aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--theories/Logic/FunctionalExtensionality.v4
1 files changed, 2 insertions, 2 deletions
diff --git a/theories/Logic/FunctionalExtensionality.v b/theories/Logic/FunctionalExtensionality.v
index e9d434b488..ae1d978bfb 100644
--- a/theories/Logic/FunctionalExtensionality.v
+++ b/theories/Logic/FunctionalExtensionality.v
@@ -16,7 +16,7 @@
Lemma equal_f : forall {A B : Type} {f g : A -> B},
f = g -> forall x, f x = g x.
Proof.
- intros.
+ intros A B f g H x.
rewrite H.
auto.
Qed.
@@ -118,7 +118,7 @@ Definition f_equal__functional_extensionality_dep_good
{A B f g} H a
: f_equal (fun h => h a) (@functional_extensionality_dep_good A B f g H) = H a.
Proof.
- apply forall_eq_rect with (H := H); clear H g.
+ apply (fun P k => forall_eq_rect _ P k _ H); clear H g.
change (eq_refl (f a)) with (f_equal (fun h => h a) (eq_refl f)).
apply f_equal, functional_extensionality_dep_good_refl.
Defined.