diff options
| -rw-r--r-- | theories7/Logic/Eqdep_dec.v | 4 |
1 files changed, 2 insertions, 2 deletions
diff --git a/theories7/Logic/Eqdep_dec.v b/theories7/Logic/Eqdep_dec.v index 81e4bf4f8a..6597abfad6 100644 --- a/theories7/Logic/Eqdep_dec.v +++ b/theories7/Logic/Eqdep_dec.v @@ -26,10 +26,10 @@ Set Implicit Arguments. (** Bijection between [eq] and [eqT] *) Definition eq2eqT: (A:Set)(x,y:A)x=y->x==y := - [A,x,_,eqxy]<[y:A]x==y>Cases eqxy of refl_equal => (refl_eqT ? x) end. + [A,x,y,eqxy]<[y:A]x==y>Cases eqxy of refl_equal => (refl_eqT ? x) end. Definition eqT2eq: (A:Set)(x,y:A)x==y->x=y := - [A,x,_,eqTxy]<[y:A]x=y>Cases eqTxy of refl_eqT => (refl_equal ? x) end. + [A,x,y,eqTxy]<[y:A]x=y>Cases eqTxy of refl_eqT => (refl_equal ? x) end. Lemma eq_eqT_bij: (A:Set)(x,y:A)(p:x=y)p==(eqT2eq (eq2eqT p)). Intros. |
