aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--theories7/Logic/Eqdep_dec.v4
1 files changed, 2 insertions, 2 deletions
diff --git a/theories7/Logic/Eqdep_dec.v b/theories7/Logic/Eqdep_dec.v
index 81e4bf4f8a..6597abfad6 100644
--- a/theories7/Logic/Eqdep_dec.v
+++ b/theories7/Logic/Eqdep_dec.v
@@ -26,10 +26,10 @@ Set Implicit Arguments.
(** Bijection between [eq] and [eqT] *)
Definition eq2eqT: (A:Set)(x,y:A)x=y->x==y :=
- [A,x,_,eqxy]<[y:A]x==y>Cases eqxy of refl_equal => (refl_eqT ? x) end.
+ [A,x,y,eqxy]<[y:A]x==y>Cases eqxy of refl_equal => (refl_eqT ? x) end.
Definition eqT2eq: (A:Set)(x,y:A)x==y->x=y :=
- [A,x,_,eqTxy]<[y:A]x=y>Cases eqTxy of refl_eqT => (refl_equal ? x) end.
+ [A,x,y,eqTxy]<[y:A]x=y>Cases eqTxy of refl_eqT => (refl_equal ? x) end.
Lemma eq_eqT_bij: (A:Set)(x,y:A)(p:x=y)p==(eqT2eq (eq2eqT p)).
Intros.