auto ].