diff options
| -rw-r--r-- | theories/Logic/FunctionalExtensionality.v | 4 |
1 files changed, 2 insertions, 2 deletions
diff --git a/theories/Logic/FunctionalExtensionality.v b/theories/Logic/FunctionalExtensionality.v index e9d434b488..ae1d978bfb 100644 --- a/theories/Logic/FunctionalExtensionality.v +++ b/theories/Logic/FunctionalExtensionality.v @@ -16,7 +16,7 @@ Lemma equal_f : forall {A B : Type} {f g : A -> B}, f = g -> forall x, f x = g x. Proof. - intros. + intros A B f g H x. rewrite H. auto. Qed. @@ -118,7 +118,7 @@ Definition f_equal__functional_extensionality_dep_good {A B f g} H a : f_equal (fun h => h a) (@functional_extensionality_dep_good A B f g H) = H a. Proof. - apply forall_eq_rect with (H := H); clear H g. + apply (fun P k => forall_eq_rect _ P k _ H); clear H g. change (eq_refl (f a)) with (f_equal (fun h => h a) (eq_refl f)). apply f_equal, functional_extensionality_dep_good_refl. Defined. |
