diff options
| -rw-r--r-- | test-suite/bugs/closed/3848.v | 21 | ||||
| -rw-r--r-- | test-suite/bugs/closed/3854.v | 21 |
2 files changed, 42 insertions, 0 deletions
diff --git a/test-suite/bugs/closed/3848.v b/test-suite/bugs/closed/3848.v new file mode 100644 index 0000000000..b66aeccaff --- /dev/null +++ b/test-suite/bugs/closed/3848.v @@ -0,0 +1,21 @@ +Axiom transport : forall {A : Type} (P : A -> Type) {x y : A} (p : x = y) (u : P x), P y. +Notation "p # x" := (transport _ p x) (right associativity, at level 65, only parsing). +Definition Sect {A B : Type} (s : A -> B) (r : B -> A) := forall x : A, r (s x) = x. +Class IsEquiv {A B} (f : A -> B) := { equiv_inv : B -> A ; eisretr : Sect equiv_inv f }. +Arguments eisretr {A B} f {_} _. +Notation "f ^-1" := (@equiv_inv _ _ f _) (at level 3, format "f '^-1'"). +Generalizable Variables A B f g e n. +Definition functor_forall `{P : A -> Type} `{Q : B -> Type} + (f0 : B -> A) (f1 : forall b:B, P (f0 b) -> Q b) +: (forall a:A, P a) -> (forall b:B, Q b). + admit. +Defined. + +Lemma isequiv_functor_forall `{P : A -> Type} `{Q : B -> Type} + `{IsEquiv B A f} `{forall b, @IsEquiv (P (f b)) (Q b) (g b)} +: (forall b : B, Q b) -> forall a : A, P a. +Proof. + refine (functor_forall + (f^-1) + (fun (x:A) (y:Q (f^-1 x)) => eisretr f x # (g (f^-1 x))^-1 y)). +Defined. (* Error: Attempt to save an incomplete proof *) diff --git a/test-suite/bugs/closed/3854.v b/test-suite/bugs/closed/3854.v new file mode 100644 index 0000000000..f8329cdd20 --- /dev/null +++ b/test-suite/bugs/closed/3854.v @@ -0,0 +1,21 @@ +Definition relation (A : Type) := A -> A -> Type. +Class Reflexive {A} (R : relation A) := reflexivity : forall x : A, R x x. +Axiom IsHProp : Type -> Type. +Existing Class IsHProp. +Inductive Empty : Set := . +Notation "~ x" := (x -> Empty) : type_scope. +Record hProp := BuildhProp { type :> Type ; trunc : IsHProp type }. +Arguments BuildhProp _ {_}. +Canonical Structure default_hProp := fun T P => (@BuildhProp T P). +Generalizable Variables A B f g e n. +Axiom trunc_forall : forall `{P : A -> Type}, IsHProp (forall a, P a). +Existing Instance trunc_forall. +Inductive V : Type := | set {A : Type} (f : A -> V) : V. +Axiom mem : V -> V -> hProp. +Axiom mem_induction +: forall (C : V -> hProp), (forall v, (forall x, mem x v -> C x) -> C v) -> forall v, C v. +Definition irreflexive_mem : forall x, (fun x y => ~ mem x y) x x. +Proof. + pose (fun x => BuildhProp (~ mem x x)). + refine (mem_induction (fun x => BuildhProp (~ mem x x)) _); simpl in *. + admit. |
