diff options
| -rw-r--r-- | theories/Reals/Abstract/ConstructiveReals.v | 4 | ||||
| -rw-r--r-- | theories/Reals/Abstract/ConstructiveRealsMorphisms.v | 2 | ||||
| -rw-r--r-- | theories/Reals/Cauchy/ConstructiveCauchyReals.v | 3 | ||||
| -rw-r--r-- | theories/Reals/Cauchy/ConstructiveRcomplete.v | 4 |
4 files changed, 5 insertions, 8 deletions
diff --git a/theories/Reals/Abstract/ConstructiveReals.v b/theories/Reals/Abstract/ConstructiveReals.v index 60fad8795a..5a599587d0 100644 --- a/theories/Reals/Abstract/ConstructiveReals.v +++ b/theories/Reals/Abstract/ConstructiveReals.v @@ -285,14 +285,14 @@ Lemma CRlt_trans : forall {R : ConstructiveReals} (x y z : CRcarrier R), Proof. intros. apply (CRlt_le_trans _ y _ H). apply CRlt_asym. exact H0. -Defined. +Qed. Lemma CRlt_trans_flip : forall {R : ConstructiveReals} (x y z : CRcarrier R), y < z -> x < y -> x < z. Proof. intros. apply (CRlt_le_trans _ y). exact H0. apply CRlt_asym. exact H. -Defined. +Qed. Lemma CReq_refl : forall {R : ConstructiveReals} (x : CRcarrier R), x == x. diff --git a/theories/Reals/Abstract/ConstructiveRealsMorphisms.v b/theories/Reals/Abstract/ConstructiveRealsMorphisms.v index 53b5aca38c..6ed5845440 100644 --- a/theories/Reals/Abstract/ConstructiveRealsMorphisms.v +++ b/theories/Reals/Abstract/ConstructiveRealsMorphisms.v @@ -232,7 +232,7 @@ Proof. apply CRplus_lt_compat_l. apply (CRle_lt_trans _ (CR_of_Q R 0)). apply CRle_refl. apply CR_of_Q_lt. exact H. -Defined. +Qed. Lemma CRplus_neg_rat_lt : forall {R : ConstructiveReals} (x : CRcarrier R) (q : Q), Qlt q 0 -> CRlt R (CRplus R x (CR_of_Q R q)) x. diff --git a/theories/Reals/Cauchy/ConstructiveCauchyReals.v b/theories/Reals/Cauchy/ConstructiveCauchyReals.v index 8a11c155ce..4fb3846abc 100644 --- a/theories/Reals/Cauchy/ConstructiveCauchyReals.v +++ b/theories/Reals/Cauchy/ConstructiveCauchyReals.v @@ -320,7 +320,6 @@ Proof. - contradiction. - exact Hxltz. Qed. -(* Todo: this was Defined. Why *) Lemma CReal_lt_le_trans : forall x y z : CReal, x < y -> y <= z -> x < z. @@ -330,7 +329,6 @@ Proof. - exact Hxltz. - contradiction. Qed. -(* Todo: this was Defined. Why *) Lemma CReal_le_trans : forall x y z : CReal, x <= y -> y <= z -> x <= z. @@ -347,7 +345,6 @@ Proof. apply (CReal_lt_le_trans _ y _ Hxlty). apply CRealLt_asym; exact Hyltz. Qed. -(* Todo: this was Defined. Why *) Lemma CRealEq_trans : forall x y z : CReal, CRealEq x y -> CRealEq y z -> CRealEq x z. diff --git a/theories/Reals/Cauchy/ConstructiveRcomplete.v b/theories/Reals/Cauchy/ConstructiveRcomplete.v index 70d2861d17..38eb9df0ea 100644 --- a/theories/Reals/Cauchy/ConstructiveRcomplete.v +++ b/theories/Reals/Cauchy/ConstructiveRcomplete.v @@ -75,7 +75,7 @@ Proof. rewrite inject_Q_plus, (opp_inject_Q 2). ring_simplify. exact H. rewrite Qinv_plus_distr. reflexivity. -Defined. +Qed. (* ToDo: Move to ConstructiveCauchyAbs.v *) Lemma Qabs_Rabs : forall q : Q, @@ -688,7 +688,7 @@ Proof. exact (a i j H0 H1). exists l. intros p. destruct (cv p). exists x. exact c. -Defined. +Qed. (* ToDO: Belongs into sumbool.v *) Section connectives. |
