diff options
| -rw-r--r-- | theories/Reals/RIneq.v | 77 | ||||
| -rw-r--r-- | theories/Reals/Rfunctions.v | 2 |
2 files changed, 38 insertions, 41 deletions
diff --git a/theories/Reals/RIneq.v b/theories/Reals/RIneq.v index d06a1714ae..17425ca48b 100644 --- a/theories/Reals/RIneq.v +++ b/theories/Reals/RIneq.v @@ -34,11 +34,11 @@ Lemma Rle_refl : forall r, r <= r. Proof. intro; right; reflexivity. Qed. -Hint Resolve Rle_refl: real2. +Hint Immediate Rle_refl: rorders. Lemma Rge_refl : forall r, r <= r. Proof. exact Rle_refl. Qed. -Hint Resolve Rge_refl: real2. +Hint Immediate Rge_refl: rorders. (** Irreflexivity of the strict order *) @@ -105,8 +105,7 @@ Lemma Rlt_le : forall r1 r2, r1 < r2 -> r1 <= r2. Proof. intros; red in |- *; tauto. Qed. - -Hint Resolve Rlt_le: real real2. +Hint Resolve Rlt_le: real. Lemma Rgt_ge : forall r1 r2, r1 > r2 -> r1 >= r2. Proof. @@ -118,30 +117,28 @@ Lemma Rle_ge : forall r1 r2, r1 <= r2 -> r2 >= r1. Proof. destruct 1; red in |- *; auto with real. Qed. - -Hint Resolve Rle_ge: real. -Hint Resolve Rle_ge: real2. +Hint Immediate Rle_ge: real. +Hint Resolve Rle_ge: rorders. Lemma Rge_le : forall r1 r2, r1 >= r2 -> r2 <= r1. Proof. destruct 1; red in |- *; auto with real. Qed. - -Hint Immediate Rge_le: real. -Hint Immediate Rge_le: real2. +Hint Resolve Rge_le: real. +Hint Immediate Rge_le: rorders. (**********) Lemma Rlt_gt : forall r1 r2, r1 < r2 -> r2 > r1. Proof. trivial. Qed. -Hint Resolve Rlt_gt: real2. +Hint Resolve Rlt_gt: rorders. Lemma Rgt_lt : forall r1 r2, r1 > r2 -> r2 < r1. Proof. trivial. Qed. -Hint Immediate Rgt_lt: real2. +Hint Immediate Rgt_lt: rorders. (**********) @@ -163,17 +160,17 @@ Proof. intros; apply Rnot_le_lt. auto with real. Qed. Lemma Rnot_lt_le : forall r1 r2, ~ r1 < r2 -> r2 <= r1. Proof. intros r1 r2 H; destruct (Rtotal_order r1 r2) as [ | [ H0 | H0 ] ]. - contradiction. subst; auto with real2. auto with real2. + contradiction. subst; auto with rorders. auto with real. Qed. Lemma Rnot_gt_le : forall r1 r2, ~ r1 > r2 -> r1 <= r2. Proof. auto using Rnot_lt_le with real. Qed. Lemma Rnot_gt_ge : forall r1 r2, ~ r1 > r2 -> r2 >= r1. -Proof. intros; eauto using Rnot_lt_le with real2. Qed. +Proof. intros; eauto using Rnot_lt_le with rorders. Qed. Lemma Rnot_lt_ge : forall r1 r2, ~ r1 < r2 -> r1 >= r2. -Proof. eauto using Rnot_gt_ge with real2. Qed. +Proof. eauto using Rnot_gt_ge with rorders. Qed. (**********) Lemma Rlt_not_le : forall r1 r2, r2 < r1 -> ~ r1 <= r2. @@ -286,10 +283,10 @@ Proof. Qed. Lemma Rge_trans : forall r1 r2 r3, r1 >= r2 -> r2 >= r3 -> r1 >= r3. -Proof. eauto using Rle_trans with real2. Qed. +Proof. eauto using Rle_trans with rorders. Qed. Lemma Rgt_trans : forall r1 r2 r3, r1 > r2 -> r2 > r3 -> r1 > r3. -Proof. eauto using Rlt_trans with real2. Qed. +Proof. eauto using Rlt_trans with rorders. Qed. (**********) Lemma Rle_lt_trans : forall r1 r2 r3, r1 <= r2 -> r2 < r3 -> r1 < r3. @@ -305,10 +302,10 @@ Proof. Qed. Lemma Rge_gt_trans : forall r1 r2 r3, r1 >= r2 -> r2 > r3 -> r1 > r3. -Proof. eauto using Rlt_le_trans with real2. Qed. +Proof. eauto using Rlt_le_trans with rorders. Qed. Lemma Rgt_ge_trans : forall r1 r2 r3, r1 > r2 -> r2 >= r3 -> r1 > r3. -Proof. eauto using Rle_lt_trans with real2. Qed. +Proof. eauto using Rle_lt_trans with rorders. Qed. (** *** (Classical) decidability *) @@ -329,7 +326,7 @@ Lemma Rgt_dec : forall r1 r2, {r1 > r2} + {~ r1 > r2}. Proof. do 2 intro; apply Rlt_dec. Qed. Lemma Rge_dec : forall r1 r2, {r1 >= r2} + {~ r1 >= r2}. -Proof. intros; edestruct Rle_dec; [left|right]; eauto with real2. Qed. +Proof. intros; edestruct Rle_dec; [left|right]; eauto with rorders. Qed. Lemma Rlt_le_dec : forall r1 r2, {r1 < r2} + {r2 <= r1}. Proof. @@ -337,7 +334,7 @@ Proof. Qed. Lemma Rgt_ge_dec : forall r1 r2, {r1 > r2} + {r2 >= r1}. -Proof. intros; edestruct Rlt_le_dec; [left|right]; eauto with real2. Qed. +Proof. intros; edestruct Rlt_le_dec; [left|right]; eauto with rorders. Qed. Lemma Rle_lt_dec : forall r1 r2, {r1 <= r2} + {r2 < r1}. Proof. @@ -345,7 +342,7 @@ Proof. Qed. Lemma Rge_gt_dec : forall r1 r2, {r1 >= r2} + {r2 > r1}. -Proof. intros; edestruct Rle_lt_dec; [left|right]; eauto with real2. Qed. +Proof. intros; edestruct Rle_lt_dec; [left|right]; eauto with rorders. Qed. Lemma Rlt_or_le : forall r1 r2, r1 < r2 \/ r2 <= r1. Proof. @@ -353,7 +350,7 @@ Proof. Qed. Lemma Rgt_or_ge : forall r1 r2, r1 > r2 \/ r2 >= r1. -Proof. intros; edestruct Rlt_or_le; [left|right]; eauto with real2. Qed. +Proof. intros; edestruct Rlt_or_le; [left|right]; eauto with rorders. Qed. Lemma Rle_or_lt : forall r1 r2, r1 <= r2 \/ r2 < r1. Proof. @@ -361,7 +358,7 @@ Proof. Qed. Lemma Rge_or_gt : forall r1 r2, r1 >= r2 \/ r2 > r1. -Proof. intros; edestruct Rle_or_lt; [left|right]; eauto with real2. Qed. +Proof. intros; edestruct Rle_or_lt; [left|right]; eauto with rorders. Qed. Lemma Rle_lt_or_eq_dec : forall r1 r2, r1 <= r2 -> {r1 < r2} + {r1 = r2}. Proof. @@ -831,7 +828,7 @@ Qed. (** Remark: [Rplus_lt_compat_l] is an axiom *) Lemma Rplus_gt_compat_l : forall r r1 r2, r1 > r2 -> r + r1 > r + r2. -Proof. eauto using Rplus_lt_compat_l with real2. Qed. +Proof. eauto using Rplus_lt_compat_l with rorders. Qed. Hint Resolve Rplus_gt_compat_l: real. (**********) @@ -854,7 +851,7 @@ Proof. Qed. Lemma Rplus_ge_compat_l : forall r r1 r2, r1 >= r2 -> r + r1 >= r + r2. -Proof. auto using Rplus_le_compat_l with real2. Qed. +Proof. auto using Rplus_le_compat_l with rorders. Qed. Hint Resolve Rplus_ge_compat_l: real. (**********) @@ -868,7 +865,7 @@ Qed. Hint Resolve Rplus_le_compat_l Rplus_le_compat_r: real. Lemma Rplus_ge_compat_r : forall r r1 r2, r1 >= r2 -> r1 + r >= r2 + r. -Proof. auto using Rplus_le_compat_r with real2. Qed. +Proof. auto using Rplus_le_compat_r with rorders. Qed. (*********) Lemma Rplus_lt_compat : @@ -887,11 +884,11 @@ Hint Immediate Rplus_le_compat: real. Lemma Rplus_gt_compat : forall r1 r2 r3 r4, r1 > r2 -> r3 > r4 -> r1 + r3 > r2 + r4. -Proof. auto using Rplus_lt_compat with real2. Qed. +Proof. auto using Rplus_lt_compat with rorders. Qed. Lemma Rplus_ge_compat : forall r1 r2 r3 r4, r1 >= r2 -> r3 >= r4 -> r1 + r3 >= r2 + r4. -Proof. auto using Rplus_le_compat with real2. Qed. +Proof. auto using Rplus_le_compat with rorders. Qed. (*********) Lemma Rplus_lt_le_compat : @@ -910,11 +907,11 @@ Hint Immediate Rplus_lt_le_compat Rplus_le_lt_compat: real. Lemma Rplus_gt_ge_compat : forall r1 r2 r3 r4, r1 > r2 -> r3 >= r4 -> r1 + r3 > r2 + r4. -Proof. auto using Rplus_lt_le_compat with real2. Qed. +Proof. auto using Rplus_lt_le_compat with rorders. Qed. Lemma Rplus_ge_gt_compat : forall r1 r2 r3 r4, r1 >= r2 -> r3 > r4 -> r1 + r3 > r2 + r4. -Proof. auto using Rplus_le_lt_compat with real2. Qed. +Proof. auto using Rplus_le_lt_compat with rorders. Qed. (**********) Lemma Rplus_lt_0_compat : forall r1 r2, 0 < r1 -> 0 < r2 -> 0 < r1 + r2. @@ -1128,7 +1125,7 @@ Qed. Hint Immediate Ropp_lt_cancel: real. Lemma Ropp_gt_cancel : forall r1 r2, - r2 > - r1 -> r1 > r2. -Proof. auto using Ropp_lt_cancel with real2. Qed. +Proof. auto using Ropp_lt_cancel with rorders. Qed. Lemma Ropp_le_cancel : forall r1 r2, - r2 <= - r1 -> r1 <= r2. Proof. @@ -1140,7 +1137,7 @@ Qed. Hint Immediate Ropp_le_cancel: real. Lemma Ropp_ge_cancel : forall r1 r2, - r2 >= - r1 -> r1 >= r2. -Proof. auto using Ropp_le_cancel with real2. Qed. +Proof. auto using Ropp_le_cancel with rorders. Qed. (*********************************************************) (** ** Order and multiplication *) @@ -1157,10 +1154,10 @@ Qed. Hint Resolve Rmult_lt_compat_r. Lemma Rmult_gt_compat_r : forall r r1 r2, r > 0 -> r1 > r2 -> r1 * r > r2 * r. -Proof. eauto using Rmult_lt_compat_r with real2. Qed. +Proof. eauto using Rmult_lt_compat_r with rorders. Qed. Lemma Rmult_gt_compat_l : forall r r1 r2, r > 0 -> r1 > r2 -> r * r1 > r * r2. -Proof. eauto using Rmult_lt_compat_l with real2. Qed. +Proof. eauto using Rmult_lt_compat_l with rorders. Qed. (**********) Lemma Rmult_le_compat_l : @@ -1182,11 +1179,11 @@ Hint Resolve Rmult_le_compat_r: real. Lemma Rmult_ge_compat_l : forall r r1 r2, r >= 0 -> r1 >= r2 -> r * r1 >= r * r2. -Proof. eauto using Rmult_le_compat_l with real2. Qed. +Proof. eauto using Rmult_le_compat_l with rorders. Qed. Lemma Rmult_ge_compat_r : forall r r1 r2, r >= 0 -> r1 >= r2 -> r1 * r >= r2 * r. -Proof. eauto using Rmult_le_compat_r with real2. Qed. +Proof. eauto using Rmult_le_compat_r with rorders. Qed. (**********) Lemma Rmult_le_compat : @@ -1204,7 +1201,7 @@ Hint Resolve Rmult_le_compat: real. Lemma Rmult_ge_compat : forall r1 r2 r3 r4, 0 <= r1 -> 0 <= r3 -> r1 <= r2 -> r3 <= r4 -> r1 * r3 <= r2 * r4. -Proof. auto with real real2. Qed. +Proof. auto with real rorders. Qed. Lemma Rmult_gt_0_lt_compat : forall r1 r2 r3 r4, @@ -1271,7 +1268,7 @@ Proof. Qed. Lemma Rmult_gt_reg_l : forall r r1 r2, 0 < r -> r * r1 < r * r2 -> r1 < r2. -Proof. eauto using Rmult_lt_reg_l with real2. Qed. +Proof. eauto using Rmult_lt_reg_l with rorders. Qed. Lemma Rmult_le_reg_l : forall r r1 r2, 0 < r -> r * r1 <= r * r2 -> r1 <= r2. Proof. @@ -1316,7 +1313,7 @@ Lemma Rge_minus : forall r1 r2, r1 >= r2 -> r1 - r2 >= 0. Proof. destruct 1. auto using Rgt_minus, Rgt_ge. - right; auto using Rminus_diag_eq with real2. + right; auto using Rminus_diag_eq with rorders. Qed. (**********) diff --git a/theories/Reals/Rfunctions.v b/theories/Reals/Rfunctions.v index db2a0390f1..da28184f2d 100644 --- a/theories/Reals/Rfunctions.v +++ b/theories/Reals/Rfunctions.v @@ -349,7 +349,7 @@ Proof. rewrite Rabs_Rinv; auto. rewrite <- Rinv_pow; auto. rewrite RPow_abs; auto. - rewrite H'0; rewrite Rabs_right; auto with real. + rewrite H'0; rewrite Rabs_right; auto with real rorders. apply Rlt_pow; auto with arith. rewrite Rabs_Rinv; auto. apply Rmult_lt_reg_l with (r := Rabs r). |
