diff options
| -rw-r--r-- | theories/Reals/Rtrigo.v | 6 |
1 files changed, 3 insertions, 3 deletions
diff --git a/theories/Reals/Rtrigo.v b/theories/Reals/Rtrigo.v index e40c85d587..f1d8408fee 100644 --- a/theories/Reals/Rtrigo.v +++ b/theories/Reals/Rtrigo.v @@ -442,9 +442,9 @@ Definition sin_term [a:R] : nat->R := [i:nat] ``(pow (-1) i)*(pow a (plus (mult Definition cos_term [a:R] : nat->R := [i:nat] ``(pow (-1) i)*(pow a (mult (S (S O)) i))/(INR (fact (mult (S (S O)) i)))``. -Definition sin_approx [a:R;n:nat] : R := (sigma_aux (sin_term a) O n n). +Definition sin_approx [a:R;n:nat] : R := (sum_f_R0 (sin_term a) n). -Definition cos_approx [a:R;n:nat] : R := (sigma_aux (cos_term a) O n n). +Definition cos_approx [a:R;n:nat] : R := (sum_f_R0 (cos_term a) n). Axiom sin_bound : (a:R)(n:nat) ``0<=a``->``a<=PI``->``(sin_approx a (plus (mult (S (S O)) n) (S O)))<=(sin a)<=(sin_approx a (mult (S (S O)) (plus n (S O))))``. @@ -1485,7 +1485,7 @@ Lemma sin_lb_ge_0 : (a:R) ``0<=a``->``a<=PI/2``->``0<=(sin_lb a)``. Intros; Case (total_order R0 a); Intro. Left; Apply sin_lb_gt_0; Assumption. Elim H1; Intro. -Rewrite <- H2; Unfold sin_lb; Unfold sin_approx; Unfold sigma_aux; Unfold sin_term; Repeat Rewrite pow_ne_zero. +Rewrite <- H2; Unfold sin_lb; Unfold sin_approx; Unfold sum_f_R0; Unfold sin_term; Repeat Rewrite pow_ne_zero. Unfold Rdiv; Repeat Rewrite Rmult_Ol; Repeat Rewrite Rmult_Or; Repeat Rewrite Rplus_Or; Right; Reflexivity. Simpl; Discriminate. Simpl; Discriminate. |
