aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--Makefile.common22
-rw-r--r--theories/Classes/Morphisms.v97
-rw-r--r--theories/Classes/RelationClasses.v29
-rw-r--r--theories/Lists/List.v59
-rw-r--r--theories/Lists/SetoidList2.v850
-rw-r--r--theories/MSets/MSetAVL.v1851
-rw-r--r--theories/MSets/MSetDecide.v864
-rw-r--r--theories/MSets/MSetEqProperties.v937
-rw-r--r--theories/MSets/MSetFacts.v527
-rw-r--r--theories/MSets/MSetInterface.v944
-rw-r--r--theories/MSets/MSetList.v866
-rw-r--r--theories/MSets/MSetProperties.v1183
-rw-r--r--theories/MSets/MSetToFiniteSet.v158
-rw-r--r--theories/MSets/MSetWeakList.v528
-rw-r--r--theories/MSets/MSets.v23
-rw-r--r--theories/Structures/DecidableType.v (renamed from theories/Logic/DecidableType.v)0
-rw-r--r--theories/Structures/DecidableType2.v164
-rw-r--r--theories/Structures/DecidableType2Ex.v85
-rw-r--r--theories/Structures/DecidableTypeEx.v (renamed from theories/Logic/DecidableTypeEx.v)0
-rw-r--r--theories/Structures/OrderedType.v (renamed from theories/FSets/OrderedType.v)0
-rw-r--r--theories/Structures/OrderedType2.v680
-rw-r--r--theories/Structures/OrderedType2Alt.v297
-rw-r--r--theories/Structures/OrderedType2Ex.v261
-rw-r--r--theories/Structures/OrderedTypeAlt.v (renamed from theories/FSets/OrderedTypeAlt.v)0
-rw-r--r--theories/Structures/OrderedTypeEx.v (renamed from theories/FSets/OrderedTypeEx.v)0
-rw-r--r--theories/theories.itarget29
-rw-r--r--toplevel/coqinit.ml2
27 files changed, 10443 insertions, 13 deletions
diff --git a/Makefile.common b/Makefile.common
index 918d637e1b..67abba61b9 100644
--- a/Makefile.common
+++ b/Makefile.common
@@ -308,10 +308,16 @@ LOGICVO:=$(addprefix theories/Logic/, \
Decidable.vo JMeq.vo ClassicalChoice.vo \
ClassicalDescription.vo RelationalChoice.vo Diaconescu.vo \
EqdepFacts.vo ProofIrrelevanceFacts.vo ClassicalEpsilon.vo \
- ClassicalUniqueChoice.vo DecidableType.vo DecidableTypeEx.vo \
+ ClassicalUniqueChoice.vo \
Epsilon.vo ConstructiveEpsilon.vo Description.vo \
IndefiniteDescription.vo SetIsType.vo FunctionalExtensionality.vo )
+STRUCTURESVO:=$(addprefix theories/Structures/, \
+ DecidableType.vo DecidableTypeEx.vo \
+ OrderedType.vo OrderedTypeEx.vo OrderedTypeAlt.vo \
+ DecidableType2.vo DecidableType2Ex.vo \
+ OrderedType2.vo OrderedType2Ex.vo OrderedType2Alt.vo )
+
ARITHVO:=$(addprefix theories/Arith/, \
Arith.vo Gt.vo Between.vo Le.vo \
Compare.vo Lt.vo Compare_dec.vo Min.vo \
@@ -349,7 +355,8 @@ QARITHVO:=$(addprefix theories/QArith/, \
LISTSVO:=$(addprefix theories/Lists/, \
ListSet.vo Streams.vo StreamMemo.vo \
- TheoryList.vo List.vo SetoidList.vo ListTactics.vo )
+ TheoryList.vo List.vo SetoidList.vo SetoidList2.vo \
+ ListTactics.vo )
STRINGSVO:=$(addprefix theories/Strings/, \
Ascii.vo String.vo )
@@ -368,7 +375,6 @@ SETSVO:=$(addprefix theories/Sets/, \
Partial_Order.vo Uniset.vo )
FSETSBASEVO:=$(addprefix theories/FSets/, \
- OrderedType.vo OrderedTypeEx.vo OrderedTypeAlt.vo \
FSetInterface.vo FSetList.vo FSetBridge.vo \
FSetFacts.vo FSetProperties.vo FSetEqProperties.vo \
FSetWeakList.vo FSetAVL.vo FSetDecide.vo \
@@ -386,6 +392,12 @@ FSETSVO:=$(FSETSBASEVO) $(FSETS_$(FSETS))
ALLFSETS:=$(FSETSBASEVO) $(FSETS_all)
+MSETSVO:=$(addprefix theories/MSets/, \
+ MSetInterface.vo MSetList.vo \
+ MSetFacts.vo MSetProperties.vo MSetEqProperties.vo \
+ MSetWeakList.vo MSetAVL.vo MSetDecide.vo \
+ MSets.vo )
+
RELATIONSVO:=$(addprefix theories/Relations/, \
Operators_Properties.vo Relation_Definitions.vo \
Relation_Operators.vo Relations.vo )
@@ -511,9 +523,9 @@ PROGRAMVO:=$(addprefix theories/Program/, \
THEORIESVO:=\
$(INITVO) $(LOGICVO) $(ARITHVO) $(BOOLVO) $(NARITHVO) $(ZARITHVO) \
- $(SETOIDSVO) $(LISTSVO) $(STRINGSVO) $(SETSVO) $(FSETSVO) \
+ $(SETOIDSVO) $(LISTSVO) $(STRINGSVO) $(SETSVO) $(FSETSVO) $(MSETSVO) \
$(RELATIONSVO) $(WELLFOUNDEDVO) $(REALSVO) $(SORTINGVO) $(QARITHVO) \
- $(NUMBERSVO) $(UNICODEVO) $(CLASSESVO) $(PROGRAMVO)
+ $(NUMBERSVO) $(UNICODEVO) $(CLASSESVO) $(PROGRAMVO) $(STRUCTURESVO)
THEORIESLIGHTVO:= $(INITVO) $(LOGICVO) $(ARITHVO)
diff --git a/theories/Classes/Morphisms.v b/theories/Classes/Morphisms.v
index fe2f553113..a0ce827a91 100644
--- a/theories/Classes/Morphisms.v
+++ b/theories/Classes/Morphisms.v
@@ -279,7 +279,7 @@ Program Instance compose_proper A B C R₀ R₁ R₂ :
unfold compose. apply H. apply H0. apply H1.
Qed.
-(** Coq functions are morphisms for leibniz equality,
+(** Coq functions are morphisms for Leibniz equality,
applied only if really needed. *)
Instance reflexive_eq_dom_reflexive (A : Type) `(Reflexive B R') :
@@ -488,3 +488,98 @@ Ltac proper_reflexive :=
end.
Hint Extern 7 (@Proper _ _ _) => proper_reflexive : typeclass_instances.
+
+
+(** When the relation on the domain is symmetric, we can
+ inverse the relation on the codomain. Same for binary functions. *)
+
+Lemma proper_sym_flip
+ `(Symmetric A R1)`(Proper (A->B) (R1==>R2) f) :
+ Proper (R1==>inverse R2) f.
+Proof.
+intros A R1 Sym B R2 f Hf.
+intros x x' Hxx'. apply Hf, Sym, Hxx'.
+Qed.
+
+Lemma proper_sym_flip_2
+ `(Symmetric A R1)`(Symmetric B R2)`(Proper (A->B->C) (R1==>R2==>R3) f) :
+ Proper (R1==>R2==>inverse R3) f.
+Proof.
+intros A R1 Sym1 B R2 Sym2 C R3 f Hf.
+intros x x' Hxx' y y' Hyy'. apply Hf; auto.
+Qed.
+
+(** When the relation on the domain is symmetric, a predicate is
+ compatible with [iff] as soon as it is compatible with [impl].
+ Same with a binary relation. *)
+
+Lemma proper_sym_impl_iff `(Symmetric A R)`(Proper _ (R==>impl) f) :
+ Proper (R==>iff) f.
+Proof.
+intros A R Sym f Hf x x' Hxx'. repeat red in Hf. split; eauto.
+Qed.
+
+Lemma proper_sym_impl_iff_2
+ `(Symmetric A R)`(Symmetric B R')`(Proper _ (R==>R'==>impl) f) :
+ Proper (R==>R'==>iff) f.
+Proof.
+intros A R Sym B R' Sym' f Hf x x' Hxx' y y' Hyy'.
+repeat red in Hf. split; eauto.
+Qed.
+
+(** A [PartialOrder] is compatible with its underlying equivalence. *)
+
+Instance PartialOrder_proper `(PartialOrder A eqA R) :
+ Proper (eqA==>eqA==>iff) R.
+Proof.
+intros.
+apply proper_sym_impl_iff_2; auto with *.
+intros x x' Hx y y' Hy Hr.
+transitivity x.
+generalize (partial_order_equivalence x x'); compute; intuition.
+transitivity y; auto.
+generalize (partial_order_equivalence y y'); compute; intuition.
+Qed.
+
+(** From a [PartialOrder] to the corresponding [StrictOrder]:
+ [lt = le /\ ~eq].
+ If the order is total, we could also say [gt = ~le]. *)
+
+Instance PartialOrder_StrictOrder `(PartialOrder A eqA R) :
+ StrictOrder (relation_conjunction R (complement eqA)).
+Proof.
+split; compute.
+intros x (_,Hx). apply Hx, Equivalence_Reflexive.
+intros x y z (Hxy,Hxy') (Hyz,Hyz'). split.
+apply PreOrder_Transitive with y; assumption.
+intro Hxz.
+apply Hxy'.
+apply partial_order_antisym; auto.
+rewrite Hxz; auto.
+Qed.
+
+(** From a [StrictOrder] to the corresponding [PartialOrder]:
+ [le = lt \/ eq].
+ If the order is total, we could also say [ge = ~lt]. *)
+
+Instance StrictOrder_PreOrder
+ `(Equivalence A eqA, StrictOrder A R, Proper _ (eqA==>eqA==>iff) R) :
+ PreOrder (relation_disjunction R eqA).
+Proof.
+split.
+intros x. right. reflexivity.
+intros x y z [Hxy|Hxy] [Hyz|Hyz].
+left. transitivity y; auto.
+left. rewrite <- Hyz; auto.
+left. rewrite Hxy; auto.
+right. transitivity y; auto.
+Qed.
+
+Instance StrictOrder_PartialOrder
+ `(Equivalence A eqA, StrictOrder A R, Proper _ (eqA==>eqA==>iff) R) :
+ PartialOrder eqA (relation_disjunction R eqA).
+Proof.
+intros. intros x y. compute. intuition.
+elim (StrictOrder_Irreflexive x).
+transitivity y; auto.
+Qed.
diff --git a/theories/Classes/RelationClasses.v b/theories/Classes/RelationClasses.v
index bc25fe488d..83095720a4 100644
--- a/theories/Classes/RelationClasses.v
+++ b/theories/Classes/RelationClasses.v
@@ -47,7 +47,7 @@ Class Reflexive {A} (R : relation A) :=
Class Irreflexive {A} (R : relation A) :=
irreflexivity : Reflexive (complement R).
-Hint Extern 1 (Reflexive (complement _)) => class_apply @irreflexivity : typeclasses_instances.
+Hint Extern 1 (Reflexive (complement _)) => class_apply @irreflexivity : typeclass_instances.
Class Symmetric {A} (R : relation A) :=
symmetry : forall x y, R x y -> R y x.
@@ -417,3 +417,30 @@ Instance: RewriteRelation (@relation_equivalence A).
a rewrite relation. *)
Instance equivalence_rewrite_relation `(Equivalence A eqA) : RewriteRelation eqA.
+
+(** Strict Order *)
+
+Class StrictOrder {A : Type} (R : relation A) := {
+ StrictOrder_Irreflexive :> Irreflexive R ;
+ StrictOrder_Transitive :> Transitive R
+}.
+
+Instance StrictOrder_Asymmetric `(StrictOrder A R) : Asymmetric R.
+Proof.
+ firstorder.
+Qed.
+
+(** Inversing a [StrictOrder] gives another [StrictOrder] *)
+
+Instance StrictOrder_inverse `(StrictOrder A R) : StrictOrder (inverse R).
+
+(** Same for [PartialOrder]. *)
+
+Instance PreOrder_inverse `(PreOrder A R) : PreOrder (inverse R).
+
+Instance PartialOrder_inverse `(PartialOrder A eqA R) :
+ PartialOrder eqA (inverse R).
+Proof.
+firstorder.
+Qed.
+
diff --git a/theories/Lists/List.v b/theories/Lists/List.v
index f2961635ec..228661ec64 100644
--- a/theories/Lists/List.v
+++ b/theories/Lists/List.v
@@ -1874,8 +1874,65 @@ Section NatSeq.
End NatSeq.
+(** * Existential and universal predicates over lists *)
- (** * Exporting hints and tactics *)
+Inductive ExistsL {A} (P:A->Prop) : list A -> Prop :=
+ | ExistsL_cons_hd : forall x l, P x -> ExistsL P (x::l)
+ | ExistsL_cons_tl : forall x l, ExistsL P l -> ExistsL P (x::l).
+Hint Constructors ExistsL.
+
+Lemma ExistsL_exists : forall A P (l:list A),
+ ExistsL P l <-> (exists x, In x l /\ P x).
+Proof.
+split.
+induction 1; firstorder.
+induction l; firstorder; subst; auto.
+Qed.
+
+Lemma ExistsL_nil : forall A (P:A->Prop), ExistsL P nil <-> False.
+Proof. split; inversion 1. Qed.
+
+Lemma ExistsL_cons : forall A (P:A->Prop) x l,
+ ExistsL P (x::l) <-> P x \/ ExistsL P l.
+Proof. split; inversion 1; auto. Qed.
+
+
+Inductive ForallL {A} (P:A->Prop) : list A -> Prop :=
+ | ForallL_nil : ForallL P nil
+ | ForallL_cons : forall x l, P x -> ForallL P l -> ForallL P (x::l).
+Hint Constructors ForallL.
+
+Lemma ForallL_forall : forall A P (l:list A),
+ ForallL P l <-> (forall x, In x l -> P x).
+Proof.
+split.
+induction 1; firstorder; subst; auto.
+induction l; firstorder.
+Qed.
+
+
+(** * Inversion of predicates over lists based on head symbol *)
+
+Ltac is_list_constr c :=
+ match c with
+ | nil => idtac
+ | (_::_) => idtac
+ | _ => fail
+ end.
+
+Ltac invlist f :=
+ match goal with
+ | H:f ?l |- _ => is_list_constr l; inversion_clear H; invlist f
+ | H:f _ ?l |- _ => is_list_constr l; inversion_clear H; invlist f
+ | H:f _ _ ?l |- _ => is_list_constr l; inversion_clear H; invlist f
+ | H:f _ _ _ ?l |- _ => is_list_constr l; inversion_clear H; invlist f
+ | H:f _ _ _ _ ?l |- _ => is_list_constr l; inversion_clear H; invlist f
+ | _ => idtac
+ end.
+
+
+
+(** * Exporting hints and tactics *)
Hint Rewrite
diff --git a/theories/Lists/SetoidList2.v b/theories/Lists/SetoidList2.v
new file mode 100644
index 0000000000..78226cb5d1
--- /dev/null
+++ b/theories/Lists/SetoidList2.v
@@ -0,0 +1,850 @@
+(***********************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
+(* \VV/ *************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(***********************************************************************)
+
+(* $Id$ *)
+
+Require Export List.
+Require Export Sorting.
+Require Export Setoid Basics Morphisms.
+Set Implicit Arguments.
+Unset Strict Implicit.
+
+(** * Logical relations over lists with respect to a setoid equality
+ or ordering. *)
+
+(** This can be seen as a complement of predicate [lelistA] and [sort]
+ found in [Sorting]. *)
+
+Section Type_with_equality.
+Variable A : Type.
+Variable eqA : A -> A -> Prop.
+
+(** Being in a list modulo an equality relation over type [A]. *)
+
+Inductive InA (x : A) : list A -> Prop :=
+ | InA_cons_hd : forall y l, eqA x y -> InA x (y :: l)
+ | InA_cons_tl : forall y l, InA x l -> InA x (y :: l).
+
+Hint Constructors InA.
+
+(** TODO: it would be nice to have a generic definition instead
+ of the previous one. Having [InA = ExistsL eqA] raises too
+ many compatibility issues. For now, we only state the equivalence: *)
+
+Lemma InA_altdef : forall x l, InA x l <-> ExistsL (eqA x) l.
+Proof. split; induction 1; auto. Qed.
+
+Lemma InA_cons : forall x y l, InA x (y::l) <-> eqA x y \/ InA x l.
+Proof.
+ intuition. invlist InA; auto.
+Qed.
+
+Lemma InA_nil : forall x, InA x nil <-> False.
+Proof.
+ intuition. invlist InA.
+Qed.
+
+(** An alternative definition of [InA]. *)
+
+Lemma InA_alt : forall x l, InA x l <-> exists y, eqA x y /\ In y l.
+Proof.
+ intros; rewrite InA_altdef, ExistsL_exists; firstorder.
+Qed.
+
+(** A list without redundancy modulo the equality over [A]. *)
+
+Inductive NoDupA : list A -> Prop :=
+ | NoDupA_nil : NoDupA nil
+ | NoDupA_cons : forall x l, ~ InA x l -> NoDupA l -> NoDupA (x::l).
+
+Hint Constructors NoDupA.
+
+
+Ltac inv := invlist InA; invlist sort; invlist lelistA; invlist NoDupA.
+
+(** lists with same elements modulo [eqA] *)
+
+Definition equivlistA l l' := forall x, InA x l <-> InA x l'.
+
+(** lists with same elements modulo [eqA] at the same place *)
+
+Inductive eqlistA : list A -> list A -> Prop :=
+ | eqlistA_nil : eqlistA nil nil
+ | eqlistA_cons : forall x x' l l',
+ eqA x x' -> eqlistA l l' -> eqlistA (x::l) (x'::l').
+
+Hint Constructors eqlistA.
+
+(** Results concerning lists modulo [eqA] *)
+
+Hypothesis eqA_equiv : Equivalence eqA.
+
+Hint Resolve (@Equivalence_Reflexive _ _ eqA_equiv).
+Hint Resolve (@Equivalence_Transitive _ _ eqA_equiv).
+Hint Immediate (@Equivalence_Symmetric _ _ eqA_equiv).
+
+(** First, the two notions [equivlistA] and [eqlistA] are indeed equivlances *)
+
+Global Instance equivlist_equiv : Equivalence equivlistA.
+Proof.
+ firstorder.
+Qed.
+
+Global Instance eqlistA_equiv : Equivalence eqlistA.
+Proof.
+ constructor; red.
+ induction x; auto.
+ induction 1; auto.
+ intros x y z H; revert z; induction H; auto.
+ inversion 1; subst; auto. invlist eqlistA; eauto with *.
+Qed.
+
+(** Moreover, [eqlistA] implies [equivlistA]. A reverse result
+ will be proved later for sorted list without duplicates. *)
+
+Global Instance eqlistA_equivlistA : subrelation eqlistA equivlistA.
+Proof.
+ intros x x' H. induction H.
+ intuition.
+ red; intros.
+ rewrite 2 InA_cons.
+ rewrite (IHeqlistA x0), H; intuition.
+Qed.
+
+(** InA is compatible with eqA (for its first arg) and with
+ equivlistA (and hence eqlistA) for its second arg *)
+
+Global Instance InA_compat : Proper (eqA==>equivlistA==>iff) InA.
+Proof.
+ intros x x' Hxx' l l' Hll'. rewrite (Hll' x).
+ rewrite 2 InA_alt; firstorder.
+Qed.
+
+(** For compatibility, an immediate consequence of [InA_compat] *)
+
+Lemma InA_eqA : forall l x y, eqA x y -> InA x l -> InA y l.
+Proof.
+ intros l x y H H'. rewrite <- H; auto.
+Qed.
+Hint Immediate InA_eqA.
+
+Lemma In_InA : forall l x, In x l -> InA x l.
+Proof.
+ simple induction l; simpl; intuition.
+ subst; auto.
+Qed.
+Hint Resolve In_InA.
+
+Lemma InA_split : forall l x, InA x l ->
+ exists l1, exists y, exists l2,
+ eqA x y /\ l = l1++y::l2.
+Proof.
+induction l; intros; inv.
+exists (@nil A); exists a; exists l; auto.
+destruct (IHl x H0) as (l1,(y,(l2,(H1,H2)))).
+exists (a::l1); exists y; exists l2; auto.
+split; simpl; f_equal; auto.
+Qed.
+
+Lemma InA_app : forall l1 l2 x,
+ InA x (l1 ++ l2) -> InA x l1 \/ InA x l2.
+Proof.
+ induction l1; simpl in *; intuition.
+ inv; auto.
+ elim (IHl1 l2 x H0); auto.
+Qed.
+
+Lemma InA_app_iff : forall l1 l2 x,
+ InA x (l1 ++ l2) <-> InA x l1 \/ InA x l2.
+Proof.
+ split.
+ apply InA_app.
+ destruct 1; generalize H; do 2 rewrite InA_alt.
+ destruct 1 as (y,(H1,H2)); exists y; split; auto.
+ apply in_or_app; auto.
+ destruct 1 as (y,(H1,H2)); exists y; split; auto.
+ apply in_or_app; auto.
+Qed.
+
+Lemma InA_rev : forall p m,
+ InA p (rev m) <-> InA p m.
+Proof.
+ intros; do 2 rewrite InA_alt.
+ split; intros (y,H); exists y; intuition.
+ rewrite In_rev; auto.
+ rewrite <- In_rev; auto.
+Qed.
+
+
+
+Section NoDupA.
+
+Lemma NoDupA_app : forall l l', NoDupA l -> NoDupA l' ->
+ (forall x, InA x l -> InA x l' -> False) ->
+ NoDupA (l++l').
+Proof.
+induction l; simpl; auto; intros.
+inv.
+constructor.
+rewrite InA_alt; intros (y,(H4,H5)).
+destruct (in_app_or _ _ _ H5).
+elim H2.
+rewrite InA_alt.
+exists y; auto.
+apply (H1 a).
+auto.
+rewrite InA_alt.
+exists y; auto.
+apply IHl; auto.
+intros.
+apply (H1 x); auto.
+Qed.
+
+Lemma NoDupA_rev : forall l, NoDupA l -> NoDupA (rev l).
+Proof.
+induction l.
+simpl; auto.
+simpl; intros.
+inv.
+apply NoDupA_app; auto.
+constructor; auto.
+intro; inv.
+intros x.
+rewrite InA_alt.
+intros (x1,(H2,H3)).
+intro; inv.
+destruct H0.
+rewrite <- H4, H2.
+apply In_InA.
+rewrite In_rev; auto.
+Qed.
+
+Lemma NoDupA_split : forall l l' x, NoDupA (l++x::l') -> NoDupA (l++l').
+Proof.
+ induction l; simpl in *; intros; inv; auto.
+ constructor; eauto.
+ contradict H0.
+ rewrite InA_app_iff in *.
+ rewrite InA_cons.
+ intuition.
+Qed.
+
+Lemma NoDupA_swap : forall l l' x, NoDupA (l++x::l') -> NoDupA (x::l++l').
+Proof.
+ induction l; simpl in *; intros; inv; auto.
+ constructor; eauto.
+ assert (H2:=IHl _ _ H1).
+ inv.
+ rewrite InA_cons.
+ red; destruct 1.
+ apply H0.
+ rewrite InA_app_iff in *; rewrite InA_cons; auto.
+ apply H; auto.
+ constructor.
+ contradict H0.
+ rewrite InA_app_iff in *; rewrite InA_cons; intuition.
+ eapply NoDupA_split; eauto.
+Qed.
+
+Lemma equivlistA_NoDupA_split : forall l l1 l2 x y, eqA x y ->
+ NoDupA (x::l) -> NoDupA (l1++y::l2) ->
+ equivlistA (x::l) (l1++y::l2) -> equivlistA l (l1++l2).
+Proof.
+ intros; intro a.
+ generalize (H2 a).
+ rewrite !InA_app_iff, !InA_cons.
+ inv.
+ assert (SW:=NoDupA_swap H1). inv.
+ rewrite InA_app_iff in H0.
+ split; intros.
+ assert (~eqA a x) by (contradict H3; rewrite <- H3; auto).
+ assert (~eqA a y) by (rewrite <- H; auto).
+ tauto.
+ assert (OR : eqA a x \/ InA a l) by intuition. clear H6.
+ destruct OR as [EQN|INA]; auto.
+ elim H0.
+ rewrite <-H,<-EQN; auto.
+Qed.
+
+End NoDupA.
+
+
+
+Section Fold.
+
+Variable B:Type.
+Variable eqB:B->B->Prop.
+Variable st:Equivalence eqB.
+Variable f:A->B->B.
+Variable i:B.
+Variable Comp:Proper (eqA==>eqB==>eqB) f.
+
+Lemma fold_right_eqlistA :
+ forall s s', eqlistA s s' ->
+ eqB (fold_right f i s) (fold_right f i s').
+Proof.
+induction 1; simpl; auto with relations.
+apply Comp; auto.
+Qed.
+
+(** [ForallL2] : specifies that a certain binary predicate should
+ always hold when inspecting two different elements of the list. *)
+
+Inductive ForallL2 (R : A -> A -> Prop) : list A -> Prop :=
+ | ForallNil : ForallL2 R nil
+ | ForallCons : forall a l,
+ (forall b, In b l -> R a b) ->
+ ForallL2 R l -> ForallL2 R (a::l).
+Hint Constructors ForallL2.
+
+(** [NoDupA] can be written in terms of [ForallL2] *)
+
+Lemma ForallL2_NoDupA : forall l,
+ ForallL2 (fun a b => ~eqA a b) l <-> NoDupA l.
+Proof.
+ induction l; split; intros; auto.
+ invlist ForallL2. constructor; [ | rewrite <- IHl; auto ].
+ rewrite InA_alt; intros (a',(Haa',Ha')).
+ exact (H0 a' Ha' Haa').
+ invlist NoDupA. constructor; [ | rewrite IHl; auto ].
+ intros b Hb.
+ contradict H0.
+ rewrite InA_alt; exists b; auto.
+Qed.
+
+Lemma ForallL2_impl : forall (R R':A->A->Prop),
+ (forall a b, R a b -> R' a b) ->
+ forall l, ForallL2 R l -> ForallL2 R' l.
+Proof.
+ induction 2; auto.
+Qed.
+
+(** The following definition is easier to use than [ForallL2]. *)
+
+Definition ForallL2_alt (R:A->A->Prop) l :=
+ forall a b, InA a l -> InA b l -> ~eqA a b -> R a b.
+
+Section Restriction.
+Variable R : A -> A -> Prop.
+
+(** [ForallL2] and [ForallL2_alt] are related, but no completely
+ equivalent. For proving one implication, we need to know that the
+ list has no duplicated elements... *)
+
+Lemma ForallL2_equiv1 : forall l, NoDupA l ->
+ ForallL2_alt R l -> ForallL2 R l.
+Proof.
+ induction l; auto.
+ constructor. intros b Hb.
+ inv.
+ apply H0; auto.
+ contradict H1; rewrite H1; auto.
+ apply IHl.
+ inv; auto.
+ intros b c Hb Hc Hneq.
+ apply H0; auto.
+Qed.
+
+(** ... and for proving the other implication, we need to be able
+ to reverse and adapt relation [R] modulo [eqA]. *)
+
+Hypothesis R_sym : Symmetric R.
+Hypothesis R_compat : Proper (eqA==>eqA==>iff) R.
+
+Lemma ForallL2_equiv2 : forall l,
+ ForallL2 R l -> ForallL2_alt R l.
+Proof.
+ induction l.
+ intros _. red. intros a b Ha. inv.
+ inversion_clear 1 as [|? ? H_R Hl].
+ intros b c Hb Hc Hneq.
+ inv.
+ (* b,c = a : impossible *)
+ elim Hneq; eauto.
+ (* b = a, c in l *)
+ rewrite InA_alt in H0; destruct H0 as (d,(Hcd,Hd)).
+ rewrite H, Hcd; auto.
+ (* b in l, c = a *)
+ rewrite InA_alt in H; destruct H as (d,(Hcd,Hd)).
+ rewrite H0, Hcd; auto.
+ (* b,c in l *)
+ apply (IHl Hl); auto.
+Qed.
+
+Lemma ForallL2_equiv : forall l, NoDupA l ->
+ (ForallL2 R l <-> ForallL2_alt R l).
+Proof.
+split; [apply ForallL2_equiv2|apply ForallL2_equiv1]; auto.
+Qed.
+
+Lemma ForallL2_equivlistA : forall l l', NoDupA l' ->
+ equivlistA l l' -> ForallL2 R l -> ForallL2 R l'.
+Proof.
+intros.
+apply ForallL2_equiv1; auto.
+intros a b Ha Hb Hneq.
+red in H0; rewrite <- H0 in Ha,Hb.
+revert a b Ha Hb Hneq.
+change (ForallL2_alt R l).
+apply ForallL2_equiv2; auto.
+Qed.
+
+(** Two-argument functions that allow to reorder their arguments. *)
+Definition transpose (f : A -> B -> B) :=
+ forall (x y : A) (z : B), eqB (f x (f y z)) (f y (f x z)).
+
+(** A version of transpose with restriction on where it should hold *)
+Definition transpose_restr (R : A -> A -> Prop)(f : A -> B -> B) :=
+ forall (x y : A) (z : B), R x y -> eqB (f x (f y z)) (f y (f x z)).
+
+Variable TraR :transpose_restr R f.
+
+Lemma fold_right_commutes_restr :
+ forall s1 s2 x, ForallL2 R (s1++x::s2) ->
+ eqB (fold_right f i (s1++x::s2)) (f x (fold_right f i (s1++s2))).
+Proof.
+induction s1; simpl; auto; intros.
+reflexivity.
+transitivity (f a (f x (fold_right f i (s1++s2)))).
+apply Comp; auto.
+apply IHs1.
+invlist ForallL2; auto.
+apply TraR.
+invlist ForallL2; auto.
+apply H0.
+apply in_or_app; simpl; auto.
+Qed.
+
+Lemma fold_right_equivlistA_restr :
+ forall s s', NoDupA s -> NoDupA s' -> ForallL2 R s ->
+ equivlistA s s' -> eqB (fold_right f i s) (fold_right f i s').
+Proof.
+ simple induction s.
+ destruct s'; simpl.
+ intros; reflexivity.
+ unfold equivlistA; intros.
+ destruct (H2 a).
+ assert (InA a nil) by auto; inv.
+ intros x l Hrec s' N N' F E; simpl in *.
+ assert (InA x s') by (rewrite <- (E x); auto).
+ destruct (InA_split H) as (s1,(y,(s2,(H1,H2)))).
+ subst s'.
+ transitivity (f x (fold_right f i (s1++s2))).
+ apply Comp; auto.
+ apply Hrec; auto.
+ inv; auto.
+ eapply NoDupA_split; eauto.
+ invlist ForallL2; auto.
+ eapply equivlistA_NoDupA_split; eauto.
+ transitivity (f y (fold_right f i (s1++s2))).
+ apply Comp; auto. reflexivity.
+ symmetry; apply fold_right_commutes_restr.
+ apply ForallL2_equivlistA with (x::l); auto.
+Qed.
+
+Lemma fold_right_add_restr :
+ forall s' s x, NoDupA s -> NoDupA s' -> ForallL2 R s' -> ~ InA x s ->
+ equivlistA s' (x::s) -> eqB (fold_right f i s') (f x (fold_right f i s)).
+Proof.
+ intros; apply (@fold_right_equivlistA_restr s' (x::s)); auto.
+Qed.
+
+End Restriction.
+
+(** we now state similar results, but without restriction on transpose. *)
+
+Variable Tra :transpose f.
+
+Lemma fold_right_commutes : forall s1 s2 x,
+ eqB (fold_right f i (s1++x::s2)) (f x (fold_right f i (s1++s2))).
+Proof.
+induction s1; simpl; auto; intros.
+reflexivity.
+transitivity (f a (f x (fold_right f i (s1++s2)))); auto.
+apply Comp; auto.
+Qed.
+
+Lemma fold_right_equivlistA :
+ forall s s', NoDupA s -> NoDupA s' ->
+ equivlistA s s' -> eqB (fold_right f i s) (fold_right f i s').
+Proof.
+intros; apply fold_right_equivlistA_restr with (R:=fun _ _ => True);
+ repeat red; auto.
+apply ForallL2_equiv1; try red; auto.
+Qed.
+
+Lemma fold_right_add :
+ forall s' s x, NoDupA s -> NoDupA s' -> ~ InA x s ->
+ equivlistA s' (x::s) -> eqB (fold_right f i s') (f x (fold_right f i s)).
+Proof.
+ intros; apply (@fold_right_equivlistA s' (x::s)); auto.
+Qed.
+
+End Fold.
+
+Section Remove.
+
+Hypothesis eqA_dec : forall x y : A, {eqA x y}+{~(eqA x y)}.
+
+Lemma InA_dec : forall x l, { InA x l } + { ~ InA x l }.
+Proof.
+induction l.
+right; auto.
+intro; inv.
+destruct (eqA_dec x a).
+left; auto.
+destruct IHl.
+left; auto.
+right; intro; inv; contradiction.
+Qed.
+
+Fixpoint removeA (x : A) (l : list A) : list A :=
+ match l with
+ | nil => nil
+ | y::tl => if (eqA_dec x y) then removeA x tl else y::(removeA x tl)
+ end.
+
+Lemma removeA_filter : forall x l,
+ removeA x l = filter (fun y => if eqA_dec x y then false else true) l.
+Proof.
+induction l; simpl; auto.
+destruct (eqA_dec x a); auto.
+rewrite IHl; auto.
+Qed.
+
+Lemma removeA_InA : forall l x y, InA y (removeA x l) <-> InA y l /\ ~eqA x y.
+Proof.
+induction l; simpl; auto.
+split.
+intro; inv.
+destruct 1; inv.
+intros.
+destruct (eqA_dec x a); simpl; auto.
+rewrite IHl; split; destruct 1; split; auto.
+inv; auto.
+destruct H0; transitivity a; auto.
+split.
+intro; inv.
+split; auto.
+contradict n.
+transitivity y; auto.
+rewrite (IHl x y) in H0; destruct H0; auto.
+destruct 1; inv; auto.
+right; rewrite IHl; auto.
+Qed.
+
+Lemma removeA_NoDupA :
+ forall s x, NoDupA s -> NoDupA (removeA x s).
+Proof.
+simple induction s; simpl; intros.
+auto.
+inv.
+destruct (eqA_dec x a); simpl; auto.
+constructor; auto.
+rewrite removeA_InA.
+intuition.
+Qed.
+
+Lemma removeA_equivlistA : forall l l' x,
+ ~InA x l -> equivlistA (x :: l) l' -> equivlistA l (removeA x l').
+Proof.
+unfold equivlistA; intros.
+rewrite removeA_InA.
+split; intros.
+rewrite <- H0; split; auto.
+contradict H.
+apply InA_eqA with x0; auto.
+rewrite <- (H0 x0) in H1.
+destruct H1.
+inv; auto.
+elim H2; auto.
+Qed.
+
+End Remove.
+
+
+
+(** Results concerning lists modulo [eqA] and [ltA] *)
+
+Variable ltA : A -> A -> Prop.
+Hypothesis ltA_strorder : StrictOrder ltA.
+Hypothesis ltA_compat : Proper (eqA==>eqA==>iff) ltA.
+
+Hint Resolve (@StrictOrder_Transitive _ _ ltA_strorder).
+
+Notation InfA:=(lelistA ltA).
+Notation SortA:=(sort ltA).
+
+Hint Constructors lelistA sort.
+
+Lemma InfA_ltA :
+ forall l x y, ltA x y -> InfA y l -> InfA x l.
+Proof.
+ destruct l; constructor. inv; eauto.
+Qed.
+
+Global Instance InfA_compat : Proper (eqA==>eqlistA==>iff) InfA.
+Proof.
+ intros x x' Hxx' l l' Hll'.
+ inversion_clear Hll'.
+ intuition.
+ split; intro; inv; constructor.
+ rewrite <- Hxx', <- H; auto.
+ rewrite Hxx', H; auto.
+Qed.
+
+(** For compatibility, can be deduced from [InfA_compat] *)
+Lemma InfA_eqA :
+ forall l x y, eqA x y -> InfA y l -> InfA x l.
+Proof.
+ intros l x y H; rewrite H; auto.
+Qed.
+Hint Immediate InfA_ltA InfA_eqA.
+
+Lemma SortA_InfA_InA :
+ forall l x a, SortA l -> InfA a l -> InA x l -> ltA a x.
+Proof.
+ simple induction l.
+ intros. inv.
+ intros. inv.
+ setoid_replace x with a; auto.
+ eauto.
+Qed.
+
+Lemma In_InfA :
+ forall l x, (forall y, In y l -> ltA x y) -> InfA x l.
+Proof.
+ simple induction l; simpl; intros; constructor; auto.
+Qed.
+
+Lemma InA_InfA :
+ forall l x, (forall y, InA y l -> ltA x y) -> InfA x l.
+Proof.
+ simple induction l; simpl; intros; constructor; auto.
+Qed.
+
+(* In fact, this may be used as an alternative definition for InfA: *)
+
+Lemma InfA_alt :
+ forall l x, SortA l -> (InfA x l <-> (forall y, InA y l -> ltA x y)).
+Proof.
+split.
+intros; eapply SortA_InfA_InA; eauto.
+apply InA_InfA.
+Qed.
+
+Lemma InfA_app : forall l1 l2 a, InfA a l1 -> InfA a l2 -> InfA a (l1++l2).
+Proof.
+ induction l1; simpl; auto.
+ intros; inv; auto.
+Qed.
+
+Lemma SortA_app :
+ forall l1 l2, SortA l1 -> SortA l2 ->
+ (forall x y, InA x l1 -> InA y l2 -> ltA x y) ->
+ SortA (l1 ++ l2).
+Proof.
+ induction l1; simpl in *; intuition.
+ inv.
+ constructor; auto.
+ apply InfA_app; auto.
+ destruct l2; auto.
+Qed.
+
+Lemma SortA_NoDupA : forall l, SortA l -> NoDupA l.
+Proof.
+ simple induction l; auto.
+ intros x l' H H0.
+ inv.
+ constructor; auto.
+ intro.
+ apply (StrictOrder_Irreflexive x).
+ eapply SortA_InfA_InA; eauto.
+Qed.
+
+
+(** Some results about [eqlistA] *)
+
+Section EqlistA.
+
+Lemma eqlistA_length : forall l l', eqlistA l l' -> length l = length l'.
+Proof.
+induction 1; auto; simpl; congruence.
+Qed.
+
+Global Instance app_eqlistA_compat :
+ Proper (eqlistA==>eqlistA==>eqlistA) (@app A).
+Proof.
+ repeat red; induction 1; simpl; auto.
+Qed.
+
+(** For compatibility, can be deduced from app_eqlistA_compat **)
+Lemma eqlistA_app : forall l1 l1' l2 l2',
+ eqlistA l1 l1' -> eqlistA l2 l2' -> eqlistA (l1++l2) (l1'++l2').
+Proof.
+intros l1 l1' l2 l2' H H'; rewrite H, H'; reflexivity.
+Qed.
+
+Lemma eqlistA_rev_app : forall l1 l1',
+ eqlistA l1 l1' -> forall l2 l2', eqlistA l2 l2' ->
+ eqlistA ((rev l1)++l2) ((rev l1')++l2').
+Proof.
+induction 1; auto.
+simpl; intros.
+do 2 rewrite app_ass; simpl; auto.
+Qed.
+
+Global Instance rev_eqlistA_compat : Proper (eqlistA==>eqlistA) (@rev A).
+Proof.
+repeat red. intros.
+rewrite (app_nil_end (rev x)), (app_nil_end (rev y)).
+apply eqlistA_rev_app; auto.
+Qed.
+
+Lemma eqlistA_rev : forall l1 l1',
+ eqlistA l1 l1' -> eqlistA (rev l1) (rev l1').
+Proof.
+apply rev_eqlistA_compat.
+Qed.
+
+Lemma SortA_equivlistA_eqlistA : forall l l',
+ SortA l -> SortA l' -> equivlistA l l' -> eqlistA l l'.
+Proof.
+induction l; destruct l'; simpl; intros; auto.
+destruct (H1 a); assert (InA a nil) by auto; inv.
+destruct (H1 a); assert (InA a nil) by auto; inv.
+inv.
+assert (forall y, InA y l -> ltA a y).
+intros; eapply SortA_InfA_InA with (l:=l); eauto.
+assert (forall y, InA y l' -> ltA a0 y).
+intros; eapply SortA_InfA_InA with (l:=l'); eauto.
+clear H3 H4.
+assert (eqA a a0).
+ destruct (H1 a).
+ destruct (H1 a0).
+ assert (InA a (a0::l')) by auto. inv; auto.
+ assert (InA a0 (a::l)) by auto. inv; auto.
+ elim (StrictOrder_Irreflexive a); eauto.
+constructor; auto.
+apply IHl; auto.
+split; intros.
+destruct (H1 x).
+assert (InA x (a0::l')) by auto. inv; auto.
+rewrite H9,<-H3 in H4. elim (StrictOrder_Irreflexive a); eauto.
+destruct (H1 x).
+assert (InA x (a::l)) by auto. inv; auto.
+rewrite H9,H3 in H4. elim (StrictOrder_Irreflexive a0); eauto.
+Qed.
+
+End EqlistA.
+
+(** A few things about [filter] *)
+
+Section Filter.
+
+Lemma filter_sort : forall f l, SortA l -> SortA (List.filter f l).
+Proof.
+induction l; simpl; auto.
+intros; inv; auto.
+destruct (f a); auto.
+constructor; auto.
+apply In_InfA; auto.
+intros.
+rewrite filter_In in H; destruct H.
+eapply SortA_InfA_InA; eauto.
+Qed.
+
+Implicit Arguments eq [ [A] ].
+
+Lemma filter_InA : forall f, Proper (eqA==>eq) f ->
+ forall l x, InA x (List.filter f l) <-> InA x l /\ f x = true.
+Proof.
+clear ltA ltA_compat ltA_strorder.
+intros; do 2 rewrite InA_alt; intuition.
+destruct H0 as (y,(H0,H1)); rewrite filter_In in H1; exists y; intuition.
+destruct H0 as (y,(H0,H1)); rewrite filter_In in H1; intuition.
+ rewrite (H _ _ H0); auto.
+destruct H1 as (y,(H0,H1)); exists y; rewrite filter_In; intuition.
+ rewrite <- (H _ _ H0); auto.
+Qed.
+
+Lemma filter_split :
+ forall f, (forall x y, f x = true -> f y = false -> ltA x y) ->
+ forall l, SortA l -> l = filter f l ++ filter (fun x=>negb (f x)) l.
+Proof.
+induction l; simpl; intros; auto.
+inv.
+rewrite IHl at 1; auto.
+case_eq (f a); simpl; intros; auto.
+assert (forall e, In e l -> f e = false).
+ intros.
+ assert (H4:=SortA_InfA_InA H1 H2 (In_InA H3)).
+ case_eq (f e); simpl; intros; auto.
+ elim (StrictOrder_Irreflexive e).
+ transitivity a; auto.
+replace (List.filter f l) with (@nil A); auto.
+generalize H3; clear; induction l; simpl; auto.
+case_eq (f a); auto; intros.
+rewrite H3 in H; auto; try discriminate.
+Qed.
+
+End Filter.
+End Type_with_equality.
+
+
+Hint Constructors InA eqlistA NoDupA sort lelistA.
+
+Section Find.
+
+Variable A B : Type.
+Variable eqA : A -> A -> Prop.
+Hypothesis eqA_equiv : Equivalence eqA.
+Hypothesis eqA_dec : forall x y : A, {eqA x y}+{~(eqA x y)}.
+
+Fixpoint findA (f : A -> bool) (l:list (A*B)) : option B :=
+ match l with
+ | nil => None
+ | (a,b)::l => if f a then Some b else findA f l
+ end.
+
+Lemma findA_NoDupA :
+ forall l a b,
+ NoDupA (fun p p' => eqA (fst p) (fst p')) l ->
+ (InA (fun p p' => eqA (fst p) (fst p') /\ snd p = snd p') (a,b) l <->
+ findA (fun a' => if eqA_dec a a' then true else false) l = Some b).
+Proof.
+set (eqk := fun p p' : A*B => eqA (fst p) (fst p')).
+set (eqke := fun p p' : A*B => eqA (fst p) (fst p') /\ snd p = snd p').
+induction l; intros; simpl.
+split; intros; try discriminate.
+invlist InA.
+destruct a as (a',b'); rename a0 into a.
+invlist NoDupA.
+split; intros.
+invlist InA.
+compute in H2; destruct H2. subst b'.
+destruct (eqA_dec a a'); intuition.
+destruct (eqA_dec a a'); simpl.
+contradict H0.
+revert e H2; clear - eqA_equiv.
+induction l.
+intros; invlist InA.
+intros; invlist InA; auto.
+destruct a0.
+compute in H; destruct H.
+subst b.
+left; auto.
+compute.
+transitivity a; auto. symmetry; auto.
+rewrite <- IHl; auto.
+destruct (eqA_dec a a'); simpl in *.
+left; split; simpl; congruence.
+right. rewrite IHl; auto.
+Qed.
+
+End Find.
diff --git a/theories/MSets/MSetAVL.v b/theories/MSets/MSetAVL.v
new file mode 100644
index 0000000000..e38bf171ef
--- /dev/null
+++ b/theories/MSets/MSetAVL.v
@@ -0,0 +1,1851 @@
+(* -*- coding: utf-8 -*- *)
+(***********************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
+(* \VV/ *************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(***********************************************************************)
+
+(* $Id$ *)
+
+(** * MSetAVL : Implementation of MSetInterface via AVL trees *)
+
+(** This module implements finite sets using AVL trees.
+ It follows the implementation from Ocaml's standard library,
+
+ All operations given here expect and produce well-balanced trees
+ (in the ocaml sense: heigths of subtrees shouldn't differ by more
+ than 2), and hence has low complexities (e.g. add is logarithmic
+ in the size of the set). But proving these balancing preservations
+ is in fact not necessary for ensuring correct operational behavior
+ and hence fulfilling the MSet interface. As a consequence,
+ balancing results are not part of this file anymore, they can
+ now be found in [MSetFullAVL].
+
+ Four operations ([union], [subset], [compare] and [equal]) have
+ been slightly adapted in order to have only structural recursive
+ calls. The precise ocaml versions of these operations have also
+ been formalized (thanks to Function+measure), see [ocaml_union],
+ [ocaml_subset], [ocaml_compare] and [ocaml_equal] in
+ [MSetFullAVL]. The structural variants compute faster in Coq,
+ whereas the other variants produce nicer and/or (slightly) faster
+ code after extraction.
+*)
+
+Require Import MSetInterface ZArith Int.
+
+Set Implicit Arguments.
+Unset Strict Implicit.
+
+(** * Ops : the pure functions *)
+
+Module Ops (Import I:Int)(X:OrderedType) <: WOps X.
+Local Open Scope Int_scope.
+Local Open Scope lazy_bool_scope.
+
+Definition elt := X.t.
+
+(** ** Trees
+
+ The fourth field of [Node] is the height of the tree *)
+
+Inductive tree :=
+ | Leaf : tree
+ | Node : tree -> X.t -> tree -> int -> tree.
+
+Definition t := tree.
+
+(** ** Basic functions on trees: height and cardinal *)
+
+Definition height (s : t) : int :=
+ match s with
+ | Leaf => 0
+ | Node _ _ _ h => h
+ end.
+
+Fixpoint cardinal (s : t) : nat :=
+ match s with
+ | Leaf => 0%nat
+ | Node l _ r _ => S (cardinal l + cardinal r)
+ end.
+
+(** ** Empty Set *)
+
+Definition empty := Leaf.
+
+(** ** Emptyness test *)
+
+Definition is_empty s :=
+ match s with Leaf => true | _ => false end.
+
+(** ** Appartness *)
+
+(** The [mem] function is deciding appartness. It exploits the
+ binary search tree invariant to achieve logarithmic complexity. *)
+
+Fixpoint mem x s :=
+ match s with
+ | Leaf => false
+ | Node l y r _ => match X.compare x y with
+ | Lt => mem x l
+ | Eq => true
+ | Gt => mem x r
+ end
+ end.
+
+(** ** Singleton set *)
+
+Definition singleton x := Node Leaf x Leaf 1.
+
+(** ** Helper functions *)
+
+(** [create l x r] creates a node, assuming [l] and [r]
+ to be balanced and [|height l - height r| <= 2]. *)
+
+Definition create l x r :=
+ Node l x r (max (height l) (height r) + 1).
+
+(** [bal l x r] acts as [create], but performs one step of
+ rebalancing if necessary, i.e. assumes [|height l - height r| <= 3]. *)
+
+Definition assert_false := create.
+
+Definition bal l x r :=
+ let hl := height l in
+ let hr := height r in
+ if gt_le_dec hl (hr+2) then
+ match l with
+ | Leaf => assert_false l x r
+ | Node ll lx lr _ =>
+ if ge_lt_dec (height ll) (height lr) then
+ create ll lx (create lr x r)
+ else
+ match lr with
+ | Leaf => assert_false l x r
+ | Node lrl lrx lrr _ =>
+ create (create ll lx lrl) lrx (create lrr x r)
+ end
+ end
+ else
+ if gt_le_dec hr (hl+2) then
+ match r with
+ | Leaf => assert_false l x r
+ | Node rl rx rr _ =>
+ if ge_lt_dec (height rr) (height rl) then
+ create (create l x rl) rx rr
+ else
+ match rl with
+ | Leaf => assert_false l x r
+ | Node rll rlx rlr _ =>
+ create (create l x rll) rlx (create rlr rx rr)
+ end
+ end
+ else
+ create l x r.
+
+(** ** Insertion *)
+
+Fixpoint add x s := match s with
+ | Leaf => Node Leaf x Leaf 1
+ | Node l y r h =>
+ match X.compare x y with
+ | Lt => bal (add x l) y r
+ | Eq => Node l y r h
+ | Gt => bal l y (add x r)
+ end
+ end.
+
+(** ** Join
+
+ Same as [bal] but does not assume anything regarding heights
+ of [l] and [r].
+*)
+
+Fixpoint join l : elt -> t -> t :=
+ match l with
+ | Leaf => add
+ | Node ll lx lr lh => fun x =>
+ fix join_aux (r:t) : t := match r with
+ | Leaf => add x l
+ | Node rl rx rr rh =>
+ if gt_le_dec lh (rh+2) then bal ll lx (join lr x r)
+ else if gt_le_dec rh (lh+2) then bal (join_aux rl) rx rr
+ else create l x r
+ end
+ end.
+
+(** ** Extraction of minimum element
+
+ Morally, [remove_min] is to be applied to a non-empty tree
+ [t = Node l x r h]. Since we can't deal here with [assert false]
+ for [t=Leaf], we pre-unpack [t] (and forget about [h]).
+*)
+
+Fixpoint remove_min l x r : t*elt :=
+ match l with
+ | Leaf => (r,x)
+ | Node ll lx lr lh =>
+ let (l',m) := remove_min ll lx lr in (bal l' x r, m)
+ end.
+
+(** ** Merging two trees
+
+ [merge t1 t2] builds the union of [t1] and [t2] assuming all elements
+ of [t1] to be smaller than all elements of [t2], and
+ [|height t1 - height t2| <= 2].
+*)
+
+Definition merge s1 s2 := match s1,s2 with
+ | Leaf, _ => s2
+ | _, Leaf => s1
+ | _, Node l2 x2 r2 h2 =>
+ let (s2',m) := remove_min l2 x2 r2 in bal s1 m s2'
+end.
+
+(** ** Deletion *)
+
+Fixpoint remove x s := match s with
+ | Leaf => Leaf
+ | Node l y r h =>
+ match X.compare x y with
+ | Lt => bal (remove x l) y r
+ | Eq => merge l r
+ | Gt => bal l y (remove x r)
+ end
+ end.
+
+(** ** Minimum element *)
+
+Fixpoint min_elt s := match s with
+ | Leaf => None
+ | Node Leaf y _ _ => Some y
+ | Node l _ _ _ => min_elt l
+end.
+
+(** ** Maximum element *)
+
+Fixpoint max_elt s := match s with
+ | Leaf => None
+ | Node _ y Leaf _ => Some y
+ | Node _ _ r _ => max_elt r
+end.
+
+(** ** Any element *)
+
+Definition choose := min_elt.
+
+(** ** Concatenation
+
+ Same as [merge] but does not assume anything about heights.
+*)
+
+Definition concat s1 s2 :=
+ match s1, s2 with
+ | Leaf, _ => s2
+ | _, Leaf => s1
+ | _, Node l2 x2 r2 _ =>
+ let (s2',m) := remove_min l2 x2 r2 in
+ join s1 m s2'
+ end.
+
+(** ** Splitting
+
+ [split x s] returns a triple [(l, present, r)] where
+ - [l] is the set of elements of [s] that are [< x]
+ - [r] is the set of elements of [s] that are [> x]
+ - [present] is [true] if and only if [s] contains [x].
+*)
+
+Record triple := mktriple { t_left:t; t_in:bool; t_right:t }.
+Notation "<< l , b , r >>" := (mktriple l b r) (at level 9).
+
+Fixpoint split x s : triple := match s with
+ | Leaf => << Leaf, false, Leaf >>
+ | Node l y r h =>
+ match X.compare x y with
+ | Lt => let (ll,b,rl) := split x l in << ll, b, join rl y r >>
+ | Eq => << l, true, r >>
+ | Gt => let (rl,b,rr) := split x r in << join l y rl, b, rr >>
+ end
+ end.
+
+(** ** Intersection *)
+
+Fixpoint inter s1 s2 := match s1, s2 with
+ | Leaf, _ => Leaf
+ | _, Leaf => Leaf
+ | Node l1 x1 r1 h1, _ =>
+ let (l2',pres,r2') := split x1 s2 in
+ if pres then join (inter l1 l2') x1 (inter r1 r2')
+ else concat (inter l1 l2') (inter r1 r2')
+ end.
+
+(** ** Difference *)
+
+Fixpoint diff s1 s2 := match s1, s2 with
+ | Leaf, _ => Leaf
+ | _, Leaf => s1
+ | Node l1 x1 r1 h1, _ =>
+ let (l2',pres,r2') := split x1 s2 in
+ if pres then concat (diff l1 l2') (diff r1 r2')
+ else join (diff l1 l2') x1 (diff r1 r2')
+end.
+
+(** ** Union *)
+
+(** In ocaml, heights of [s1] and [s2] are compared each time in order
+ to recursively perform the split on the smaller set.
+ Unfortunately, this leads to a non-structural algorithm. The
+ following code is a simplification of the ocaml version: no
+ comparison of heights. It might be slightly slower, but
+ experimentally all the tests I've made in ocaml have shown this
+ potential slowdown to be non-significant. Anyway, the exact code
+ of ocaml has also been formalized thanks to Function+measure, see
+ [ocaml_union] in [MSetFullAVL].
+*)
+
+Fixpoint union s1 s2 :=
+ match s1, s2 with
+ | Leaf, _ => s2
+ | _, Leaf => s1
+ | Node l1 x1 r1 h1, _ =>
+ let (l2',_,r2') := split x1 s2 in
+ join (union l1 l2') x1 (union r1 r2')
+ end.
+
+(** ** Elements *)
+
+(** [elements_tree_aux acc t] catenates the elements of [t] in infix
+ order to the list [acc] *)
+
+Fixpoint elements_aux (acc : list X.t) (s : t) : list X.t :=
+ match s with
+ | Leaf => acc
+ | Node l x r _ => elements_aux (x :: elements_aux acc r) l
+ end.
+
+(** then [elements] is an instanciation with an empty [acc] *)
+
+Definition elements := elements_aux nil.
+
+(** ** Filter *)
+
+Fixpoint filter_acc (f:elt->bool) acc s := match s with
+ | Leaf => acc
+ | Node l x r h =>
+ filter_acc f (filter_acc f (if f x then add x acc else acc) l) r
+ end.
+
+Definition filter f := filter_acc f Leaf.
+
+
+(** ** Partition *)
+
+Fixpoint partition_acc (f:elt->bool)(acc : t*t)(s : t) : t*t :=
+ match s with
+ | Leaf => acc
+ | Node l x r _ =>
+ let (acct,accf) := acc in
+ partition_acc f
+ (partition_acc f
+ (if f x then (add x acct, accf) else (acct, add x accf)) l) r
+ end.
+
+Definition partition f := partition_acc f (Leaf,Leaf).
+
+(** ** [for_all] and [exists] *)
+
+Fixpoint for_all (f:elt->bool) s := match s with
+ | Leaf => true
+ | Node l x r _ => f x &&& for_all f l &&& for_all f r
+end.
+
+Fixpoint exists_ (f:elt->bool) s := match s with
+ | Leaf => false
+ | Node l x r _ => f x ||| exists_ f l ||| exists_ f r
+end.
+
+(** ** Fold *)
+
+Fixpoint fold (A : Type) (f : elt -> A -> A)(s : t) : A -> A :=
+ fun a => match s with
+ | Leaf => a
+ | Node l x r _ => fold f r (f x (fold f l a))
+ end.
+Implicit Arguments fold [A].
+
+
+(** ** Subset *)
+
+(** In ocaml, recursive calls are made on "half-trees" such as
+ (Node l1 x1 Leaf _) and (Node Leaf x1 r1 _). Instead of these
+ non-structural calls, we propose here two specialized functions for
+ these situations. This version should be almost as efficient as
+ the one of ocaml (closures as arguments may slow things a bit),
+ it is simply less compact. The exact ocaml version has also been
+ formalized (thanks to Function+measure), see [ocaml_subset] in
+ [MSetFullAVL].
+ *)
+
+Fixpoint subsetl (subset_l1:t->bool) x1 s2 : bool :=
+ match s2 with
+ | Leaf => false
+ | Node l2 x2 r2 h2 =>
+ match X.compare x1 x2 with
+ | Eq => subset_l1 l2
+ | Lt => subsetl subset_l1 x1 l2
+ | Gt => mem x1 r2 &&& subset_l1 s2
+ end
+ end.
+
+Fixpoint subsetr (subset_r1:t->bool) x1 s2 : bool :=
+ match s2 with
+ | Leaf => false
+ | Node l2 x2 r2 h2 =>
+ match X.compare x1 x2 with
+ | Eq => subset_r1 r2
+ | Lt => mem x1 l2 &&& subset_r1 s2
+ | Gt => subsetr subset_r1 x1 r2
+ end
+ end.
+
+Fixpoint subset s1 s2 : bool := match s1, s2 with
+ | Leaf, _ => true
+ | Node _ _ _ _, Leaf => false
+ | Node l1 x1 r1 h1, Node l2 x2 r2 h2 =>
+ match X.compare x1 x2 with
+ | Eq => subset l1 l2 &&& subset r1 r2
+ | Lt => subsetl (subset l1) x1 l2 &&& subset r1 s2
+ | Gt => subsetr (subset r1) x1 r2 &&& subset l1 s2
+ end
+ end.
+
+(** ** A new comparison algorithm suggested by Xavier Leroy
+
+ Transformation in C.P.S. suggested by Benjamin Grégoire.
+ The original ocaml code (with non-structural recursive calls)
+ has also been formalized (thanks to Function+measure), see
+ [ocaml_compare] in [MSetFullAVL]. The following code with
+ continuations computes dramatically faster in Coq, and
+ should be almost as efficient after extraction.
+*)
+
+(** Enumeration of the elements of a tree *)
+
+Inductive enumeration :=
+ | End : enumeration
+ | More : elt -> t -> enumeration -> enumeration.
+
+
+(** [cons t e] adds the elements of tree [t] on the head of
+ enumeration [e]. *)
+
+Fixpoint cons s e : enumeration :=
+ match s with
+ | Leaf => e
+ | Node l x r h => cons l (More x r e)
+ end.
+
+(** One step of comparison of elements *)
+
+Definition compare_more x1 (cont:enumeration->comparison) e2 :=
+ match e2 with
+ | End => Gt
+ | More x2 r2 e2 =>
+ match X.compare x1 x2 with
+ | Eq => cont (cons r2 e2)
+ | Lt => Lt
+ | Gt => Gt
+ end
+ end.
+
+(** Comparison of left tree, middle element, then right tree *)
+
+Fixpoint compare_cont s1 (cont:enumeration->comparison) e2 :=
+ match s1 with
+ | Leaf => cont e2
+ | Node l1 x1 r1 _ =>
+ compare_cont l1 (compare_more x1 (compare_cont r1 cont)) e2
+ end.
+
+(** Initial continuation *)
+
+Definition compare_end e2 :=
+ match e2 with End => Eq | _ => Lt end.
+
+(** The complete comparison *)
+
+Definition compare s1 s2 := compare_cont s1 compare_end (cons s2 End).
+
+(** ** Equality test *)
+
+Definition equal s1 s2 : bool :=
+ match compare s1 s2 with
+ | Eq => true
+ | _ => false
+ end.
+
+End Ops.
+
+
+
+(** * MakeRaw
+
+ Functor of pure functions + a posteriori proofs of invariant
+ preservation *)
+
+Module MakeRaw (Import I:Int)(X:OrderedType) <: RawSets X.
+Include Ops I X.
+
+(** * Invariants *)
+
+(** ** Occurrence in a tree *)
+
+Inductive InT (x : elt) : tree -> Prop :=
+ | IsRoot : forall l r h y, X.eq x y -> InT x (Node l y r h)
+ | InLeft : forall l r h y, InT x l -> InT x (Node l y r h)
+ | InRight : forall l r h y, InT x r -> InT x (Node l y r h).
+
+Definition In := InT.
+
+(** ** Some shortcuts *)
+
+Definition Equal s s' := forall a : elt, InT a s <-> InT a s'.
+Definition Subset s s' := forall a : elt, InT a s -> InT a s'.
+Definition Empty s := forall a : elt, ~ InT a s.
+Definition For_all (P : elt -> Prop) s := forall x, InT x s -> P x.
+Definition Exists (P : elt -> Prop) s := exists x, InT x s /\ P x.
+
+(** ** Binary search trees *)
+
+(** [lt_tree x s]: all elements in [s] are smaller than [x]
+ (resp. greater for [gt_tree]) *)
+
+Definition lt_tree x s := forall y, InT y s -> X.lt y x.
+Definition gt_tree x s := forall y, InT y s -> X.lt x y.
+
+(** [bst t] : [t] is a binary search tree *)
+
+Inductive bst : tree -> Prop :=
+ | BSLeaf : bst Leaf
+ | BSNode : forall x l r h, bst l -> bst r ->
+ lt_tree x l -> gt_tree x r -> bst (Node l x r h).
+
+(** [bst] is the (decidable) invariant our trees will have to satisfy. *)
+
+Definition IsOk := bst.
+
+Class Ok (s:t) : Prop := { ok : bst s }.
+
+Instance bst_Ok `(Hs : bst s) : Ok s := Hs.
+
+Fixpoint ltb_tree x s :=
+ match s with
+ | Leaf => true
+ | Node l y r _ =>
+ match X.compare x y with
+ | Gt => ltb_tree x l && ltb_tree x r
+ | _ => false
+ end
+ end.
+
+Fixpoint gtb_tree x s :=
+ match s with
+ | Leaf => true
+ | Node l y r _ =>
+ match X.compare x y with
+ | Lt => gtb_tree x l && gtb_tree x r
+ | _ => false
+ end
+ end.
+
+Fixpoint isok s :=
+ match s with
+ | Leaf => true
+ | Node l x r _ => isok l && isok r && ltb_tree x l && gtb_tree x r
+ end.
+
+
+(** * Correctness proofs *)
+
+(* Module Proofs. *)
+ Module MX := OrderedTypeFacts X.
+ Hint Resolve MX.lt_trans.
+
+(** * Automation and dedicated tactics *)
+
+Hint Unfold In.
+Hint Constructors InT bst.
+Hint Unfold lt_tree gt_tree.
+Hint Resolve @ok.
+Hint Constructors Ok.
+
+Tactic Notation "factornode" ident(l) ident(x) ident(r) ident(h)
+ "as" ident(s) :=
+ set (s:=Node l x r h) in *; clearbody s; clear l x r h.
+
+(** Automatic treatment of [Ok] hypothesis *)
+
+Ltac inv_ok := match goal with
+ | H:Ok (Node _ _ _ _) |- _ => apply @ok in H; inversion_clear H; inv_ok
+ | H:Ok Leaf |- _ => clear H; inv_ok
+ | H:bst _ |- _ => generalize (Build_Ok H); clear H; intro H; inv_ok
+ | _ => idtac
+end.
+
+(** A tactic to repeat [inversion_clear] on all hyps of the
+ form [(f (Node _ _ _ _))] *)
+
+Ltac is_tree_constr c :=
+ match c with
+ | Leaf => idtac
+ | Node _ _ _ _ => idtac
+ | _ => fail
+ end.
+
+Ltac invtree f :=
+ match goal with
+ | H:f ?s |- _ => is_tree_constr s; inversion_clear H; invtree f
+ | H:f _ ?s |- _ => is_tree_constr s; inversion_clear H; invtree f
+ | H:f _ _ ?s |- _ => is_tree_constr s; inversion_clear H; invtree f
+ | _ => idtac
+ end.
+
+Ltac inv := inv_ok; invtree InT.
+
+Ltac intuition_in := repeat progress (intuition; inv).
+
+(** Helper tactic concerning order of elements. *)
+
+Ltac order := match goal with
+ | U: lt_tree _ ?s, V: InT _ ?s |- _ => generalize (U _ V); clear U; order
+ | U: gt_tree _ ?s, V: InT _ ?s |- _ => generalize (U _ V); clear U; order
+ | _ => MX.order
+end.
+
+
+(** [isok] is indeed a decision procedure for [Ok] *)
+
+Lemma ltb_tree_iff : forall x s, lt_tree x s <-> ltb_tree x s = true.
+Proof.
+ induction s as [|l IHl y r IHr h]; simpl.
+ unfold lt_tree; intuition_in.
+ MX.elim_compare x y; intros.
+ split; intros; try discriminate. assert (X.lt y x) by auto. order.
+ split; intros; try discriminate. assert (X.lt y x) by auto. order.
+ rewrite !andb_true_iff, <-IHl, <-IHr.
+ unfold lt_tree; intuition_in; order.
+Qed.
+
+Lemma gtb_tree_iff : forall x s, gt_tree x s <-> gtb_tree x s = true.
+Proof.
+ induction s as [|l IHl y r IHr h]; simpl.
+ unfold gt_tree; intuition_in.
+ MX.elim_compare x y; intros.
+ split; intros; try discriminate. assert (X.lt x y) by auto. order.
+ rewrite !andb_true_iff, <-IHl, <-IHr.
+ unfold gt_tree; intuition_in; order.
+ split; intros; try discriminate. assert (X.lt x y) by auto. order.
+Qed.
+
+Lemma isok_iff : forall s, Ok s <-> isok s = true.
+Proof.
+ induction s as [|l IHl y r IHr h]; simpl.
+ intuition_in.
+ rewrite !andb_true_iff, <- IHl, <-IHr, <- ltb_tree_iff, <- gtb_tree_iff.
+ intuition_in.
+Qed.
+
+Instance isok_Ok `(isok s = true) : Ok s | 10.
+Proof. intros; apply <- isok_iff; auto. Qed.
+
+
+(** * Basic results about [In], [lt_tree], [gt_tree], [height] *)
+
+(** [In] is compatible with [X.eq] *)
+
+Lemma In_1 :
+ forall s x y, X.eq x y -> InT x s -> InT y s.
+Proof.
+ induction s; simpl; intuition_in; eauto 3. (** TODO: why 5 is so slow ? *)
+Qed.
+Hint Immediate In_1.
+
+Instance In_compat : Proper (X.eq==>eq==>iff) InT.
+Proof.
+apply proper_sym_impl_iff_2; auto with *.
+repeat red; intros; subst. apply In_1 with x; auto.
+Qed.
+
+Lemma In_node_iff :
+ forall l x r h y,
+ InT y (Node l x r h) <-> InT y l \/ X.eq y x \/ InT y r.
+Proof.
+ intuition_in.
+Qed.
+
+(** Results about [lt_tree] and [gt_tree] *)
+
+Lemma lt_leaf : forall x : elt, lt_tree x Leaf.
+Proof.
+ red; inversion 1.
+Qed.
+
+Lemma gt_leaf : forall x : elt, gt_tree x Leaf.
+Proof.
+ red; inversion 1.
+Qed.
+
+Lemma lt_tree_node :
+ forall (x y : elt) (l r : tree) (h : int),
+ lt_tree x l -> lt_tree x r -> X.lt y x -> lt_tree x (Node l y r h).
+Proof.
+ unfold lt_tree; intuition_in; order.
+Qed.
+
+Lemma gt_tree_node :
+ forall (x y : elt) (l r : tree) (h : int),
+ gt_tree x l -> gt_tree x r -> X.lt x y -> gt_tree x (Node l y r h).
+Proof.
+ unfold gt_tree; intuition_in; order.
+Qed.
+
+Hint Resolve lt_leaf gt_leaf lt_tree_node gt_tree_node.
+
+Lemma lt_tree_not_in :
+ forall (x : elt) (t : tree), lt_tree x t -> ~ InT x t.
+Proof.
+ intros; intro; order.
+Qed.
+
+Lemma lt_tree_trans :
+ forall x y, X.lt x y -> forall t, lt_tree x t -> lt_tree y t.
+Proof.
+ eauto.
+Qed.
+
+Lemma gt_tree_not_in :
+ forall (x : elt) (t : tree), gt_tree x t -> ~ InT x t.
+Proof.
+ intros; intro; order.
+Qed.
+
+Lemma gt_tree_trans :
+ forall x y, X.lt y x -> forall t, gt_tree x t -> gt_tree y t.
+Proof.
+ eauto.
+Qed.
+
+Hint Resolve lt_tree_not_in lt_tree_trans gt_tree_not_in gt_tree_trans.
+
+(** * Inductions principles for some of the set operators *)
+
+Functional Scheme bal_ind := Induction for bal Sort Prop.
+Functional Scheme remove_min_ind := Induction for remove_min Sort Prop.
+Functional Scheme merge_ind := Induction for merge Sort Prop.
+Functional Scheme min_elt_ind := Induction for min_elt Sort Prop.
+Functional Scheme max_elt_ind := Induction for max_elt Sort Prop.
+Functional Scheme concat_ind := Induction for concat Sort Prop.
+Functional Scheme inter_ind := Induction for inter Sort Prop.
+Functional Scheme diff_ind := Induction for diff Sort Prop.
+Functional Scheme union_ind := Induction for union Sort Prop.
+
+Ltac induct s x :=
+ induction s as [|l IHl x' r IHr h]; simpl; intros;
+ [|MX.elim_compare x x'; intros; inv].
+
+
+(** * Notations and helper lemma about pairs and triples *)
+
+Notation "s #1" := (fst s) (at level 9, format "s '#1'") : pair_scope.
+Notation "s #2" := (snd s) (at level 9, format "s '#2'") : pair_scope.
+Notation "t #l" := (t_left t) (at level 9, format "t '#l'") : pair_scope.
+Notation "t #b" := (t_in t) (at level 9, format "t '#b'") : pair_scope.
+Notation "t #r" := (t_right t) (at level 9, format "t '#r'") : pair_scope.
+
+Open Local Scope pair_scope.
+
+
+(** * Empty set *)
+
+Lemma empty_spec : Empty empty.
+Proof.
+ intro; intro.
+ inversion H.
+Qed.
+
+Instance empty_ok : Ok empty.
+Proof.
+ auto.
+Qed.
+
+(** * Emptyness test *)
+
+Lemma is_empty_spec : forall s, is_empty s = true <-> Empty s.
+Proof.
+ destruct s as [|r x l h]; simpl; auto.
+ split; auto. red; red; intros; inv.
+ split; auto. try discriminate. intro H; elim (H x); auto.
+Qed.
+
+(** * Appartness *)
+
+Lemma mem_spec : forall s x `{Ok s}, mem x s = true <-> InT x s.
+Proof.
+ split.
+ induct s x; auto; discriminate.
+ induct s x; intuition_in; order.
+Qed.
+
+
+(** * Singleton set *)
+
+Lemma singleton_spec : forall x y, InT y (singleton x) <-> X.eq y x.
+Proof.
+ unfold singleton; intuition_in.
+Qed.
+
+Instance singleton_ok x : Ok (singleton x).
+Proof.
+ unfold singleton; auto.
+Qed.
+
+
+
+(** * Helper functions *)
+
+Lemma create_spec :
+ forall l x r y, InT y (create l x r) <-> X.eq y x \/ InT y l \/ InT y r.
+Proof.
+ unfold create; split; [ inversion_clear 1 | ]; intuition.
+Qed.
+
+Instance create_ok l x r `(Ok l, Ok r, lt_tree x l, gt_tree x r) :
+ Ok (create l x r).
+Proof.
+ unfold create; auto.
+Qed.
+
+Lemma bal_spec : forall l x r y,
+ InT y (bal l x r) <-> X.eq y x \/ InT y l \/ InT y r.
+Proof.
+ intros l x r; functional induction bal l x r; intros; try clear e0;
+ rewrite !create_spec; intuition_in.
+Qed.
+
+Instance bal_ok l x r `(Ok l, Ok r, lt_tree x l, gt_tree x r) :
+ Ok (bal l x r).
+Proof.
+ intros l x r; functional induction bal l x r; intros;
+ inv; repeat apply create_ok; auto; unfold create;
+ (apply lt_tree_node || apply gt_tree_node); auto;
+ (eapply lt_tree_trans || eapply gt_tree_trans); eauto.
+Qed.
+
+
+(** * Insertion *)
+
+Lemma add_spec' : forall s x y,
+ InT y (add x s) <-> X.eq y x \/ InT y s.
+Proof.
+ induct s x; try rewrite ?bal_spec, ?IHl, ?IHr; intuition_in.
+ setoid_replace y with x'; eauto.
+Qed.
+
+Lemma add_spec : forall s x y `{Ok s},
+ InT y (add x s) <-> X.eq y x \/ InT y s.
+Proof. intros; apply add_spec'. Qed.
+
+Instance add_ok s x `(Ok s) : Ok (add x s).
+Proof.
+ induct s x; auto; apply bal_ok; auto.
+ (* lt_tree -> lt_tree (add ...) *)
+ red; red in H3.
+ intros.
+ rewrite add_spec' in H.
+ intuition.
+ eauto.
+ (* gt_tree -> gt_tree (add ...) *)
+ red; red in H3.
+ intros.
+ rewrite add_spec' in H.
+ intuition.
+ setoid_replace y with x; auto.
+Qed.
+
+
+Open Scope Int_scope.
+
+(** * Join *)
+
+(* Function/Functional Scheme can't deal with internal fix.
+ Let's do its job by hand: *)
+
+Ltac join_tac :=
+ intro l; induction l as [| ll _ lx lr Hlr lh];
+ [ | intros x r; induction r as [| rl Hrl rx rr _ rh]; unfold join;
+ [ | destruct (gt_le_dec lh (rh+2));
+ [ match goal with |- context b [ bal ?a ?b ?c] =>
+ replace (bal a b c)
+ with (bal ll lx (join lr x (Node rl rx rr rh))); [ | auto]
+ end
+ | destruct (gt_le_dec rh (lh+2));
+ [ match goal with |- context b [ bal ?a ?b ?c] =>
+ replace (bal a b c)
+ with (bal (join (Node ll lx lr lh) x rl) rx rr); [ | auto]
+ end
+ | ] ] ] ]; intros.
+
+Lemma join_spec : forall l x r y,
+ InT y (join l x r) <-> X.eq y x \/ InT y l \/ InT y r.
+Proof.
+ join_tac.
+ simpl.
+ rewrite add_spec'; intuition_in.
+ rewrite add_spec'; intuition_in.
+ rewrite bal_spec, Hlr; clear Hlr Hrl; intuition_in.
+ rewrite bal_spec, Hrl; clear Hlr Hrl; intuition_in.
+ apply create_spec.
+Qed.
+
+Instance join_ok l x r `(Ok l, Ok r, lt_tree x l, gt_tree x r) :
+ Ok (join l x r).
+Proof.
+ join_tac; auto with *; inv; apply bal_ok; auto;
+ clear Hrl Hlr z; intro; intros; rewrite join_spec in *.
+ intuition; [ setoid_replace y with x | ]; eauto.
+ intuition; [ setoid_replace y with x | ]; eauto.
+Qed.
+
+
+(** * Extraction of minimum element *)
+
+Lemma remove_min_spec : forall l x r h y,
+ InT y (Node l x r h) <->
+ X.eq y (remove_min l x r)#2 \/ InT y (remove_min l x r)#1.
+Proof.
+ intros l x r; functional induction (remove_min l x r); simpl in *; intros.
+ intuition_in.
+ rewrite bal_spec, In_node_iff, IHp, e0; simpl; intuition.
+Qed.
+
+Instance remove_min_ok l x r h `(Ok (Node l x r h)) :
+ Ok (remove_min l x r)#1.
+Proof.
+ intros l x r; functional induction (remove_min l x r); simpl; intros.
+ inv; auto.
+ assert (O : Ok (Node ll lx lr _x)) by (inv; auto).
+ assert (L : lt_tree x (Node ll lx lr _x)) by (inv; auto).
+ specialize IHp with (1:=O); rewrite e0 in IHp; auto; simpl in *.
+ apply bal_ok; auto.
+ inv; auto.
+ intro y; specialize (L y).
+ rewrite remove_min_spec, e0 in L; simpl in L; intuition.
+ inv; auto.
+Qed.
+
+Lemma remove_min_gt_tree : forall l x r h `{Ok (Node l x r h)},
+ gt_tree (remove_min l x r)#2 (remove_min l x r)#1.
+Proof.
+ intros l x r; functional induction (remove_min l x r); simpl; intros.
+ inv; auto.
+ assert (O : Ok (Node ll lx lr _x)) by (inv; auto).
+ assert (L : lt_tree x (Node ll lx lr _x)) by (inv; auto).
+ specialize IHp with (1:=O); rewrite e0 in IHp; simpl in IHp.
+ intro y; rewrite bal_spec; intuition;
+ specialize (L m); rewrite remove_min_spec, e0 in L; simpl in L;
+ [setoid_replace y with x|inv]; eauto.
+Qed.
+Hint Resolve remove_min_gt_tree.
+
+
+
+(** * Merging two trees *)
+
+Lemma merge_spec : forall s1 s2 y,
+ InT y (merge s1 s2) <-> InT y s1 \/ InT y s2.
+Proof.
+ intros s1 s2; functional induction (merge s1 s2); intros;
+ try factornode _x _x0 _x1 _x2 as s1.
+ intuition_in.
+ intuition_in.
+ rewrite bal_spec, remove_min_spec, e1; simpl; intuition.
+Qed.
+
+Instance merge_ok s1 s2 `(Ok s1, Ok s2)
+ `(forall y1 y2 : elt, InT y1 s1 -> InT y2 s2 -> X.lt y1 y2) :
+ Ok (merge s1 s2).
+Proof.
+ intros s1 s2; functional induction (merge s1 s2); intros; auto;
+ try factornode _x _x0 _x1 _x2 as s1.
+ apply bal_ok; auto.
+ change s2' with ((s2',m)#1); rewrite <-e1; eauto with *.
+ intros y Hy.
+ apply H1; auto.
+ rewrite remove_min_spec, e1; simpl; auto.
+ change (gt_tree (s2',m)#2 (s2',m)#1); rewrite <-e1; eauto.
+Qed.
+
+
+
+(** * Deletion *)
+
+Lemma remove_spec : forall s x y `{Ok s},
+ (InT y (remove x s) <-> InT y s /\ ~ X.eq y x).
+Proof.
+ induct s x.
+ intuition_in.
+ rewrite merge_spec; intuition; [order|order|intuition_in].
+ elim H6; eauto.
+ rewrite bal_spec, IHl; clear IHl IHr; intuition; [order|order|intuition_in].
+ rewrite bal_spec, IHr; clear IHl IHr; intuition; [order|order|intuition_in].
+Qed.
+
+Instance remove_ok s x `(Ok s) : Ok (remove x s).
+Proof.
+ induct s x.
+ auto.
+ (* EQ *)
+ apply merge_ok; eauto.
+ (* LT *)
+ apply bal_ok; auto.
+ intro z; rewrite remove_spec; auto; destruct 1; eauto.
+ (* GT *)
+ apply bal_ok; auto.
+ intro z; rewrite remove_spec; auto; destruct 1; eauto.
+Qed.
+
+
+(** * Minimum element *)
+
+Lemma min_elt_spec1 : forall s x, min_elt s = Some x -> InT x s.
+Proof.
+ intro s; functional induction (min_elt s); auto; inversion 1; auto.
+Qed.
+
+Lemma min_elt_spec2 : forall s x y `{Ok s},
+ min_elt s = Some x -> InT y s -> ~ X.lt y x.
+Proof.
+ intro s; functional induction (min_elt s);
+ try rename _x1 into l1, _x2 into x1, _x3 into r1, _x4 into h1.
+ discriminate.
+ intros x y0 U V W.
+ inversion V; clear V; subst.
+ inv; auto.
+ intros; inv; auto.
+ assert (X.lt x y) by (apply H4; apply min_elt_spec1; auto).
+ order.
+ assert (X.lt x1 y) by auto.
+ assert (~X.lt x1 x) by auto.
+ order.
+Qed.
+
+Lemma min_elt_spec3 : forall s, min_elt s = None -> Empty s.
+Proof.
+ intro s; functional induction (min_elt s).
+ red; red; inversion 2.
+ inversion 1.
+ intro H0.
+ destruct (IHo H0 _x2); auto.
+Qed.
+
+
+
+(** * Maximum element *)
+
+Lemma max_elt_spec1 : forall s x, max_elt s = Some x -> InT x s.
+Proof.
+ intro s; functional induction (max_elt s); auto; inversion 1; auto.
+Qed.
+
+Lemma max_elt_spec2 : forall s x y `{Ok s},
+ max_elt s = Some x -> InT y s -> ~ X.lt x y.
+Proof.
+ intro s; functional induction (max_elt s);
+ try rename _x1 into l1, _x2 into x1, _x3 into r1, _x4 into h1.
+ discriminate.
+ intros x y0 U V W.
+ inversion V; clear V; subst.
+ inv; auto.
+ intros; inv; auto.
+ assert (X.lt y x1) by auto.
+ assert (~ X.lt x x1) by auto.
+ order.
+ assert (X.lt y x) by (apply H5; apply max_elt_spec1; auto).
+ order.
+Qed.
+
+Lemma max_elt_spec3 : forall s, max_elt s = None -> Empty s.
+Proof.
+ intro s; functional induction (max_elt s).
+ red; auto.
+ inversion 1.
+ intros H0; destruct (IHo H0 _x2); auto.
+Qed.
+
+
+
+(** * Any element *)
+
+Lemma choose_spec1 : forall s x, choose s = Some x -> InT x s.
+Proof.
+ exact min_elt_spec1.
+Qed.
+
+Lemma choose_spec2 : forall s, choose s = None -> Empty s.
+Proof.
+ exact min_elt_spec3.
+Qed.
+
+Lemma choose_spec3 : forall s s' x x' `{Ok s, Ok s'},
+ choose s = Some x -> choose s' = Some x' ->
+ Equal s s' -> X.eq x x'.
+Proof.
+ unfold choose, Equal; intros s s' x x' Hb Hb' Hx Hx' H.
+ assert (~X.lt x x').
+ apply min_elt_spec2 with s'; auto.
+ rewrite <-H; auto using min_elt_spec1.
+ assert (~X.lt x' x).
+ apply min_elt_spec2 with s; auto.
+ rewrite H; auto using min_elt_spec1.
+ MX.elim_compare x x'; intuition.
+Qed.
+
+
+(** * Concatenation *)
+
+Lemma concat_spec : forall s1 s2 y,
+ InT y (concat s1 s2) <-> InT y s1 \/ InT y s2.
+Proof.
+ intros s1 s2; functional induction (concat s1 s2); intros;
+ try factornode _x _x0 _x1 _x2 as s1.
+ intuition_in.
+ intuition_in.
+ rewrite join_spec, remove_min_spec, e1; simpl; intuition.
+Qed.
+
+Instance concat_ok s1 s2 `(Ok s1, Ok s2)
+ `(forall y1 y2 : elt, InT y1 s1 -> InT y2 s2 -> X.lt y1 y2) :
+ Ok (concat s1 s2).
+Proof.
+ intros s1 s2; functional induction (concat s1 s2); intros; auto;
+ try factornode _x _x0 _x1 _x2 as s1.
+ apply join_ok; auto.
+ change (Ok (s2',m)#1); rewrite <-e1; eauto with *.
+ intros y Hy.
+ apply H1; auto.
+ rewrite remove_min_spec, e1; simpl; auto.
+ change (gt_tree (s2',m)#2 (s2',m)#1); rewrite <-e1; eauto.
+Qed.
+
+
+
+(** * Splitting *)
+
+Lemma split_spec1 : forall s x y `{Ok s},
+ (InT y (split x s)#l <-> InT y s /\ X.lt y x).
+Proof.
+ induct s x.
+ intuition_in.
+ intuition_in; order.
+ specialize (IHl x y).
+ destruct (split x l); simpl in *. rewrite IHl; intuition_in; order.
+ specialize (IHr x y).
+ destruct (split x r); simpl in *. rewrite join_spec, IHr; intuition_in; order.
+Qed.
+
+Lemma split_spec2 : forall s x y `{Ok s},
+ (InT y (split x s)#r <-> InT y s /\ X.lt x y).
+Proof.
+ induct s x.
+ intuition_in.
+ intuition_in; order.
+ specialize (IHl x y).
+ destruct (split x l); simpl in *. rewrite join_spec, IHl; intuition_in; order.
+ specialize (IHr x y).
+ destruct (split x r); simpl in *. rewrite IHr; intuition_in; order.
+Qed.
+
+Lemma split_spec3 : forall s x `{Ok s},
+ ((split x s)#b = true <-> InT x s).
+Proof.
+ induct s x.
+ intuition_in; try discriminate.
+ intuition.
+ specialize (IHl x).
+ destruct (split x l); simpl in *. rewrite IHl; intuition_in; order.
+ specialize (IHr x).
+ destruct (split x r); simpl in *. rewrite IHr; intuition_in; order.
+Qed.
+
+Lemma split_ok s x `{Ok s} : Ok (split x s)#l /\ Ok (split x s)#r.
+Proof.
+ induct s x; simpl; auto.
+ specialize (IHl x).
+ generalize (fun y => @split_spec2 _ x y H1).
+ destruct (split x l); simpl in *; intuition. apply join_ok; auto.
+ intros y; rewrite H; intuition.
+ specialize (IHr x).
+ generalize (fun y => @split_spec1 _ x y H2).
+ destruct (split x r); simpl in *; intuition. apply join_ok; auto.
+ intros y; rewrite H; intuition.
+Qed.
+
+Instance split_ok1 s x `(Ok s) : Ok (split x s)#l.
+Proof. intros; destruct (@split_ok s x); auto. Qed.
+
+Instance split_ok2 s x `(Ok s) : Ok (split x s)#r.
+Proof. intros; destruct (@split_ok s x); auto. Qed.
+
+
+(** * Intersection *)
+
+Ltac destruct_split := match goal with
+ | H : split ?x ?s = << ?u, ?v, ?w >> |- _ =>
+ assert ((split x s)#l = u) by (rewrite H; auto);
+ assert ((split x s)#b = v) by (rewrite H; auto);
+ assert ((split x s)#r = w) by (rewrite H; auto);
+ clear H; subst u w
+ end.
+
+Lemma inter_spec_ok : forall s1 s2 `{Ok s1, Ok s2},
+ Ok (inter s1 s2) /\ (forall y, InT y (inter s1 s2) <-> InT y s1 /\ InT y s2).
+Proof.
+ intros s1 s2; functional induction inter s1 s2; intros B1 B2;
+ [intuition_in|intuition_in | | ];
+ factornode _x0 _x1 _x2 _x3 as s2; destruct_split; inv;
+ destruct IHt0 as (IHo1,IHi1), IHt1 as (IHo2,IHi2); auto with *;
+ split; intros.
+ (* Ok join *)
+ apply join_ok; auto with *; intro y; rewrite ?IHi1, ?IHi2; intuition.
+ (* InT join *)
+ rewrite join_spec, IHi1, IHi2, split_spec1, split_spec2; intuition_in.
+ setoid_replace y with x1; auto. rewrite <- split_spec3; auto.
+ (* Ok concat *)
+ apply concat_ok; auto with *; intros y1 y2; rewrite IHi1, IHi2; intuition; order.
+ (* InT concat *)
+ rewrite concat_spec, IHi1, IHi2, split_spec1, split_spec2; auto.
+ intuition_in.
+ absurd (InT x1 s2).
+ rewrite <- split_spec3; auto; congruence.
+ setoid_replace x1 with y; auto.
+Qed.
+
+Lemma inter_spec : forall s1 s2 y `{Ok s1, Ok s2},
+ (InT y (inter s1 s2) <-> InT y s1 /\ InT y s2).
+Proof. intros; destruct (@inter_spec_ok s1 s2); auto. Qed.
+
+Instance inter_ok s1 s2 `(Ok s1, Ok s2) : Ok (inter s1 s2).
+Proof. intros; destruct (@inter_spec_ok s1 s2); auto. Qed.
+
+
+(** * Difference *)
+
+Lemma diff_spec_ok : forall s1 s2 `{Ok s1, Ok s2},
+ Ok (diff s1 s2) /\ (forall y, InT y (diff s1 s2) <-> InT y s1 /\ ~InT y s2).
+Proof.
+ intros s1 s2; functional induction diff s1 s2; intros B1 B2;
+ [intuition_in|intuition_in | | ];
+ factornode _x0 _x1 _x2 _x3 as s2; destruct_split; inv;
+ destruct IHt0 as (IHb1,IHi1), IHt1 as (IHb2,IHi2); auto with *;
+ split; intros.
+ (* Ok concat *)
+ apply concat_ok; auto; intros y1 y2; rewrite IHi1, IHi2; intuition; order.
+ (* InT concat *)
+ rewrite concat_spec, IHi1, IHi2, split_spec1, split_spec2; intuition_in.
+ absurd (InT x1 s2).
+ setoid_replace x1 with y; auto.
+ rewrite <- split_spec3; auto; congruence.
+ (* Ok join *)
+ apply join_ok; auto; intro y; rewrite ?IHi1, ?IHi2; intuition.
+ (* InT join *)
+ rewrite join_spec, IHi1, IHi2, split_spec1, split_spec2; auto with *.
+ intuition_in.
+ absurd (InT x1 s2); auto.
+ rewrite <- split_spec3; auto; congruence.
+ setoid_replace x1 with y; auto.
+Qed.
+
+Lemma diff_spec : forall s1 s2 y `{Ok s1, Ok s2},
+ (InT y (diff s1 s2) <-> InT y s1 /\ ~InT y s2).
+Proof. intros; destruct (@diff_spec_ok s1 s2); auto. Qed.
+
+Instance diff_ok s1 s2 `(Ok s1, Ok s2) : Ok (diff s1 s2).
+Proof. intros; destruct (@diff_spec_ok s1 s2); auto. Qed.
+
+
+(** * Union *)
+
+Lemma union_spec : forall s1 s2 y `{Ok s1, Ok s2},
+ (InT y (union s1 s2) <-> InT y s1 \/ InT y s2).
+Proof.
+ intros s1 s2; functional induction union s1 s2; intros y B1 B2.
+ intuition_in.
+ intuition_in.
+ factornode _x0 _x1 _x2 _x3 as s2; destruct_split; inv.
+ rewrite join_spec, IHt0, IHt1, split_spec1, split_spec2; auto with *.
+ MX.elim_compare y x1; intuition_in.
+Qed.
+
+Instance union_ok s1 s2 `(Ok s1, Ok s2) : Ok (union s1 s2).
+Proof.
+ intros s1 s2; functional induction union s1 s2; intros B1 B2; auto.
+ factornode _x0 _x1 _x2 _x3 as s2; destruct_split; inv.
+ apply join_ok; auto with *.
+ intro y; rewrite union_spec, split_spec1; intuition_in.
+ intro y; rewrite union_spec, split_spec2; intuition_in.
+Qed.
+
+
+(** * Elements *)
+
+Lemma elements_spec1' : forall s acc x,
+ InA X.eq x (elements_aux acc s) <-> InT x s \/ InA X.eq x acc.
+Proof.
+ induction s as [ | l Hl x r Hr h ]; simpl; auto.
+ intuition.
+ inversion H0.
+ intros.
+ rewrite Hl.
+ destruct (Hr acc x0); clear Hl Hr.
+ intuition; inversion_clear H3; intuition.
+Qed.
+
+Lemma elements_spec1 : forall s x, InA X.eq x (elements s) <-> InT x s.
+Proof.
+ intros; generalize (elements_spec1' s nil x); intuition.
+ inversion_clear H0.
+Qed.
+
+Lemma elements_spec2' : forall s acc `{Ok s}, sort X.lt acc ->
+ (forall x y : elt, InA X.eq x acc -> InT y s -> X.lt y x) ->
+ sort X.lt (elements_aux acc s).
+Proof.
+ induction s as [ | l Hl y r Hr h]; simpl; intuition.
+ inv.
+ apply Hl; auto.
+ constructor.
+ apply Hr; auto.
+ apply MX.In_Inf; intros.
+ destruct (elements_spec1' r acc y0); intuition.
+ intros.
+ inversion_clear H.
+ order.
+ destruct (elements_spec1' r acc x); intuition eauto.
+Qed.
+
+Lemma elements_spec2 : forall s `(Ok s), sort X.lt (elements s).
+Proof.
+ intros; unfold elements; apply elements_spec2'; auto.
+ intros; inversion H0.
+Qed.
+Hint Resolve elements_spec2.
+
+Lemma elements_spec2w : forall s `(Ok s), NoDupA X.eq (elements s).
+Proof.
+ auto.
+Qed.
+
+Lemma elements_aux_cardinal :
+ forall s acc, (length acc + cardinal s)%nat = length (elements_aux acc s).
+Proof.
+ simple induction s; simpl in |- *; intuition.
+ rewrite <- H.
+ simpl in |- *.
+ rewrite <- H0; omega.
+Qed.
+
+Lemma elements_cardinal : forall s : tree, cardinal s = length (elements s).
+Proof.
+ exact (fun s => elements_aux_cardinal s nil).
+Qed.
+
+Definition cardinal_spec (s:t)(Hs:Ok s) := elements_cardinal s.
+
+Lemma elements_app :
+ forall s acc, elements_aux acc s = elements s ++ acc.
+Proof.
+ induction s; simpl; intros; auto.
+ rewrite IHs1, IHs2.
+ unfold elements; simpl.
+ rewrite 2 IHs1, IHs2, <- !app_nil_end, !app_ass; auto.
+Qed.
+
+Lemma elements_node :
+ forall l x r h acc,
+ elements l ++ x :: elements r ++ acc =
+ elements (Node l x r h) ++ acc.
+Proof.
+ unfold elements; simpl; intros; auto.
+ rewrite !elements_app, <- !app_nil_end, !app_ass; auto.
+Qed.
+
+
+(** * Filter *)
+
+Lemma filter_spec' : forall s x acc f,
+ Proper (X.eq==>eq) f ->
+ (InT x (filter_acc f acc s) <-> InT x acc \/ InT x s /\ f x = true).
+Proof.
+ induction s; simpl; intros.
+ intuition_in.
+ rewrite IHs2, IHs1 by (destruct (f t0); auto).
+ case_eq (f t0); intros.
+ rewrite add_spec'; auto.
+ intuition_in.
+ rewrite (H _ _ H2).
+ intuition.
+ intuition_in.
+ rewrite (H _ _ H2) in H3.
+ rewrite H0 in H3; discriminate.
+Qed.
+
+Instance filter_ok' s acc f `(Ok s, Ok acc) :
+ Ok (filter_acc f acc s).
+Proof.
+ induction s; simpl; auto.
+ intros. inv.
+ destruct (f t0); auto with *.
+Qed.
+
+Lemma filter_spec : forall s x f,
+ Proper (X.eq==>eq) f ->
+ (InT x (filter f s) <-> InT x s /\ f x = true).
+Proof.
+ unfold filter; intros; rewrite filter_spec'; intuition_in.
+Qed.
+
+Instance filter_ok s f `(Ok s) : Ok (filter f s).
+Proof.
+ unfold filter; intros; apply filter_ok'; auto.
+Qed.
+
+
+(** * Partition *)
+
+Lemma partition_spec1' : forall s acc f,
+ Proper (X.eq==>eq) f -> forall x : elt,
+ InT x (partition_acc f acc s)#1 <->
+ InT x acc#1 \/ InT x s /\ f x = true.
+Proof.
+ induction s; simpl; intros.
+ intuition_in.
+ destruct acc as [acct accf]; simpl in *.
+ rewrite IHs2 by
+ (destruct (f t0); auto; apply partition_acc_avl_1; simpl; auto).
+ rewrite IHs1 by (destruct (f t0); simpl; auto).
+ case_eq (f t0); simpl; intros.
+ rewrite add_spec'; auto.
+ intuition_in.
+ rewrite (H _ _ H2).
+ intuition.
+ intuition_in.
+ rewrite (H _ _ H2) in H3.
+ rewrite H0 in H3; discriminate.
+Qed.
+
+Lemma partition_spec2' : forall s acc f,
+ Proper (X.eq==>eq) f -> forall x : elt,
+ InT x (partition_acc f acc s)#2 <->
+ InT x acc#2 \/ InT x s /\ f x = false.
+Proof.
+ induction s; simpl; intros.
+ intuition_in.
+ destruct acc as [acct accf]; simpl in *.
+ rewrite IHs2 by
+ (destruct (f t0); auto; apply partition_acc_avl_2; simpl; auto).
+ rewrite IHs1 by (destruct (f t0); simpl; auto).
+ case_eq (f t0); simpl; intros.
+ intuition.
+ intuition_in.
+ rewrite (H _ _ H2) in H3.
+ rewrite H0 in H3; discriminate.
+ rewrite add_spec'; auto.
+ intuition_in.
+ rewrite (H _ _ H2).
+ intuition.
+Qed.
+
+Lemma partition_spec1 : forall s f,
+ Proper (X.eq==>eq) f ->
+ Equal (partition f s)#1 (filter f s).
+Proof.
+ unfold partition; intros s f P x.
+ rewrite partition_spec1', filter_spec; simpl; intuition_in.
+Qed.
+
+Lemma partition_spec2 : forall s f,
+ Proper (X.eq==>eq) f ->
+ Equal (partition f s)#2 (filter (fun x => negb (f x)) s).
+Proof.
+ unfold partition; intros s f P x.
+ rewrite partition_spec2', filter_spec; simpl; intuition_in.
+ rewrite H1; auto.
+ right; split; auto.
+ rewrite negb_true_iff in H1; auto.
+ intros u v H; rewrite H; auto.
+Qed.
+
+Instance partition_ok1' s acc f `(Ok s, Ok acc#1) :
+ Ok (partition_acc f acc s)#1.
+Proof.
+ induction s; simpl; auto.
+ destruct acc as [acct accf]; simpl in *.
+ intros. inv.
+ destruct (f t0); auto.
+ apply IHs2; simpl; auto.
+ apply IHs1; simpl; auto with *.
+Qed.
+
+Instance partition_ok2' s acc f `(Ok s, Ok acc#2) :
+ Ok (partition_acc f acc s)#2.
+Proof.
+ induction s; simpl; auto.
+ destruct acc as [acct accf]; simpl in *.
+ intros. inv.
+ destruct (f t0); auto.
+ apply IHs2; simpl; auto.
+ apply IHs1; simpl; auto with *.
+Qed.
+
+Instance partition_ok1 s f `(Ok s) : Ok (partition f s)#1.
+Proof. intros; apply partition_ok1'; auto. Qed.
+
+Instance partition_ok2 s f `(Ok s) : Ok (partition f s)#2.
+Proof. intros; apply partition_ok2'; auto. Qed.
+
+
+
+(** * [for_all] and [exists] *)
+
+Lemma for_all_spec : forall s f, Proper (X.eq==>eq) f ->
+ (for_all f s = true <-> For_all (fun x => f x = true) s).
+Proof.
+ split.
+ induction s; simpl; auto; intros; red; intros; inv.
+ destruct (andb_prop _ _ H0); auto.
+ destruct (andb_prop _ _ H1); eauto.
+ apply IHs1; auto.
+ destruct (andb_prop _ _ H0); auto.
+ destruct (andb_prop _ _ H1); auto.
+ apply IHs2; auto.
+ destruct (andb_prop _ _ H0); auto.
+ (* <- *)
+ induction s; simpl; auto.
+ intros.
+ rewrite IHs1; try red; auto.
+ rewrite IHs2; try red; auto.
+ generalize (H0 t0).
+ destruct (f t0); simpl; auto.
+Qed.
+
+Lemma exists_spec : forall s f, Proper (X.eq==>eq) f ->
+ (exists_ f s = true <-> Exists (fun x => f x = true) s).
+Proof.
+ split.
+ induction s; simpl; intros; rewrite <- ?orb_lazy_alt in *.
+ discriminate.
+ destruct (orb_true_elim _ _ H0) as [H1|H1].
+ destruct (orb_true_elim _ _ H1) as [H2|H2].
+ exists t0; auto.
+ destruct (IHs1 H2); auto; exists x; intuition.
+ destruct (IHs2 H1); auto; exists x; intuition.
+ (* <- *)
+ induction s; simpl; destruct 1 as (x,(U,V)); inv; rewrite <- ?orb_lazy_alt.
+ rewrite (H _ _ (MX.eq_sym H0)); rewrite V; auto.
+ apply orb_true_intro; left.
+ apply orb_true_intro; right; apply IHs1; auto; exists x; auto.
+ apply orb_true_intro; right; apply IHs2; auto; exists x; auto.
+Qed.
+
+
+(** * Fold *)
+
+Lemma fold_spec' :
+ forall (A : Type) (f : elt -> A -> A) (s : tree) (i : A) (acc : list elt),
+ fold_left (flip f) (elements_aux acc s) i = fold_left (flip f) acc (fold f s i).
+Proof.
+ induction s as [|l IHl x r IHr h]; simpl; intros; auto.
+ rewrite IHl.
+ simpl. unfold flip at 2.
+ apply IHr.
+Qed.
+
+Lemma fold_spec :
+ forall (s:t) (A : Type) (i : A) (f : elt -> A -> A),
+ fold f s i = fold_left (flip f) (elements s) i.
+Proof.
+ unfold elements.
+ induction s as [|l IHl x r IHr h]; simpl; intros; auto.
+ rewrite fold_spec'.
+ rewrite IHr.
+ simpl; auto.
+Qed.
+
+
+(** * Subset *)
+
+Lemma subsetl_spec : forall subset_l1 l1 x1 h1 s2
+ `{Ok (Node l1 x1 Leaf h1), Ok s2},
+ (forall s `{Ok s}, (subset_l1 s = true <-> Subset l1 s)) ->
+ (subsetl subset_l1 x1 s2 = true <-> Subset (Node l1 x1 Leaf h1) s2 ).
+Proof.
+ induction s2 as [|l2 IHl2 x2 r2 IHr2 h2]; simpl; intros.
+ unfold Subset; intuition; try discriminate.
+ assert (H': InT x1 Leaf) by auto; inversion H'.
+ specialize (IHl2 H).
+ specialize (IHr2 H).
+ inv.
+ MX.elim_compare x1 x2; intros.
+
+ rewrite H1 by auto; clear H1 IHl2 IHr2.
+ unfold Subset. intuition_in.
+ assert (X.eq a x2) by order; intuition_in.
+ assert (InT a (Node l2 x2 r2 h2)) by auto; intuition_in; order.
+
+ rewrite IHl2 by auto; clear H1 IHl2 IHr2.
+ unfold Subset. intuition_in.
+ assert (InT a (Node l2 x2 r2 h2)) by auto; intuition_in; order.
+ assert (InT a (Node l2 x2 r2 h2)) by auto; intuition_in; order.
+
+ rewrite <-andb_lazy_alt, andb_true_iff, H1 by auto; clear H1 IHl2 IHr2.
+ unfold Subset. intuition_in.
+ constructor 3. setoid_replace a with x1; auto. rewrite <- mem_spec; auto.
+ rewrite mem_spec; auto.
+ assert (InT x1 (Node l2 x2 r2 h2)) by auto; intuition_in; order.
+Qed.
+
+
+Lemma subsetr_spec : forall subset_r1 r1 x1 h1 s2,
+ bst (Node Leaf x1 r1 h1) -> bst s2 ->
+ (forall s, bst s -> (subset_r1 s = true <-> Subset r1 s)) ->
+ (subsetr subset_r1 x1 s2 = true <-> Subset (Node Leaf x1 r1 h1) s2).
+Proof.
+ induction s2 as [|l2 IHl2 x2 r2 IHr2 h2]; simpl; intros.
+ unfold Subset; intuition; try discriminate.
+ assert (H': InT x1 Leaf) by auto; inversion H'.
+ specialize (IHl2 H).
+ specialize (IHr2 H).
+ inv.
+ MX.elim_compare x1 x2; intros.
+
+ rewrite H1 by auto; clear H1 IHl2 IHr2.
+ unfold Subset. intuition_in.
+ assert (X.eq a x2) by order; intuition_in.
+ assert (InT a (Node l2 x2 r2 h2)) by auto; intuition_in; order.
+
+ rewrite <-andb_lazy_alt, andb_true_iff, H1 by auto; clear H1 IHl2 IHr2.
+ unfold Subset. intuition_in.
+ constructor 2. setoid_replace a with x1; auto. rewrite <- mem_spec; auto.
+ rewrite mem_spec; auto.
+ assert (InT x1 (Node l2 x2 r2 h2)) by auto; intuition_in; order.
+
+ rewrite IHr2 by auto; clear H1 IHl2 IHr2.
+ unfold Subset. intuition_in.
+ assert (InT a (Node l2 x2 r2 h2)) by auto; intuition_in; order.
+ assert (InT a (Node l2 x2 r2 h2)) by auto; intuition_in; order.
+Qed.
+
+Lemma subset_spec : forall s1 s2 `{Ok s1, Ok s2},
+ (subset s1 s2 = true <-> Subset s1 s2).
+Proof.
+ induction s1 as [|l1 IHl1 x1 r1 IHr1 h1]; simpl; intros.
+ unfold Subset; intuition_in.
+ destruct s2 as [|l2 x2 r2 h2]; simpl; intros.
+ unfold Subset; intuition_in; try discriminate.
+ assert (H': InT x1 Leaf) by auto; inversion H'.
+ inv.
+ MX.elim_compare x1 x2; intros.
+
+ rewrite <-andb_lazy_alt, andb_true_iff, IHl1, IHr1 by auto.
+ clear IHl1 IHr1.
+ unfold Subset; intuition_in.
+ assert (X.eq a x2) by order; intuition_in.
+ assert (InT a (Node l2 x2 r2 h2)) by auto; intuition_in; order.
+ assert (InT a (Node l2 x2 r2 h2)) by auto; intuition_in; order.
+
+ rewrite <-andb_lazy_alt, andb_true_iff, IHr1 by auto.
+ rewrite (@subsetl_spec (subset l1) l1 x1 h1) by auto.
+ clear IHl1 IHr1.
+ unfold Subset; intuition_in.
+ assert (InT a (Node l2 x2 r2 h2)) by auto; intuition_in; order.
+ assert (InT a (Node l2 x2 r2 h2)) by auto; intuition_in; order.
+
+ rewrite <-andb_lazy_alt, andb_true_iff, IHl1 by auto.
+ rewrite (@subsetr_spec (subset r1) r1 x1 h1) by auto.
+ clear IHl1 IHr1.
+ unfold Subset; intuition_in.
+ assert (InT a (Node l2 x2 r2 h2)) by auto; intuition_in; order.
+ assert (InT a (Node l2 x2 r2 h2)) by auto; intuition_in; order.
+Qed.
+
+
+(** * Comparison *)
+
+(** ** Relations [eq] and [lt] over trees *)
+
+Module L := MakeListOrdering X.
+
+Definition eq := Equal.
+Instance eq_equiv : Equivalence eq.
+Proof. firstorder. Qed.
+
+Lemma eq_Leq : forall s s', eq s s' <-> L.eq (elements s) (elements s').
+Proof.
+ unfold eq, Equal, L.eq; intros.
+ setoid_rewrite elements_spec1; firstorder.
+Qed.
+
+Definition lt (s1 s2 : t) : Prop :=
+ exists s1', exists s2', Ok s1' /\ Ok s2' /\ eq s1 s1' /\ eq s2 s2'
+ /\ L.lt (elements s1') (elements s2').
+
+Instance lt_strorder : StrictOrder lt.
+Proof.
+ split.
+ intros s (s1 & s2 & B1 & B2 & E1 & E2 & L).
+ assert (eqlistA X.eq (elements s1) (elements s2)).
+ apply SortA_equivlistA_eqlistA with (ltA:=X.lt); auto with *.
+ rewrite <- eq_Leq. transitivity s; auto. symmetry; auto.
+ rewrite H in L.
+ apply (StrictOrder_Irreflexive (elements s2)); auto.
+ intros s1 s2 s3 (s1' & s2' & B1 & B2 & E1 & E2 & L12)
+ (s2'' & s3' & B2' & B3 & E2' & E3 & L23).
+ exists s1', s3'; do 4 (split; trivial).
+ assert (eqlistA X.eq (elements s2') (elements s2'')).
+ apply SortA_equivlistA_eqlistA with (ltA:=X.lt); auto with *.
+ rewrite <- eq_Leq. transitivity s2; auto. symmetry; auto.
+ transitivity (elements s2'); auto.
+ rewrite H; auto.
+Qed.
+
+Instance lt_compat : Proper (eq==>eq==>iff) lt.
+Proof.
+ intros s1 s2 E12 s3 s4 E34. split.
+ intros (s1' & s3' & B1 & B3 & E1 & E3 & LT).
+ exists s1', s3'; do 2 (split; trivial).
+ split. transitivity s1; auto. symmetry; auto.
+ split; auto. transitivity s3; auto. symmetry; auto.
+ intros (s1' & s3' & B1 & B3 & E1 & E3 & LT).
+ exists s1', s3'; do 2 (split; trivial).
+ split. transitivity s2; auto.
+ split; auto. transitivity s4; auto.
+Qed.
+
+
+(** * Proof of the comparison algorithm *)
+
+(** [flatten_e e] returns the list of elements of [e] i.e. the list
+ of elements actually compared *)
+
+Fixpoint flatten_e (e : enumeration) : list elt := match e with
+ | End => nil
+ | More x t r => x :: elements t ++ flatten_e r
+ end.
+
+Lemma flatten_e_elements :
+ forall l x r h e,
+ elements l ++ flatten_e (More x r e) = elements (Node l x r h) ++ flatten_e e.
+Proof.
+ intros; simpl; apply elements_node.
+Qed.
+
+Lemma cons_1 : forall s e,
+ flatten_e (cons s e) = elements s ++ flatten_e e.
+Proof.
+ induction s; simpl; auto; intros.
+ rewrite IHs1; apply flatten_e_elements.
+Qed.
+
+Hint Unfold flip.
+
+(** Correctness of this comparison *)
+
+Definition LCmp := Cmp L.eq L.lt.
+
+Lemma compare_end_Cmp :
+ forall e2, LCmp (compare_end e2) nil (flatten_e e2).
+Proof.
+ destruct e2; simpl; auto. reflexivity.
+Qed.
+
+Lemma compare_more_Cmp : forall x1 cont x2 r2 e2 l,
+ LCmp (cont (cons r2 e2)) l (elements r2 ++ flatten_e e2) ->
+ LCmp (compare_more x1 cont (More x2 r2 e2)) (x1::l)
+ (flatten_e (More x2 r2 e2)).
+Proof.
+ simpl; intros; MX.elim_compare x1 x2; simpl; auto.
+ intros; apply L.cons_Cmp; auto.
+Qed.
+
+Lemma compare_cont_Cmp : forall s1 cont e2 l,
+ (forall e, LCmp (cont e) l (flatten_e e)) ->
+ LCmp (compare_cont s1 cont e2) (elements s1 ++ l) (flatten_e e2).
+Proof.
+ induction s1 as [|l1 Hl1 x1 r1 Hr1 h1]; simpl; intros; auto.
+ rewrite <- elements_node; simpl.
+ apply Hl1; auto. clear e2. intros [|x2 r2 e2].
+ simpl; auto.
+ apply compare_more_Cmp.
+ rewrite <- cons_1; auto.
+Qed.
+
+Lemma compare_Cmp : forall s1 s2,
+ LCmp (compare s1 s2) (elements s1) (elements s2).
+Proof.
+ intros; unfold compare.
+ rewrite (app_nil_end (elements s1)).
+ replace (elements s2) with (flatten_e (cons s2 End)) by
+ (rewrite cons_1; simpl; rewrite <- app_nil_end; auto).
+ apply compare_cont_Cmp; auto.
+ intros.
+ apply compare_end_Cmp; auto.
+Qed.
+
+Lemma compare_spec : forall s1 s2 `{Ok s1, Ok s2},
+ Cmp eq lt (compare s1 s2) s1 s2.
+Proof.
+ intros.
+ generalize (compare_Cmp s1 s2).
+ destruct (compare s1 s2); unfold LCmp, Cmp, flip; auto.
+ rewrite eq_Leq; auto.
+ intros; exists s1, s2; repeat split; auto.
+ intros; exists s2, s1; repeat split; auto.
+Qed.
+
+
+(** * Equality test *)
+
+Lemma equal_spec : forall s1 s2 `{Ok s1, Ok s2},
+ equal s1 s2 = true <-> eq s1 s2.
+Proof.
+unfold equal; intros s1 s2 B1 B2.
+generalize (@compare_spec s1 s2 B1 B2).
+destruct (compare s1 s2); simpl; split; intros E; auto; try discriminate.
+rewrite E in H. elim (StrictOrder_Irreflexive s2); auto.
+rewrite E in H. elim (StrictOrder_Irreflexive s2); auto.
+Qed.
+
+End MakeRaw.
+
+
+
+(** * Encapsulation
+
+ Now, in order to really provide a functor implementing [S], we
+ need to encapsulate everything into a type of binary search trees.
+ They also happen to be well-balanced, but this has no influence
+ on the correctness of operations, so we won't state this here,
+ see [MSetFullAVL] if you need more than just the MSet interface.
+*)
+
+Module IntMake (I:Int)(X: OrderedType) <: S with Module E := X.
+ Module Raw := MakeRaw I X.
+ Include Raw2Sets X Raw.
+End IntMake.
+
+(* For concrete use inside Coq, we propose an instantiation of [Int] by [Z]. *)
+
+Module Make (X: OrderedType) <: S with Module E := X
+ :=IntMake(Z_as_Int)(X).
diff --git a/theories/MSets/MSetDecide.v b/theories/MSets/MSetDecide.v
new file mode 100644
index 0000000000..884ed42353
--- /dev/null
+++ b/theories/MSets/MSetDecide.v
@@ -0,0 +1,864 @@
+(***********************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
+(* \VV/ *************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(***********************************************************************)
+
+(* $Id$ *)
+
+(**************************************************************)
+(* MSetDecide.v *)
+(* *)
+(* Author: Aaron Bohannon *)
+(**************************************************************)
+
+(** This file implements a decision procedure for a certain
+ class of propositions involving finite sets. *)
+
+Require Import Decidable DecidableTypeEx MSetFacts.
+
+(** First, a version for Weak Sets in functorial presentation *)
+
+Module WDecideOn (E : DecidableType)(Import M : WSetsOn E).
+ Module F := MSetFacts.WFactsOn E M.
+
+(** * Overview
+ This functor defines the tactic [fsetdec], which will
+ solve any valid goal of the form
+<<
+ forall s1 ... sn,
+ forall x1 ... xm,
+ P1 -> ... -> Pk -> P
+>>
+ where [P]'s are defined by the grammar:
+<<
+
+P ::=
+| Q
+| Empty F
+| Subset F F'
+| Equal F F'
+
+Q ::=
+| E.eq X X'
+| In X F
+| Q /\ Q'
+| Q \/ Q'
+| Q -> Q'
+| Q <-> Q'
+| ~ Q
+| True
+| False
+
+F ::=
+| S
+| empty
+| singleton X
+| add X F
+| remove X F
+| union F F'
+| inter F F'
+| diff F F'
+
+X ::= x1 | ... | xm
+S ::= s1 | ... | sn
+
+>>
+
+The tactic will also work on some goals that vary slightly from
+the above form:
+- The variables and hypotheses may be mixed in any order and may
+ have already been introduced into the context. Moreover,
+ there may be additional, unrelated hypotheses mixed in (these
+ will be ignored).
+- A conjunction of hypotheses will be handled as easily as
+ separate hypotheses, i.e., [P1 /\ P2 -> P] can be solved iff
+ [P1 -> P2 -> P] can be solved.
+- [fsetdec] should solve any goal if the MSet-related hypotheses
+ are contradictory.
+- [fsetdec] will first perform any necessary zeta and beta
+ reductions and will invoke [subst] to eliminate any Coq
+ equalities between finite sets or their elements.
+- If [E.eq] is convertible with Coq's equality, it will not
+ matter which one is used in the hypotheses or conclusion.
+- The tactic can solve goals where the finite sets or set
+ elements are expressed by Coq terms that are more complicated
+ than variables. However, non-local definitions are not
+ expanded, and Coq equalities between non-variable terms are
+ not used. For example, this goal will be solved:
+<<
+ forall (f : t -> t),
+ forall (g : elt -> elt),
+ forall (s1 s2 : t),
+ forall (x1 x2 : elt),
+ Equal s1 (f s2) ->
+ E.eq x1 (g (g x2)) ->
+ In x1 s1 ->
+ In (g (g x2)) (f s2)
+>>
+ This one will not be solved:
+<<
+ forall (f : t -> t),
+ forall (g : elt -> elt),
+ forall (s1 s2 : t),
+ forall (x1 x2 : elt),
+ Equal s1 (f s2) ->
+ E.eq x1 (g x2) ->
+ In x1 s1 ->
+ g x2 = g (g x2) ->
+ In (g (g x2)) (f s2)
+>>
+*)
+
+ (** * Facts and Tactics for Propositional Logic
+ These lemmas and tactics are in a module so that they do
+ not affect the namespace if you import the enclosing
+ module [Decide]. *)
+ Module MSetLogicalFacts.
+ Require Export Decidable.
+ Require Export Setoid.
+
+ (** ** Lemmas and Tactics About Decidable Propositions *)
+
+ (** ** Propositional Equivalences Involving Negation
+ These are all written with the unfolded form of
+ negation, since I am not sure if setoid rewriting will
+ always perform conversion. *)
+
+ (** ** Tactics for Negations *)
+
+ Tactic Notation "fold" "any" "not" :=
+ repeat (
+ match goal with
+ | H: context [?P -> False] |- _ =>
+ fold (~ P) in H
+ | |- context [?P -> False] =>
+ fold (~ P)
+ end).
+
+ (** [push not using db] will pushes all negations to the
+ leaves of propositions in the goal, using the lemmas in
+ [db] to assist in checking the decidability of the
+ propositions involved. If [using db] is omitted, then
+ [core] will be used. Additional versions are provided
+ to manipulate the hypotheses or the hypotheses and goal
+ together.
+
+ XXX: This tactic and the similar subsequent ones should
+ have been defined using [autorewrite]. However, dealing
+ with multiples rewrite sites and side-conditions is
+ done more cleverly with the following explicit
+ analysis of goals. *)
+
+ Ltac or_not_l_iff P Q tac :=
+ (rewrite (or_not_l_iff_1 P Q) by tac) ||
+ (rewrite (or_not_l_iff_2 P Q) by tac).
+
+ Ltac or_not_r_iff P Q tac :=
+ (rewrite (or_not_r_iff_1 P Q) by tac) ||
+ (rewrite (or_not_r_iff_2 P Q) by tac).
+
+ Ltac or_not_l_iff_in P Q H tac :=
+ (rewrite (or_not_l_iff_1 P Q) in H by tac) ||
+ (rewrite (or_not_l_iff_2 P Q) in H by tac).
+
+ Ltac or_not_r_iff_in P Q H tac :=
+ (rewrite (or_not_r_iff_1 P Q) in H by tac) ||
+ (rewrite (or_not_r_iff_2 P Q) in H by tac).
+
+ Tactic Notation "push" "not" "using" ident(db) :=
+ let dec := solve_decidable using db in
+ unfold not, iff;
+ repeat (
+ match goal with
+ | |- context [True -> False] => rewrite not_true_iff
+ | |- context [False -> False] => rewrite not_false_iff
+ | |- context [(?P -> False) -> False] => rewrite (not_not_iff P) by dec
+ | |- context [(?P -> False) -> (?Q -> False)] =>
+ rewrite (contrapositive P Q) by dec
+ | |- context [(?P -> False) \/ ?Q] => or_not_l_iff P Q dec
+ | |- context [?P \/ (?Q -> False)] => or_not_r_iff P Q dec
+ | |- context [(?P -> False) -> ?Q] => rewrite (imp_not_l P Q) by dec
+ | |- context [?P \/ ?Q -> False] => rewrite (not_or_iff P Q)
+ | |- context [?P /\ ?Q -> False] => rewrite (not_and_iff P Q)
+ | |- context [(?P -> ?Q) -> False] => rewrite (not_imp_iff P Q) by dec
+ end);
+ fold any not.
+
+ Tactic Notation "push" "not" :=
+ push not using core.
+
+ Tactic Notation
+ "push" "not" "in" "*" "|-" "using" ident(db) :=
+ let dec := solve_decidable using db in
+ unfold not, iff in * |-;
+ repeat (
+ match goal with
+ | H: context [True -> False] |- _ => rewrite not_true_iff in H
+ | H: context [False -> False] |- _ => rewrite not_false_iff in H
+ | H: context [(?P -> False) -> False] |- _ =>
+ rewrite (not_not_iff P) in H by dec
+ | H: context [(?P -> False) -> (?Q -> False)] |- _ =>
+ rewrite (contrapositive P Q) in H by dec
+ | H: context [(?P -> False) \/ ?Q] |- _ => or_not_l_iff_in P Q H dec
+ | H: context [?P \/ (?Q -> False)] |- _ => or_not_r_iff_in P Q H dec
+ | H: context [(?P -> False) -> ?Q] |- _ =>
+ rewrite (imp_not_l P Q) in H by dec
+ | H: context [?P \/ ?Q -> False] |- _ => rewrite (not_or_iff P Q) in H
+ | H: context [?P /\ ?Q -> False] |- _ => rewrite (not_and_iff P Q) in H
+ | H: context [(?P -> ?Q) -> False] |- _ =>
+ rewrite (not_imp_iff P Q) in H by dec
+ end);
+ fold any not.
+
+ Tactic Notation "push" "not" "in" "*" "|-" :=
+ push not in * |- using core.
+
+ Tactic Notation "push" "not" "in" "*" "using" ident(db) :=
+ push not using db; push not in * |- using db.
+ Tactic Notation "push" "not" "in" "*" :=
+ push not in * using core.
+
+ (** A simple test case to see how this works. *)
+ Lemma test_push : forall P Q R : Prop,
+ decidable P ->
+ decidable Q ->
+ (~ True) ->
+ (~ False) ->
+ (~ ~ P) ->
+ (~ (P /\ Q) -> ~ R) ->
+ ((P /\ Q) \/ ~ R) ->
+ (~ (P /\ Q) \/ R) ->
+ (R \/ ~ (P /\ Q)) ->
+ (~ R \/ (P /\ Q)) ->
+ (~ P -> R) ->
+ (~ ((R -> P) \/ (Q -> R))) ->
+ (~ (P /\ R)) ->
+ (~ (P -> R)) ->
+ True.
+ Proof.
+ intros. push not in *.
+ (* note that ~(R->P) remains (since R isnt decidable) *)
+ tauto.
+ Qed.
+
+ (** [pull not using db] will pull as many negations as
+ possible toward the top of the propositions in the goal,
+ using the lemmas in [db] to assist in checking the
+ decidability of the propositions involved. If [using
+ db] is omitted, then [core] will be used. Additional
+ versions are provided to manipulate the hypotheses or
+ the hypotheses and goal together. *)
+
+ Tactic Notation "pull" "not" "using" ident(db) :=
+ let dec := solve_decidable using db in
+ unfold not, iff;
+ repeat (
+ match goal with
+ | |- context [True -> False] => rewrite not_true_iff
+ | |- context [False -> False] => rewrite not_false_iff
+ | |- context [(?P -> False) -> False] => rewrite (not_not_iff P) by dec
+ | |- context [(?P -> False) -> (?Q -> False)] =>
+ rewrite (contrapositive P Q) by dec
+ | |- context [(?P -> False) \/ ?Q] => or_not_l_iff P Q dec
+ | |- context [?P \/ (?Q -> False)] => or_not_r_iff P Q dec
+ | |- context [(?P -> False) -> ?Q] => rewrite (imp_not_l P Q) by dec
+ | |- context [(?P -> False) /\ (?Q -> False)] =>
+ rewrite <- (not_or_iff P Q)
+ | |- context [?P -> ?Q -> False] => rewrite <- (not_and_iff P Q)
+ | |- context [?P /\ (?Q -> False)] => rewrite <- (not_imp_iff P Q) by dec
+ | |- context [(?Q -> False) /\ ?P] =>
+ rewrite <- (not_imp_rev_iff P Q) by dec
+ end);
+ fold any not.
+
+ Tactic Notation "pull" "not" :=
+ pull not using core.
+
+ Tactic Notation
+ "pull" "not" "in" "*" "|-" "using" ident(db) :=
+ let dec := solve_decidable using db in
+ unfold not, iff in * |-;
+ repeat (
+ match goal with
+ | H: context [True -> False] |- _ => rewrite not_true_iff in H
+ | H: context [False -> False] |- _ => rewrite not_false_iff in H
+ | H: context [(?P -> False) -> False] |- _ =>
+ rewrite (not_not_iff P) in H by dec
+ | H: context [(?P -> False) -> (?Q -> False)] |- _ =>
+ rewrite (contrapositive P Q) in H by dec
+ | H: context [(?P -> False) \/ ?Q] |- _ => or_not_l_iff_in P Q H dec
+ | H: context [?P \/ (?Q -> False)] |- _ => or_not_r_iff_in P Q H dec
+ | H: context [(?P -> False) -> ?Q] |- _ =>
+ rewrite (imp_not_l P Q) in H by dec
+ | H: context [(?P -> False) /\ (?Q -> False)] |- _ =>
+ rewrite <- (not_or_iff P Q) in H
+ | H: context [?P -> ?Q -> False] |- _ =>
+ rewrite <- (not_and_iff P Q) in H
+ | H: context [?P /\ (?Q -> False)] |- _ =>
+ rewrite <- (not_imp_iff P Q) in H by dec
+ | H: context [(?Q -> False) /\ ?P] |- _ =>
+ rewrite <- (not_imp_rev_iff P Q) in H by dec
+ end);
+ fold any not.
+
+ Tactic Notation "pull" "not" "in" "*" "|-" :=
+ pull not in * |- using core.
+
+ Tactic Notation "pull" "not" "in" "*" "using" ident(db) :=
+ pull not using db; pull not in * |- using db.
+ Tactic Notation "pull" "not" "in" "*" :=
+ pull not in * using core.
+
+ (** A simple test case to see how this works. *)
+ Lemma test_pull : forall P Q R : Prop,
+ decidable P ->
+ decidable Q ->
+ (~ True) ->
+ (~ False) ->
+ (~ ~ P) ->
+ (~ (P /\ Q) -> ~ R) ->
+ ((P /\ Q) \/ ~ R) ->
+ (~ (P /\ Q) \/ R) ->
+ (R \/ ~ (P /\ Q)) ->
+ (~ R \/ (P /\ Q)) ->
+ (~ P -> R) ->
+ (~ (R -> P) /\ ~ (Q -> R)) ->
+ (~ P \/ ~ R) ->
+ (P /\ ~ R) ->
+ (~ R /\ P) ->
+ True.
+ Proof.
+ intros. pull not in *. tauto.
+ Qed.
+
+ End MSetLogicalFacts.
+ Import MSetLogicalFacts.
+
+ (** * Auxiliary Tactics
+ Again, these lemmas and tactics are in a module so that
+ they do not affect the namespace if you import the
+ enclosing module [Decide]. *)
+ Module MSetDecideAuxiliary.
+
+ (** ** Generic Tactics
+ We begin by defining a few generic, useful tactics. *)
+
+ (** [if t then t1 else t2] executes [t] and, if it does not
+ fail, then [t1] will be applied to all subgoals
+ produced. If [t] fails, then [t2] is executed. *)
+ Tactic Notation
+ "if" tactic(t)
+ "then" tactic(t1)
+ "else" tactic(t2) :=
+ first [ t; first [ t1 | fail 2 ] | t2 ].
+
+ (** [prop P holds by t] succeeds (but does not modify the
+ goal or context) if the proposition [P] can be proved by
+ [t] in the current context. Otherwise, the tactic
+ fails. *)
+ Tactic Notation "prop" constr(P) "holds" "by" tactic(t) :=
+ let H := fresh in
+ assert P as H by t;
+ clear H.
+
+ (** This tactic acts just like [assert ... by ...] but will
+ fail if the context already contains the proposition. *)
+ Tactic Notation "assert" "new" constr(e) "by" tactic(t) :=
+ match goal with
+ | H: e |- _ => fail 1
+ | _ => assert e by t
+ end.
+
+ (** [subst++] is similar to [subst] except that
+ - it never fails (as [subst] does on recursive
+ equations),
+ - it substitutes locally defined variable for their
+ definitions,
+ - it performs beta reductions everywhere, which may
+ arise after substituting a locally defined function
+ for its definition.
+ *)
+ Tactic Notation "subst" "++" :=
+ repeat (
+ match goal with
+ | x : _ |- _ => subst x
+ end);
+ cbv zeta beta in *.
+
+ (** [decompose records] calls [decompose record H] on every
+ relevant hypothesis [H]. *)
+ Tactic Notation "decompose" "records" :=
+ repeat (
+ match goal with
+ | H: _ |- _ => progress (decompose record H); clear H
+ end).
+
+ (** ** Discarding Irrelevant Hypotheses
+ We will want to clear the context of any
+ non-MSet-related hypotheses in order to increase the
+ speed of the tactic. To do this, we will need to be
+ able to decide which are relevant. We do this by making
+ a simple inductive definition classifying the
+ propositions of interest. *)
+
+ Inductive MSet_elt_Prop : Prop -> Prop :=
+ | eq_Prop : forall (S : Set) (x y : S),
+ MSet_elt_Prop (x = y)
+ | eq_elt_prop : forall x y,
+ MSet_elt_Prop (E.eq x y)
+ | In_elt_prop : forall x s,
+ MSet_elt_Prop (In x s)
+ | True_elt_prop :
+ MSet_elt_Prop True
+ | False_elt_prop :
+ MSet_elt_Prop False
+ | conj_elt_prop : forall P Q,
+ MSet_elt_Prop P ->
+ MSet_elt_Prop Q ->
+ MSet_elt_Prop (P /\ Q)
+ | disj_elt_prop : forall P Q,
+ MSet_elt_Prop P ->
+ MSet_elt_Prop Q ->
+ MSet_elt_Prop (P \/ Q)
+ | impl_elt_prop : forall P Q,
+ MSet_elt_Prop P ->
+ MSet_elt_Prop Q ->
+ MSet_elt_Prop (P -> Q)
+ | not_elt_prop : forall P,
+ MSet_elt_Prop P ->
+ MSet_elt_Prop (~ P).
+
+ Inductive MSet_Prop : Prop -> Prop :=
+ | elt_MSet_Prop : forall P,
+ MSet_elt_Prop P ->
+ MSet_Prop P
+ | Empty_MSet_Prop : forall s,
+ MSet_Prop (Empty s)
+ | Subset_MSet_Prop : forall s1 s2,
+ MSet_Prop (Subset s1 s2)
+ | Equal_MSet_Prop : forall s1 s2,
+ MSet_Prop (Equal s1 s2).
+
+ (** Here is the tactic that will throw away hypotheses that
+ are not useful (for the intended scope of the [fsetdec]
+ tactic). *)
+ Hint Constructors MSet_elt_Prop MSet_Prop : MSet_Prop.
+ Ltac discard_nonMSet :=
+ decompose records;
+ repeat (
+ match goal with
+ | H : ?P |- _ =>
+ if prop (MSet_Prop P) holds by
+ (auto 100 with MSet_Prop)
+ then fail
+ else clear H
+ end).
+
+ (** ** Turning Set Operators into Propositional Connectives
+ The lemmas from [MSetFacts] will be used to break down
+ set operations into propositional formulas built over
+ the predicates [In] and [E.eq] applied only to
+ variables. We are going to use them with [autorewrite].
+ *)
+
+ Hint Rewrite
+ F.empty_iff F.singleton_iff F.add_iff F.remove_iff
+ F.union_iff F.inter_iff F.diff_iff
+ : set_simpl.
+
+ (** ** Decidability of MSet Propositions *)
+
+ (** [In] is decidable. *)
+ Lemma dec_In : forall x s,
+ decidable (In x s).
+ Proof.
+ red; intros; generalize (F.mem_iff s x); case (mem x s); intuition.
+ Qed.
+
+ (** [E.eq] is decidable. *)
+ Lemma dec_eq : forall (x y : E.t),
+ decidable (E.eq x y).
+ Proof.
+ red; intros x y; destruct (E.eq_dec x y); auto.
+ Qed.
+
+ (** The hint database [MSet_decidability] will be given to
+ the [push_neg] tactic from the module [Negation]. *)
+ Hint Resolve dec_In dec_eq : MSet_decidability.
+
+ (** ** Normalizing Propositions About Equality
+ We have to deal with the fact that [E.eq] may be
+ convertible with Coq's equality. Thus, we will find the
+ following tactics useful to replace one form with the
+ other everywhere. *)
+
+ (** The next tactic, [Logic_eq_to_E_eq], mentions the term
+ [E.t]; thus, we must ensure that [E.t] is used in favor
+ of any other convertible but syntactically distinct
+ term. *)
+ Ltac change_to_E_t :=
+ repeat (
+ match goal with
+ | H : ?T |- _ =>
+ progress (change T with E.t in H);
+ repeat (
+ match goal with
+ | J : _ |- _ => progress (change T with E.t in J)
+ | |- _ => progress (change T with E.t)
+ end )
+ | H : forall x : ?T, _ |- _ =>
+ progress (change T with E.t in H);
+ repeat (
+ match goal with
+ | J : _ |- _ => progress (change T with E.t in J)
+ | |- _ => progress (change T with E.t)
+ end )
+ end).
+
+ (** These two tactics take us from Coq's built-in equality
+ to [E.eq] (and vice versa) when possible. *)
+
+ Ltac Logic_eq_to_E_eq :=
+ repeat (
+ match goal with
+ | H: _ |- _ =>
+ progress (change (@Logic.eq E.t) with E.eq in H)
+ | |- _ =>
+ progress (change (@Logic.eq E.t) with E.eq)
+ end).
+
+ Ltac E_eq_to_Logic_eq :=
+ repeat (
+ match goal with
+ | H: _ |- _ =>
+ progress (change E.eq with (@Logic.eq E.t) in H)
+ | |- _ =>
+ progress (change E.eq with (@Logic.eq E.t))
+ end).
+
+ (** This tactic works like the built-in tactic [subst], but
+ at the level of set element equality (which may not be
+ the convertible with Coq's equality). *)
+ Ltac substMSet :=
+ repeat (
+ match goal with
+ | H: E.eq ?x ?y |- _ => rewrite H in *; clear H
+ end).
+
+ (** ** Considering Decidability of Base Propositions
+ This tactic adds assertions about the decidability of
+ [E.eq] and [In] to the context. This is necessary for
+ the completeness of the [fsetdec] tactic. However, in
+ order to minimize the cost of proof search, we should be
+ careful to not add more than we need. Once negations
+ have been pushed to the leaves of the propositions, we
+ only need to worry about decidability for those base
+ propositions that appear in a negated form. *)
+ Ltac assert_decidability :=
+ (** We actually don't want these rules to fire if the
+ syntactic context in the patterns below is trivially
+ empty, but we'll just do some clean-up at the
+ afterward. *)
+ repeat (
+ match goal with
+ | H: context [~ E.eq ?x ?y] |- _ =>
+ assert new (E.eq x y \/ ~ E.eq x y) by (apply dec_eq)
+ | H: context [~ In ?x ?s] |- _ =>
+ assert new (In x s \/ ~ In x s) by (apply dec_In)
+ | |- context [~ E.eq ?x ?y] =>
+ assert new (E.eq x y \/ ~ E.eq x y) by (apply dec_eq)
+ | |- context [~ In ?x ?s] =>
+ assert new (In x s \/ ~ In x s) by (apply dec_In)
+ end);
+ (** Now we eliminate the useless facts we added (because
+ they would likely be very harmful to performance). *)
+ repeat (
+ match goal with
+ | _: ~ ?P, H : ?P \/ ~ ?P |- _ => clear H
+ end).
+
+ (** ** Handling [Empty], [Subset], and [Equal]
+ This tactic instantiates universally quantified
+ hypotheses (which arise from the unfolding of [Empty],
+ [Subset], and [Equal]) for each of the set element
+ expressions that is involved in some membership or
+ equality fact. Then it throws away those hypotheses,
+ which should no longer be needed. *)
+ Ltac inst_MSet_hypotheses :=
+ repeat (
+ match goal with
+ | H : forall a : E.t, _,
+ _ : context [ In ?x _ ] |- _ =>
+ let P := type of (H x) in
+ assert new P by (exact (H x))
+ | H : forall a : E.t, _
+ |- context [ In ?x _ ] =>
+ let P := type of (H x) in
+ assert new P by (exact (H x))
+ | H : forall a : E.t, _,
+ _ : context [ E.eq ?x _ ] |- _ =>
+ let P := type of (H x) in
+ assert new P by (exact (H x))
+ | H : forall a : E.t, _
+ |- context [ E.eq ?x _ ] =>
+ let P := type of (H x) in
+ assert new P by (exact (H x))
+ | H : forall a : E.t, _,
+ _ : context [ E.eq _ ?x ] |- _ =>
+ let P := type of (H x) in
+ assert new P by (exact (H x))
+ | H : forall a : E.t, _
+ |- context [ E.eq _ ?x ] =>
+ let P := type of (H x) in
+ assert new P by (exact (H x))
+ end);
+ repeat (
+ match goal with
+ | H : forall a : E.t, _ |- _ =>
+ clear H
+ end).
+
+ (** ** The Core [fsetdec] Auxiliary Tactics *)
+
+ (** Here is the crux of the proof search. Recursion through
+ [intuition]! (This will terminate if I correctly
+ understand the behavior of [intuition].) *)
+ Ltac fsetdec_rec :=
+ try (match goal with
+ | H: E.eq ?x ?x -> False |- _ => destruct H
+ end);
+ (reflexivity ||
+ contradiction ||
+ (progress substMSet; intuition fsetdec_rec)).
+
+ (** If we add [unfold Empty, Subset, Equal in *; intros;] to
+ the beginning of this tactic, it will satisfy the same
+ specification as the [fsetdec] tactic; however, it will
+ be much slower than necessary without the pre-processing
+ done by the wrapper tactic [fsetdec]. *)
+ Ltac fsetdec_body :=
+ inst_MSet_hypotheses;
+ autorewrite with set_simpl in *;
+ push not in * using MSet_decidability;
+ substMSet;
+ assert_decidability;
+ auto using (@Equivalence_Reflexive _ _ E.eq_equiv);
+ (intuition fsetdec_rec) ||
+ fail 1
+ "because the goal is beyond the scope of this tactic".
+
+ End MSetDecideAuxiliary.
+ Import MSetDecideAuxiliary.
+
+ (** * The [fsetdec] Tactic
+ Here is the top-level tactic (the only one intended for
+ clients of this library). It's specification is given at
+ the top of the file. *)
+ Ltac fsetdec :=
+ (** We first unfold any occurrences of [iff]. *)
+ unfold iff in *;
+ (** We fold occurrences of [not] because it is better for
+ [intros] to leave us with a goal of [~ P] than a goal of
+ [False]. *)
+ fold any not; intros;
+ (** Now we decompose conjunctions, which will allow the
+ [discard_nonMSet] and [assert_decidability] tactics to
+ do a much better job. *)
+ decompose records;
+ discard_nonMSet;
+ (** We unfold these defined propositions on finite sets. If
+ our goal was one of them, then have one more item to
+ introduce now. *)
+ unfold Empty, Subset, Equal in *; intros;
+ (** We now want to get rid of all uses of [=] in favor of
+ [E.eq]. However, the best way to eliminate a [=] is in
+ the context is with [subst], so we will try that first.
+ In fact, we may as well convert uses of [E.eq] into [=]
+ when possible before we do [subst] so that we can even
+ more mileage out of it. Then we will convert all
+ remaining uses of [=] back to [E.eq] when possible. We
+ use [change_to_E_t] to ensure that we have a canonical
+ name for set elements, so that [Logic_eq_to_E_eq] will
+ work properly. *)
+ change_to_E_t; E_eq_to_Logic_eq; subst++; Logic_eq_to_E_eq;
+ (** The next optimization is to swap a negated goal with a
+ negated hypothesis when possible. Any swap will improve
+ performance by eliminating the total number of
+ negations, but we will get the maximum benefit if we
+ swap the goal with a hypotheses mentioning the same set
+ element, so we try that first. If we reach the fourth
+ branch below, we attempt any swap. However, to maintain
+ completeness of this tactic, we can only perform such a
+ swap with a decidable proposition; hence, we first test
+ whether the hypothesis is an [MSet_elt_Prop], noting
+ that any [MSet_elt_Prop] is decidable. *)
+ pull not using MSet_decidability;
+ unfold not in *;
+ match goal with
+ | H: (In ?x ?r) -> False |- (In ?x ?s) -> False =>
+ contradict H; fsetdec_body
+ | H: (In ?x ?r) -> False |- (E.eq ?x ?y) -> False =>
+ contradict H; fsetdec_body
+ | H: (In ?x ?r) -> False |- (E.eq ?y ?x) -> False =>
+ contradict H; fsetdec_body
+ | H: ?P -> False |- ?Q -> False =>
+ if prop (MSet_elt_Prop P) holds by
+ (auto 100 with MSet_Prop)
+ then (contradict H; fsetdec_body)
+ else fsetdec_body
+ | |- _ =>
+ fsetdec_body
+ end.
+
+ (** * Examples *)
+
+ Module MSetDecideTestCases.
+
+ Lemma test_eq_trans_1 : forall x y z s,
+ E.eq x y ->
+ ~ ~ E.eq z y ->
+ In x s ->
+ In z s.
+ Proof. fsetdec. Qed.
+
+ Lemma test_eq_trans_2 : forall x y z r s,
+ In x (singleton y) ->
+ ~ In z r ->
+ ~ ~ In z (add y r) ->
+ In x s ->
+ In z s.
+ Proof. fsetdec. Qed.
+
+ Lemma test_eq_neq_trans_1 : forall w x y z s,
+ E.eq x w ->
+ ~ ~ E.eq x y ->
+ ~ E.eq y z ->
+ In w s ->
+ In w (remove z s).
+ Proof. fsetdec. Qed.
+
+ Lemma test_eq_neq_trans_2 : forall w x y z r1 r2 s,
+ In x (singleton w) ->
+ ~ In x r1 ->
+ In x (add y r1) ->
+ In y r2 ->
+ In y (remove z r2) ->
+ In w s ->
+ In w (remove z s).
+ Proof. fsetdec. Qed.
+
+ Lemma test_In_singleton : forall x,
+ In x (singleton x).
+ Proof. fsetdec. Qed.
+
+ Lemma test_add_In : forall x y s,
+ In x (add y s) ->
+ ~ E.eq x y ->
+ In x s.
+ Proof. fsetdec. Qed.
+
+ Lemma test_Subset_add_remove : forall x s,
+ s [<=] (add x (remove x s)).
+ Proof. fsetdec. Qed.
+
+ Lemma test_eq_disjunction : forall w x y z,
+ In w (add x (add y (singleton z))) ->
+ E.eq w x \/ E.eq w y \/ E.eq w z.
+ Proof. fsetdec. Qed.
+
+ Lemma test_not_In_disj : forall x y s1 s2 s3 s4,
+ ~ In x (union s1 (union s2 (union s3 (add y s4)))) ->
+ ~ (In x s1 \/ In x s4 \/ E.eq y x).
+ Proof. fsetdec. Qed.
+
+ Lemma test_not_In_conj : forall x y s1 s2 s3 s4,
+ ~ In x (union s1 (union s2 (union s3 (add y s4)))) ->
+ ~ In x s1 /\ ~ In x s4 /\ ~ E.eq y x.
+ Proof. fsetdec. Qed.
+
+ Lemma test_iff_conj : forall a x s s',
+ (In a s' <-> E.eq x a \/ In a s) ->
+ (In a s' <-> In a (add x s)).
+ Proof. fsetdec. Qed.
+
+ Lemma test_set_ops_1 : forall x q r s,
+ (singleton x) [<=] s ->
+ Empty (union q r) ->
+ Empty (inter (diff s q) (diff s r)) ->
+ ~ In x s.
+ Proof. fsetdec. Qed.
+
+ Lemma eq_chain_test : forall x1 x2 x3 x4 s1 s2 s3 s4,
+ Empty s1 ->
+ In x2 (add x1 s1) ->
+ In x3 s2 ->
+ ~ In x3 (remove x2 s2) ->
+ ~ In x4 s3 ->
+ In x4 (add x3 s3) ->
+ In x1 s4 ->
+ Subset (add x4 s4) s4.
+ Proof. fsetdec. Qed.
+
+ Lemma test_too_complex : forall x y z r s,
+ E.eq x y ->
+ (In x (singleton y) -> r [<=] s) ->
+ In z r ->
+ In z s.
+ Proof.
+ (** [fsetdec] is not intended to solve this directly. *)
+ intros until s; intros Heq H Hr; lapply H; fsetdec.
+ Qed.
+
+ Lemma function_test_1 :
+ forall (f : t -> t),
+ forall (g : elt -> elt),
+ forall (s1 s2 : t),
+ forall (x1 x2 : elt),
+ Equal s1 (f s2) ->
+ E.eq x1 (g (g x2)) ->
+ In x1 s1 ->
+ In (g (g x2)) (f s2).
+ Proof. fsetdec. Qed.
+
+ Lemma function_test_2 :
+ forall (f : t -> t),
+ forall (g : elt -> elt),
+ forall (s1 s2 : t),
+ forall (x1 x2 : elt),
+ Equal s1 (f s2) ->
+ E.eq x1 (g x2) ->
+ In x1 s1 ->
+ g x2 = g (g x2) ->
+ In (g (g x2)) (f s2).
+ Proof.
+ (** [fsetdec] is not intended to solve this directly. *)
+ intros until 3. intros g_eq. rewrite <- g_eq. fsetdec.
+ Qed.
+
+ Lemma test_baydemir :
+ forall (f : t -> t),
+ forall (s : t),
+ forall (x y : elt),
+ In x (add y (f s)) ->
+ ~ E.eq x y ->
+ In x (f s).
+ Proof.
+ fsetdec.
+ Qed.
+
+ End MSetDecideTestCases.
+
+End WDecideOn.
+
+Require Import MSetInterface.
+
+(** Now comes variants for self-contained weak sets and for full sets.
+ For these variants, only one argument is necessary. Thanks to
+ the subtyping [WS<=S], the [Decide] functor which is meant to be
+ used on modules [(M:S)] can simply be an alias of [WDecide]. *)
+
+Module WDecide (M:WSets) := WDecideOn M.E M.
+Module Decide := WDecide.
diff --git a/theories/MSets/MSetEqProperties.v b/theories/MSets/MSetEqProperties.v
new file mode 100644
index 0000000000..24eb77e627
--- /dev/null
+++ b/theories/MSets/MSetEqProperties.v
@@ -0,0 +1,937 @@
+(***********************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
+(* \VV/ *************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(***********************************************************************)
+
+(* $Id$ *)
+
+(** * Finite sets library *)
+
+(** This module proves many properties of finite sets that
+ are consequences of the axiomatization in [FsetInterface]
+ Contrary to the functor in [FsetProperties] it uses
+ sets operations instead of predicates over sets, i.e.
+ [mem x s=true] instead of [In x s],
+ [equal s s'=true] instead of [Equal s s'], etc. *)
+
+Require Import MSetProperties Zerob Sumbool Omega DecidableTypeEx.
+
+Module WEqPropertiesOn (Import E:DecidableType)(M:WSetsOn E).
+Module Import MP := WPropertiesOn E M.
+Import FM Dec.F.
+Import M.
+
+Definition Add := MP.Add.
+
+Section BasicProperties.
+
+(** Some old specifications written with boolean equalities. *)
+
+Variable s s' s'': t.
+Variable x y z : elt.
+
+Lemma mem_eq:
+ E.eq x y -> mem x s=mem y s.
+Proof.
+intro H; rewrite H; auto.
+Qed.
+
+Lemma equal_mem_1:
+ (forall a, mem a s=mem a s') -> equal s s'=true.
+Proof.
+intros; apply equal_1; unfold Equal; intros.
+do 2 rewrite mem_iff; rewrite H; tauto.
+Qed.
+
+Lemma equal_mem_2:
+ equal s s'=true -> forall a, mem a s=mem a s'.
+Proof.
+intros; rewrite (equal_2 H); auto.
+Qed.
+
+Lemma subset_mem_1:
+ (forall a, mem a s=true->mem a s'=true) -> subset s s'=true.
+Proof.
+intros; apply subset_1; unfold Subset; intros a.
+do 2 rewrite mem_iff; auto.
+Qed.
+
+Lemma subset_mem_2:
+ subset s s'=true -> forall a, mem a s=true -> mem a s'=true.
+Proof.
+intros H a; do 2 rewrite <- mem_iff; apply subset_2; auto.
+Qed.
+
+Lemma empty_mem: mem x empty=false.
+Proof.
+rewrite <- not_mem_iff; auto with set.
+Qed.
+
+Lemma is_empty_equal_empty: is_empty s = equal s empty.
+Proof.
+apply bool_1; split; intros.
+auto with set.
+rewrite <- is_empty_iff; auto with set.
+Qed.
+
+Lemma choose_mem_1: choose s=Some x -> mem x s=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma choose_mem_2: choose s=None -> is_empty s=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma add_mem_1: mem x (add x s)=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma add_mem_2: ~E.eq x y -> mem y (add x s)=mem y s.
+Proof.
+apply add_neq_b.
+Qed.
+
+Lemma remove_mem_1: mem x (remove x s)=false.
+Proof.
+rewrite <- not_mem_iff; auto with set.
+Qed.
+
+Lemma remove_mem_2: ~E.eq x y -> mem y (remove x s)=mem y s.
+Proof.
+apply remove_neq_b.
+Qed.
+
+Lemma singleton_equal_add:
+ equal (singleton x) (add x empty)=true.
+Proof.
+rewrite (singleton_equal_add x); auto with set.
+Qed.
+
+Lemma union_mem:
+ mem x (union s s')=mem x s || mem x s'.
+Proof.
+apply union_b.
+Qed.
+
+Lemma inter_mem:
+ mem x (inter s s')=mem x s && mem x s'.
+Proof.
+apply inter_b.
+Qed.
+
+Lemma diff_mem:
+ mem x (diff s s')=mem x s && negb (mem x s').
+Proof.
+apply diff_b.
+Qed.
+
+(** properties of [mem] *)
+
+Lemma mem_3 : ~In x s -> mem x s=false.
+Proof.
+intros; rewrite <- not_mem_iff; auto.
+Qed.
+
+Lemma mem_4 : mem x s=false -> ~In x s.
+Proof.
+intros; rewrite not_mem_iff; auto.
+Qed.
+
+(** Properties of [equal] *)
+
+Lemma equal_refl: equal s s=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma equal_sym: equal s s'=equal s' s.
+Proof.
+intros; apply bool_1; do 2 rewrite <- equal_iff; intuition.
+Qed.
+
+Lemma equal_trans:
+ equal s s'=true -> equal s' s''=true -> equal s s''=true.
+Proof.
+intros; rewrite (equal_2 H); auto.
+Qed.
+
+Lemma equal_equal:
+ equal s s'=true -> equal s s''=equal s' s''.
+Proof.
+intros; rewrite (equal_2 H); auto.
+Qed.
+
+Lemma equal_cardinal:
+ equal s s'=true -> cardinal s=cardinal s'.
+Proof.
+auto with set.
+Qed.
+
+(* Properties of [subset] *)
+
+Lemma subset_refl: subset s s=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma subset_antisym:
+ subset s s'=true -> subset s' s=true -> equal s s'=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma subset_trans:
+ subset s s'=true -> subset s' s''=true -> subset s s''=true.
+Proof.
+do 3 rewrite <- subset_iff; intros.
+apply subset_trans with s'; auto.
+Qed.
+
+Lemma subset_equal:
+ equal s s'=true -> subset s s'=true.
+Proof.
+auto with set.
+Qed.
+
+(** Properties of [choose] *)
+
+Lemma choose_mem_3:
+ is_empty s=false -> {x:elt|choose s=Some x /\ mem x s=true}.
+Proof.
+intros.
+generalize (@choose_1 s) (@choose_2 s).
+destruct (choose s);intros.
+exists e;auto with set.
+generalize (H1 (refl_equal None)); clear H1.
+intros; rewrite (is_empty_1 H1) in H; discriminate.
+Qed.
+
+Lemma choose_mem_4: choose empty=None.
+Proof.
+generalize (@choose_1 empty).
+case (@choose empty);intros;auto.
+elim (@empty_1 e); auto.
+Qed.
+
+(** Properties of [add] *)
+
+Lemma add_mem_3:
+ mem y s=true -> mem y (add x s)=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma add_equal:
+ mem x s=true -> equal (add x s) s=true.
+Proof.
+auto with set.
+Qed.
+
+(** Properties of [remove] *)
+
+Lemma remove_mem_3:
+ mem y (remove x s)=true -> mem y s=true.
+Proof.
+rewrite remove_b; intros H;destruct (andb_prop _ _ H); auto.
+Qed.
+
+Lemma remove_equal:
+ mem x s=false -> equal (remove x s) s=true.
+Proof.
+intros; apply equal_1; apply remove_equal.
+rewrite not_mem_iff; auto.
+Qed.
+
+Lemma add_remove:
+ mem x s=true -> equal (add x (remove x s)) s=true.
+Proof.
+intros; apply equal_1; apply add_remove; auto with set.
+Qed.
+
+Lemma remove_add:
+ mem x s=false -> equal (remove x (add x s)) s=true.
+Proof.
+intros; apply equal_1; apply remove_add; auto.
+rewrite not_mem_iff; auto.
+Qed.
+
+(** Properties of [is_empty] *)
+
+Lemma is_empty_cardinal: is_empty s = zerob (cardinal s).
+Proof.
+intros; apply bool_1; split; intros.
+rewrite MP.cardinal_1; simpl; auto with set.
+assert (cardinal s = 0) by (apply zerob_true_elim; auto).
+auto with set.
+Qed.
+
+(** Properties of [singleton] *)
+
+Lemma singleton_mem_1: mem x (singleton x)=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma singleton_mem_2: ~E.eq x y -> mem y (singleton x)=false.
+Proof.
+intros; rewrite singleton_b.
+unfold eqb; destruct (E.eq_dec x y); intuition.
+Qed.
+
+Lemma singleton_mem_3: mem y (singleton x)=true -> E.eq x y.
+Proof.
+intros; apply singleton_1; auto with set.
+Qed.
+
+(** Properties of [union] *)
+
+Lemma union_sym:
+ equal (union s s') (union s' s)=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma union_subset_equal:
+ subset s s'=true -> equal (union s s') s'=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma union_equal_1:
+ equal s s'=true-> equal (union s s'') (union s' s'')=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma union_equal_2:
+ equal s' s''=true-> equal (union s s') (union s s'')=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma union_assoc:
+ equal (union (union s s') s'') (union s (union s' s''))=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma add_union_singleton:
+ equal (add x s) (union (singleton x) s)=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma union_add:
+ equal (union (add x s) s') (add x (union s s'))=true.
+Proof.
+auto with set.
+Qed.
+
+(* caracterisation of [union] via [subset] *)
+
+Lemma union_subset_1: subset s (union s s')=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma union_subset_2: subset s' (union s s')=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma union_subset_3:
+ subset s s''=true -> subset s' s''=true ->
+ subset (union s s') s''=true.
+Proof.
+intros; apply subset_1; apply union_subset_3; auto with set.
+Qed.
+
+(** Properties of [inter] *)
+
+Lemma inter_sym: equal (inter s s') (inter s' s)=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma inter_subset_equal:
+ subset s s'=true -> equal (inter s s') s=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma inter_equal_1:
+ equal s s'=true -> equal (inter s s'') (inter s' s'')=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma inter_equal_2:
+ equal s' s''=true -> equal (inter s s') (inter s s'')=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma inter_assoc:
+ equal (inter (inter s s') s'') (inter s (inter s' s''))=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma union_inter_1:
+ equal (inter (union s s') s'') (union (inter s s'') (inter s' s''))=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma union_inter_2:
+ equal (union (inter s s') s'') (inter (union s s'') (union s' s''))=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma inter_add_1: mem x s'=true ->
+ equal (inter (add x s) s') (add x (inter s s'))=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma inter_add_2: mem x s'=false ->
+ equal (inter (add x s) s') (inter s s')=true.
+Proof.
+intros; apply equal_1; apply inter_add_2.
+rewrite not_mem_iff; auto.
+Qed.
+
+(* caracterisation of [union] via [subset] *)
+
+Lemma inter_subset_1: subset (inter s s') s=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma inter_subset_2: subset (inter s s') s'=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma inter_subset_3:
+ subset s'' s=true -> subset s'' s'=true ->
+ subset s'' (inter s s')=true.
+Proof.
+intros; apply subset_1; apply inter_subset_3; auto with set.
+Qed.
+
+(** Properties of [diff] *)
+
+Lemma diff_subset: subset (diff s s') s=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma diff_subset_equal:
+ subset s s'=true -> equal (diff s s') empty=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma remove_inter_singleton:
+ equal (remove x s) (diff s (singleton x))=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma diff_inter_empty:
+ equal (inter (diff s s') (inter s s')) empty=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma diff_inter_all:
+ equal (union (diff s s') (inter s s')) s=true.
+Proof.
+auto with set.
+Qed.
+
+End BasicProperties.
+
+Hint Immediate empty_mem is_empty_equal_empty add_mem_1
+ remove_mem_1 singleton_equal_add union_mem inter_mem
+ diff_mem equal_sym add_remove remove_add : set.
+Hint Resolve equal_mem_1 subset_mem_1 choose_mem_1
+ choose_mem_2 add_mem_2 remove_mem_2 equal_refl equal_equal
+ subset_refl subset_equal subset_antisym
+ add_mem_3 add_equal remove_mem_3 remove_equal : set.
+
+
+(** General recursion principle *)
+
+Lemma set_rec: forall (P:t->Type),
+ (forall s s', equal s s'=true -> P s -> P s') ->
+ (forall s x, mem x s=false -> P s -> P (add x s)) ->
+ P empty -> forall s, P s.
+Proof.
+intros.
+apply set_induction; auto; intros.
+apply X with empty; auto with set.
+apply X with (add x s0); auto with set.
+apply equal_1; intro a; rewrite add_iff; rewrite (H0 a); tauto.
+apply X0; auto with set; apply mem_3; auto.
+Qed.
+
+(** Properties of [fold] *)
+
+Lemma exclusive_set : forall s s' x,
+ ~(In x s/\In x s') <-> mem x s && mem x s'=false.
+Proof.
+intros; do 2 rewrite mem_iff.
+destruct (mem x s); destruct (mem x s'); intuition.
+Qed.
+
+Section Fold.
+Variables (A:Type)(eqA:A->A->Prop)(st:Equivalence eqA).
+Variables (f:elt->A->A)(Comp:Proper (E.eq==>eqA==>eqA) f)(Ass:transpose eqA f).
+Variables (i:A).
+Variables (s s':t)(x:elt).
+
+Lemma fold_empty: (fold f empty i) = i.
+Proof.
+apply fold_empty; auto.
+Qed.
+
+Lemma fold_equal:
+ equal s s'=true -> eqA (fold f s i) (fold f s' i).
+Proof.
+intros; apply fold_equal with (eqA:=eqA); auto with set.
+Qed.
+
+Lemma fold_add:
+ mem x s=false -> eqA (fold f (add x s) i) (f x (fold f s i)).
+Proof.
+intros; apply fold_add with (eqA:=eqA); auto.
+rewrite not_mem_iff; auto.
+Qed.
+
+Lemma add_fold:
+ mem x s=true -> eqA (fold f (add x s) i) (fold f s i).
+Proof.
+intros; apply add_fold with (eqA:=eqA); auto with set.
+Qed.
+
+Lemma remove_fold_1:
+ mem x s=true -> eqA (f x (fold f (remove x s) i)) (fold f s i).
+Proof.
+intros; apply remove_fold_1 with (eqA:=eqA); auto with set.
+Qed.
+
+Lemma remove_fold_2:
+ mem x s=false -> eqA (fold f (remove x s) i) (fold f s i).
+Proof.
+intros; apply remove_fold_2 with (eqA:=eqA); auto.
+rewrite not_mem_iff; auto.
+Qed.
+
+Lemma fold_union:
+ (forall x, mem x s && mem x s'=false) ->
+ eqA (fold f (union s s') i) (fold f s (fold f s' i)).
+Proof.
+intros; apply fold_union with (eqA:=eqA); auto.
+intros; rewrite exclusive_set; auto.
+Qed.
+
+End Fold.
+
+(** Properties of [cardinal] *)
+
+Lemma add_cardinal_1:
+ forall s x, mem x s=true -> cardinal (add x s)=cardinal s.
+Proof.
+auto with set.
+Qed.
+
+Lemma add_cardinal_2:
+ forall s x, mem x s=false -> cardinal (add x s)=S (cardinal s).
+Proof.
+intros; apply add_cardinal_2; auto.
+rewrite not_mem_iff; auto.
+Qed.
+
+Lemma remove_cardinal_1:
+ forall s x, mem x s=true -> S (cardinal (remove x s))=cardinal s.
+Proof.
+intros; apply remove_cardinal_1; auto with set.
+Qed.
+
+Lemma remove_cardinal_2:
+ forall s x, mem x s=false -> cardinal (remove x s)=cardinal s.
+Proof.
+intros; apply Equal_cardinal; apply equal_2; auto with set.
+Qed.
+
+Lemma union_cardinal:
+ forall s s', (forall x, mem x s && mem x s'=false) ->
+ cardinal (union s s')=cardinal s+cardinal s'.
+Proof.
+intros; apply union_cardinal; auto; intros.
+rewrite exclusive_set; auto.
+Qed.
+
+Lemma subset_cardinal:
+ forall s s', subset s s'=true -> cardinal s<=cardinal s'.
+Proof.
+intros; apply subset_cardinal; auto with set.
+Qed.
+
+Section Bool.
+
+(** Properties of [filter] *)
+
+Variable f:elt->bool.
+Variable Comp: Proper (E.eq==>Logic.eq) f.
+
+Let Comp' : Proper (E.eq==>Logic.eq) (fun x =>negb (f x)).
+Proof.
+repeat red; intros; f_equal; auto.
+Qed.
+
+Lemma filter_mem: forall s x, mem x (filter f s)=mem x s && f x.
+Proof.
+intros; apply filter_b; auto.
+Qed.
+
+Lemma for_all_filter:
+ forall s, for_all f s=is_empty (filter (fun x => negb (f x)) s).
+Proof.
+intros; apply bool_1; split; intros.
+apply is_empty_1.
+unfold Empty; intros.
+rewrite filter_iff; auto.
+red; destruct 1.
+rewrite <- (@for_all_iff s f) in H; auto.
+rewrite (H a H0) in H1; discriminate.
+apply for_all_1; auto; red; intros.
+revert H; rewrite <- is_empty_iff.
+unfold Empty; intro H; generalize (H x); clear H.
+rewrite filter_iff; auto.
+destruct (f x); auto.
+Qed.
+
+Lemma exists_filter :
+ forall s, exists_ f s=negb (is_empty (filter f s)).
+Proof.
+intros; apply bool_1; split; intros.
+destruct (exists_2 Comp H) as (a,(Ha1,Ha2)).
+apply bool_6.
+red; intros; apply (@is_empty_2 _ H0 a); auto with set.
+generalize (@choose_1 (filter f s)) (@choose_2 (filter f s)).
+destruct (choose (filter f s)).
+intros H0 _; apply exists_1; auto.
+exists e; generalize (H0 e); rewrite filter_iff; auto.
+intros _ H0.
+rewrite (is_empty_1 (H0 (refl_equal None))) in H; auto; discriminate.
+Qed.
+
+Lemma partition_filter_1:
+ forall s, equal (fst (partition f s)) (filter f s)=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma partition_filter_2:
+ forall s, equal (snd (partition f s)) (filter (fun x => negb (f x)) s)=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma filter_add_1 : forall s x, f x = true ->
+ filter f (add x s) [=] add x (filter f s).
+Proof.
+red; intros; set_iff; do 2 (rewrite filter_iff; auto); set_iff.
+intuition.
+rewrite <- H; apply Comp; auto.
+Qed.
+
+Lemma filter_add_2 : forall s x, f x = false ->
+ filter f (add x s) [=] filter f s.
+Proof.
+red; intros; do 2 (rewrite filter_iff; auto); set_iff.
+intuition.
+assert (f x = f a) by (apply Comp; auto).
+rewrite H in H1; rewrite H2 in H1; discriminate.
+Qed.
+
+Lemma add_filter_1 : forall s s' x,
+ f x=true -> (Add x s s') -> (Add x (filter f s) (filter f s')).
+Proof.
+unfold Add, MP.Add; intros.
+repeat rewrite filter_iff; auto.
+rewrite H0; clear H0.
+intuition.
+setoid_replace y with x; auto.
+Qed.
+
+Lemma add_filter_2 : forall s s' x,
+ f x=false -> (Add x s s') -> filter f s [=] filter f s'.
+Proof.
+unfold Add, MP.Add, Equal; intros.
+repeat rewrite filter_iff; auto.
+rewrite H0; clear H0.
+intuition.
+setoid_replace x with a in H; auto. congruence.
+Qed.
+
+Lemma union_filter: forall f g,
+ Proper (E.eq==>Logic.eq) f -> Proper (E.eq==>Logic.eq) g ->
+ forall s, union (filter f s) (filter g s) [=] filter (fun x=>orb (f x) (g x)) s.
+Proof.
+clear Comp' Comp f.
+intros.
+assert (Proper (E.eq==>Logic.eq) (fun x => orb (f x) (g x))).
+ repeat red; intros.
+ rewrite (H x y H1); rewrite (H0 x y H1); auto.
+unfold Equal; intros; set_iff; repeat rewrite filter_iff; auto.
+assert (f a || g a = true <-> f a = true \/ g a = true).
+ split; auto with bool.
+ intro H3; destruct (orb_prop _ _ H3); auto.
+tauto.
+Qed.
+
+Lemma filter_union: forall s s', filter f (union s s') [=] union (filter f s) (filter f s').
+Proof.
+unfold Equal; intros; set_iff; repeat rewrite filter_iff; auto; set_iff; tauto.
+Qed.
+
+(** Properties of [for_all] *)
+
+Lemma for_all_mem_1: forall s,
+ (forall x, (mem x s)=true->(f x)=true) -> (for_all f s)=true.
+Proof.
+intros.
+rewrite for_all_filter; auto.
+rewrite is_empty_equal_empty.
+apply equal_mem_1;intros.
+rewrite filter_b; auto.
+rewrite empty_mem.
+generalize (H a); case (mem a s);intros;auto.
+rewrite H0;auto.
+Qed.
+
+Lemma for_all_mem_2: forall s,
+ (for_all f s)=true -> forall x,(mem x s)=true -> (f x)=true.
+Proof.
+intros.
+rewrite for_all_filter in H; auto.
+rewrite is_empty_equal_empty in H.
+generalize (equal_mem_2 _ _ H x).
+rewrite filter_b; auto.
+rewrite empty_mem.
+rewrite H0; simpl;intros.
+rewrite <- negb_false_iff; auto.
+Qed.
+
+Lemma for_all_mem_3:
+ forall s x,(mem x s)=true -> (f x)=false -> (for_all f s)=false.
+Proof.
+intros.
+apply (bool_eq_ind (for_all f s));intros;auto.
+rewrite for_all_filter in H1; auto.
+rewrite is_empty_equal_empty in H1.
+generalize (equal_mem_2 _ _ H1 x).
+rewrite filter_b; auto.
+rewrite empty_mem.
+rewrite H.
+rewrite H0.
+simpl;auto.
+Qed.
+
+Lemma for_all_mem_4:
+ forall s, for_all f s=false -> {x:elt | mem x s=true /\ f x=false}.
+Proof.
+intros.
+rewrite for_all_filter in H; auto.
+destruct (choose_mem_3 _ H) as (x,(H0,H1));intros.
+exists x.
+rewrite filter_b in H1; auto.
+elim (andb_prop _ _ H1).
+split;auto.
+rewrite <- negb_true_iff; auto.
+Qed.
+
+(** Properties of [exists] *)
+
+Lemma for_all_exists:
+ forall s, exists_ f s = negb (for_all (fun x =>negb (f x)) s).
+Proof.
+intros.
+rewrite for_all_b; auto.
+rewrite exists_b; auto.
+induction (elements s); simpl; auto.
+destruct (f a); simpl; auto.
+Qed.
+
+End Bool.
+Section Bool'.
+
+Variable f:elt->bool.
+Variable Comp: Proper (E.eq==>Logic.eq) f.
+
+Let Comp' : Proper (E.eq==>Logic.eq) (fun x => negb (f x)).
+Proof.
+repeat red; intros; f_equal; auto.
+Qed.
+
+Lemma exists_mem_1:
+ forall s, (forall x, mem x s=true->f x=false) -> exists_ f s=false.
+Proof.
+intros.
+rewrite for_all_exists; auto.
+rewrite for_all_mem_1;auto with bool.
+intros;generalize (H x H0);intros.
+rewrite negb_true_iff; auto.
+Qed.
+
+Lemma exists_mem_2:
+ forall s, exists_ f s=false -> forall x, mem x s=true -> f x=false.
+Proof.
+intros.
+rewrite for_all_exists in H; auto.
+rewrite negb_false_iff in H.
+rewrite <- negb_true_iff.
+apply for_all_mem_2 with (2:=H); auto.
+Qed.
+
+Lemma exists_mem_3:
+ forall s x, mem x s=true -> f x=true -> exists_ f s=true.
+Proof.
+intros.
+rewrite for_all_exists; auto.
+rewrite negb_true_iff.
+apply for_all_mem_3 with x;auto.
+rewrite negb_false_iff; auto.
+Qed.
+
+Lemma exists_mem_4:
+ forall s, exists_ f s=true -> {x:elt | (mem x s)=true /\ (f x)=true}.
+Proof.
+intros.
+rewrite for_all_exists in H; auto.
+rewrite negb_true_iff in H.
+elim (@for_all_mem_4 (fun x =>negb (f x)) Comp' s);intros;auto.
+elim p;intros.
+exists x;split;auto.
+rewrite <-negb_false_iff; auto.
+Qed.
+
+End Bool'.
+
+Section Sum.
+
+(** Adding a valuation function on all elements of a set. *)
+
+Definition sum (f:elt -> nat)(s:t) := fold (fun x => plus (f x)) s 0.
+Notation compat_opL := (Proper (E.eq==>Logic.eq==>Logic.eq)).
+Notation transposeL := (transpose Logic.eq).
+
+Lemma sum_plus :
+ forall f g,
+ Proper (E.eq==>Logic.eq) f -> Proper (E.eq==>Logic.eq) g ->
+ forall s, sum (fun x =>f x+g x) s = sum f s + sum g s.
+Proof.
+unfold sum.
+intros f g Hf Hg.
+assert (fc : compat_opL (fun x:elt =>plus (f x))) by
+ (repeat red; intros; rewrite Hf; auto).
+assert (ft : transposeL (fun x:elt =>plus (f x))) by (red; intros; omega).
+assert (gc : compat_opL (fun x:elt => plus (g x))) by
+ (repeat red; intros; rewrite Hg; auto).
+assert (gt : transposeL (fun x:elt =>plus (g x))) by (red; intros; omega).
+assert (fgc : compat_opL (fun x:elt =>plus ((f x)+(g x)))) by
+ (repeat red; intros; rewrite Hf,Hg; auto).
+assert (fgt : transposeL (fun x:elt=>plus ((f x)+(g x)))) by (red; intros; omega).
+intros s;pattern s; apply set_rec.
+intros.
+rewrite <- (fold_equal _ _ _ _ fc ft 0 _ _ H).
+rewrite <- (fold_equal _ _ _ _ gc gt 0 _ _ H).
+rewrite <- (fold_equal _ _ _ _ fgc fgt 0 _ _ H); auto.
+intros; do 3 (rewrite (fold_add _ _ _);auto).
+rewrite H0;simpl;omega.
+do 3 rewrite fold_empty;auto.
+Qed.
+
+Lemma sum_filter : forall f : elt -> bool, Proper (E.eq==>Logic.eq) f ->
+ forall s, (sum (fun x => if f x then 1 else 0) s) = (cardinal (filter f s)).
+Proof.
+unfold sum; intros f Hf.
+assert (st : Equivalence (@Logic.eq nat)) by (split; congruence).
+assert (cc : compat_opL (fun x => plus (if f x then 1 else 0))) by
+ (repeat red; intros; rewrite Hf; auto).
+assert (ct : transposeL (fun x => plus (if f x then 1 else 0))) by
+ (red; intros; omega).
+intros s;pattern s; apply set_rec.
+intros.
+change elt with E.t.
+rewrite <- (fold_equal _ _ st _ cc ct 0 _ _ H).
+apply equal_2 in H; rewrite <- H, <-H0; auto.
+intros; rewrite (fold_add _ _ st _ cc ct); auto.
+generalize (@add_filter_1 f Hf s0 (add x s0) x) (@add_filter_2 f Hf s0 (add x s0) x) .
+assert (~ In x (filter f s0)).
+ intro H1; rewrite (mem_1 (filter_1 Hf H1)) in H; discriminate H.
+case (f x); simpl; intros.
+rewrite (MP.cardinal_2 H1 (H2 (refl_equal true) (MP.Add_add s0 x))); auto.
+rewrite <- (MP.Equal_cardinal (H3 (refl_equal false) (MP.Add_add s0 x))); auto.
+intros; rewrite fold_empty;auto.
+rewrite MP.cardinal_1; auto.
+unfold Empty; intros.
+rewrite filter_iff; auto; set_iff; tauto.
+Qed.
+
+Lemma fold_compat :
+ forall (A:Type)(eqA:A->A->Prop)(st:Equivalence eqA)
+ (f g:elt->A->A),
+ Proper (E.eq==>eqA==>eqA) f -> transpose eqA f ->
+ Proper (E.eq==>eqA==>eqA) g -> transpose eqA g ->
+ forall (i:A)(s:t),(forall x:elt, (In x s) -> forall y, (eqA (f x y) (g x y))) ->
+ (eqA (fold f s i) (fold g s i)).
+Proof.
+intros A eqA st f g fc ft gc gt i.
+intro s; pattern s; apply set_rec; intros.
+transitivity (fold f s0 i).
+apply fold_equal with (eqA:=eqA); auto.
+rewrite equal_sym; auto.
+transitivity (fold g s0 i).
+apply H0; intros; apply H1; auto with set.
+elim (equal_2 H x); auto with set; intros.
+apply fold_equal with (eqA:=eqA); auto with set.
+transitivity (f x (fold f s0 i)).
+apply fold_add with (eqA:=eqA); auto with set.
+transitivity (g x (fold f s0 i)); auto with set.
+transitivity (g x (fold g s0 i)); auto with set.
+apply gc; auto with set.
+symmetry; apply fold_add with (eqA:=eqA); auto.
+do 2 rewrite fold_empty; reflexivity.
+Qed.
+
+Lemma sum_compat :
+ forall f g, Proper (E.eq==>Logic.eq) f -> Proper (E.eq==>Logic.eq) g ->
+ forall s, (forall x, In x s -> f x=g x) -> sum f s=sum g s.
+intros.
+unfold sum; apply (@fold_compat _ (@Logic.eq nat));
+ repeat red; auto with *.
+Qed.
+
+End Sum.
+
+End WEqPropertiesOn.
+
+(** Now comes variants for self-contained weak sets and for full sets.
+ For these variants, only one argument is necessary. Thanks to
+ the subtyping [WS<=S], the [EqProperties] functor which is meant to be
+ used on modules [(M:S)] can simply be an alias of [WEqProperties]. *)
+
+Module WEqProperties (M:WSets) := WEqPropertiesOn M.E M.
+Module EqProperties := WEqProperties.
diff --git a/theories/MSets/MSetFacts.v b/theories/MSets/MSetFacts.v
new file mode 100644
index 0000000000..2ba9692174
--- /dev/null
+++ b/theories/MSets/MSetFacts.v
@@ -0,0 +1,527 @@
+(***********************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
+(* \VV/ *************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(***********************************************************************)
+
+(* $Id$ *)
+
+(** * Finite sets library *)
+
+(** This functor derives additional facts from [MSetInterface.S]. These
+ facts are mainly the specifications of [MSetInterface.S] written using
+ different styles: equivalence and boolean equalities.
+ Moreover, we prove that [E.Eq] and [Equal] are setoid equalities.
+*)
+
+Require Import DecidableTypeEx.
+Require Export MSetInterface.
+Set Implicit Arguments.
+Unset Strict Implicit.
+
+(** First, a functor for Weak Sets in functorial version. *)
+
+Module WFactsOn (Import E : DecidableType)(Import M : WSetsOn E).
+
+Notation eq_dec := E.eq_dec.
+Definition eqb x y := if eq_dec x y then true else false.
+
+(** * Specifications written using implications :
+ this used to be the default interface. *)
+
+Section ImplSpec.
+Variable s s' : t.
+Variable x y : elt.
+
+Lemma In_1 : E.eq x y -> In x s -> In y s.
+Proof. intros E; rewrite E; auto. Qed.
+
+Lemma mem_1 : In x s -> mem x s = true.
+Proof. intros; apply <- mem_spec; auto. Qed.
+Lemma mem_2 : mem x s = true -> In x s.
+Proof. intros; apply -> mem_spec; auto. Qed.
+
+Lemma equal_1 : Equal s s' -> equal s s' = true.
+Proof. intros; apply <- equal_spec; auto. Qed.
+Lemma equal_2 : equal s s' = true -> Equal s s'.
+Proof. intros; apply -> equal_spec; auto. Qed.
+
+Lemma subset_1 : Subset s s' -> subset s s' = true.
+Proof. intros; apply <- subset_spec; auto. Qed.
+Lemma subset_2 : subset s s' = true -> Subset s s'.
+Proof. intros; apply -> subset_spec; auto. Qed.
+
+Lemma is_empty_1 : Empty s -> is_empty s = true.
+Proof. intros; apply <- is_empty_spec; auto. Qed.
+Lemma is_empty_2 : is_empty s = true -> Empty s.
+Proof. intros; apply -> is_empty_spec; auto. Qed.
+
+Lemma add_1 : E.eq x y -> In y (add x s).
+Proof. intros; apply <- add_spec; auto. Qed.
+Lemma add_2 : In y s -> In y (add x s).
+Proof. intros; apply <- add_spec; auto. Qed.
+Lemma add_3 : ~ E.eq x y -> In y (add x s) -> In y s.
+Proof. rewrite add_spec. intros H [H'|H']; auto. elim H; auto. Qed.
+
+Lemma remove_1 : E.eq x y -> ~ In y (remove x s).
+Proof. intros; rewrite remove_spec; intuition. Qed.
+Lemma remove_2 : ~ E.eq x y -> In y s -> In y (remove x s).
+Proof. intros; apply <- remove_spec; auto. Qed.
+Lemma remove_3 : In y (remove x s) -> In y s.
+Proof. rewrite remove_spec; intuition. Qed.
+
+Lemma singleton_1 : In y (singleton x) -> E.eq x y.
+Proof. rewrite singleton_spec; auto. Qed.
+Lemma singleton_2 : E.eq x y -> In y (singleton x).
+Proof. rewrite singleton_spec; auto. Qed.
+
+Lemma union_1 : In x (union s s') -> In x s \/ In x s'.
+Proof. rewrite union_spec; auto. Qed.
+Lemma union_2 : In x s -> In x (union s s').
+Proof. rewrite union_spec; auto. Qed.
+Lemma union_3 : In x s' -> In x (union s s').
+Proof. rewrite union_spec; auto. Qed.
+
+Lemma inter_1 : In x (inter s s') -> In x s.
+Proof. rewrite inter_spec; intuition. Qed.
+Lemma inter_2 : In x (inter s s') -> In x s'.
+Proof. rewrite inter_spec; intuition. Qed.
+Lemma inter_3 : In x s -> In x s' -> In x (inter s s').
+Proof. rewrite inter_spec; intuition. Qed.
+
+Lemma diff_1 : In x (diff s s') -> In x s.
+Proof. rewrite diff_spec; intuition. Qed.
+Lemma diff_2 : In x (diff s s') -> ~ In x s'.
+Proof. rewrite diff_spec; intuition. Qed.
+Lemma diff_3 : In x s -> ~ In x s' -> In x (diff s s').
+Proof. rewrite diff_spec; auto. Qed.
+
+Variable f : elt -> bool.
+Notation compatb := (Proper (E.eq==>Logic.eq)) (only parsing).
+
+Lemma filter_1 : compatb f -> In x (filter f s) -> In x s.
+Proof. intros P; rewrite filter_spec; intuition. Qed.
+Lemma filter_2 : compatb f -> In x (filter f s) -> f x = true.
+Proof. intros P; rewrite filter_spec; intuition. Qed.
+Lemma filter_3 : compatb f -> In x s -> f x = true -> In x (filter f s).
+Proof. intros P; rewrite filter_spec; intuition. Qed.
+
+Lemma for_all_1 : compatb f ->
+ For_all (fun x => f x = true) s -> for_all f s = true.
+Proof. intros; apply <- for_all_spec; auto. Qed.
+Lemma for_all_2 : compatb f ->
+ for_all f s = true -> For_all (fun x => f x = true) s.
+Proof. intros; apply -> for_all_spec; auto. Qed.
+
+Lemma exists_1 : compatb f ->
+ Exists (fun x => f x = true) s -> exists_ f s = true.
+Proof. intros; apply <- exists_spec; auto. Qed.
+
+Lemma exists_2 : compatb f ->
+ exists_ f s = true -> Exists (fun x => f x = true) s.
+Proof. intros; apply -> exists_spec; auto. Qed.
+
+Lemma elements_1 : In x s -> InA E.eq x (elements s).
+Proof. intros; apply <- elements_spec1; auto. Qed.
+Lemma elements_2 : InA E.eq x (elements s) -> In x s.
+Proof. intros; apply -> elements_spec1; auto. Qed.
+
+End ImplSpec.
+
+Notation empty_1 := empty_spec (only parsing).
+Notation fold_1 := fold_spec (only parsing).
+Notation cardinal_1 := cardinal_spec (only parsing).
+Notation partition_1 := partition_spec1 (only parsing).
+Notation partition_2 := partition_spec2 (only parsing).
+Notation choose_1 := choose_spec1 (only parsing).
+Notation choose_2 := choose_spec2 (only parsing).
+Notation elements_3w := elements_spec2w (only parsing).
+
+Hint Resolve mem_1 equal_1 subset_1 empty_1
+ is_empty_1 choose_1 choose_2 add_1 add_2 remove_1
+ remove_2 singleton_2 union_1 union_2 union_3
+ inter_3 diff_3 fold_1 filter_3 for_all_1 exists_1
+ partition_1 partition_2 elements_1 elements_3w
+ : set.
+Hint Immediate In_1 mem_2 equal_2 subset_2 is_empty_2 add_3
+ remove_3 singleton_1 inter_1 inter_2 diff_1 diff_2
+ filter_1 filter_2 for_all_2 exists_2 elements_2
+ : set.
+
+
+(** * Specifications written using equivalences :
+ this is now provided by the default interface. *)
+
+Section IffSpec.
+Variable s s' s'' : t.
+Variable x y z : elt.
+
+Lemma In_eq_iff : E.eq x y -> (In x s <-> In y s).
+Proof.
+intros E; rewrite E; intuition.
+Qed.
+
+Lemma mem_iff : In x s <-> mem x s = true.
+Proof. apply iff_sym, mem_spec. Qed.
+
+Lemma not_mem_iff : ~In x s <-> mem x s = false.
+Proof.
+rewrite <-mem_spec; destruct (mem x s); intuition.
+Qed.
+
+Lemma equal_iff : s[=]s' <-> equal s s' = true.
+Proof. apply iff_sym, equal_spec. Qed.
+
+Lemma subset_iff : s[<=]s' <-> subset s s' = true.
+Proof. apply iff_sym, subset_spec. Qed.
+
+Lemma empty_iff : In x empty <-> False.
+Proof. intuition; apply (empty_spec H). Qed.
+
+Lemma is_empty_iff : Empty s <-> is_empty s = true.
+Proof. apply iff_sym, is_empty_spec. Qed.
+
+Lemma singleton_iff : In y (singleton x) <-> E.eq x y.
+Proof. rewrite singleton_spec; intuition. Qed.
+
+Lemma add_iff : In y (add x s) <-> E.eq x y \/ In y s.
+Proof. rewrite add_spec; intuition. Qed.
+
+Lemma add_neq_iff : ~ E.eq x y -> (In y (add x s) <-> In y s).
+Proof. rewrite add_spec; intuition. elim H; auto. Qed.
+
+Lemma remove_iff : In y (remove x s) <-> In y s /\ ~E.eq x y.
+Proof. rewrite remove_spec; intuition. Qed.
+
+Lemma remove_neq_iff : ~ E.eq x y -> (In y (remove x s) <-> In y s).
+Proof. rewrite remove_spec; intuition. Qed.
+
+Variable f : elt -> bool.
+
+Lemma for_all_iff : Proper (E.eq==>Logic.eq) f ->
+ (For_all (fun x => f x = true) s <-> for_all f s = true).
+Proof. intros; apply iff_sym, for_all_spec; auto. Qed.
+
+Lemma exists_iff : Proper (E.eq==>Logic.eq) f ->
+ (Exists (fun x => f x = true) s <-> exists_ f s = true).
+Proof. intros; apply iff_sym, exists_spec; auto. Qed.
+
+Lemma elements_iff : In x s <-> InA E.eq x (elements s).
+Proof. apply iff_sym, elements_spec1. Qed.
+
+End IffSpec.
+
+Notation union_iff := union_spec (only parsing).
+Notation inter_iff := inter_spec (only parsing).
+Notation diff_iff := diff_spec (only parsing).
+Notation filter_iff := filter_spec (only parsing).
+
+(** Useful tactic for simplifying expressions like [In y (add x (union s s'))] *)
+
+Ltac set_iff :=
+ repeat (progress (
+ rewrite add_iff || rewrite remove_iff || rewrite singleton_iff
+ || rewrite union_iff || rewrite inter_iff || rewrite diff_iff
+ || rewrite empty_iff)).
+
+(** * Specifications written using boolean predicates *)
+
+Section BoolSpec.
+Variable s s' s'' : t.
+Variable x y z : elt.
+
+Lemma mem_b : E.eq x y -> mem x s = mem y s.
+Proof.
+intros.
+generalize (mem_iff s x) (mem_iff s y)(In_eq_iff s H).
+destruct (mem x s); destruct (mem y s); intuition.
+Qed.
+
+Lemma empty_b : mem y empty = false.
+Proof.
+generalize (empty_iff y)(mem_iff empty y).
+destruct (mem y empty); intuition.
+Qed.
+
+Lemma add_b : mem y (add x s) = eqb x y || mem y s.
+Proof.
+generalize (mem_iff (add x s) y)(mem_iff s y)(add_iff s x y); unfold eqb.
+destruct (eq_dec x y); destruct (mem y s); destruct (mem y (add x s)); intuition.
+Qed.
+
+Lemma add_neq_b : ~ E.eq x y -> mem y (add x s) = mem y s.
+Proof.
+intros; generalize (mem_iff (add x s) y)(mem_iff s y)(add_neq_iff s H).
+destruct (mem y s); destruct (mem y (add x s)); intuition.
+Qed.
+
+Lemma remove_b : mem y (remove x s) = mem y s && negb (eqb x y).
+Proof.
+generalize (mem_iff (remove x s) y)(mem_iff s y)(remove_iff s x y); unfold eqb.
+destruct (eq_dec x y); destruct (mem y s); destruct (mem y (remove x s)); simpl; intuition.
+Qed.
+
+Lemma remove_neq_b : ~ E.eq x y -> mem y (remove x s) = mem y s.
+Proof.
+intros; generalize (mem_iff (remove x s) y)(mem_iff s y)(remove_neq_iff s H).
+destruct (mem y s); destruct (mem y (remove x s)); intuition.
+Qed.
+
+Lemma singleton_b : mem y (singleton x) = eqb x y.
+Proof.
+generalize (mem_iff (singleton x) y)(singleton_iff x y); unfold eqb.
+destruct (eq_dec x y); destruct (mem y (singleton x)); intuition.
+Qed.
+
+Lemma union_b : mem x (union s s') = mem x s || mem x s'.
+Proof.
+generalize (mem_iff (union s s') x)(mem_iff s x)(mem_iff s' x)(union_iff s s' x).
+destruct (mem x s); destruct (mem x s'); destruct (mem x (union s s')); intuition.
+Qed.
+
+Lemma inter_b : mem x (inter s s') = mem x s && mem x s'.
+Proof.
+generalize (mem_iff (inter s s') x)(mem_iff s x)(mem_iff s' x)(inter_iff s s' x).
+destruct (mem x s); destruct (mem x s'); destruct (mem x (inter s s')); intuition.
+Qed.
+
+Lemma diff_b : mem x (diff s s') = mem x s && negb (mem x s').
+Proof.
+generalize (mem_iff (diff s s') x)(mem_iff s x)(mem_iff s' x)(diff_iff s s' x).
+destruct (mem x s); destruct (mem x s'); destruct (mem x (diff s s')); simpl; intuition.
+Qed.
+
+Lemma elements_b : mem x s = existsb (eqb x) (elements s).
+Proof.
+generalize (mem_iff s x)(elements_iff s x)(existsb_exists (eqb x) (elements s)).
+rewrite InA_alt.
+destruct (mem x s); destruct (existsb (eqb x) (elements s)); auto; intros.
+symmetry.
+rewrite H1.
+destruct H0 as (H0,_).
+destruct H0 as (a,(Ha1,Ha2)); [ intuition |].
+exists a; intuition.
+unfold eqb; destruct (eq_dec x a); auto.
+rewrite <- H.
+rewrite H0.
+destruct H1 as (H1,_).
+destruct H1 as (a,(Ha1,Ha2)); [intuition|].
+exists a; intuition.
+unfold eqb in *; destruct (eq_dec x a); auto; discriminate.
+Qed.
+
+Variable f : elt->bool.
+
+Lemma filter_b : Proper (E.eq==>Logic.eq) f -> mem x (filter f s) = mem x s && f x.
+Proof.
+intros.
+generalize (mem_iff (filter f s) x)(mem_iff s x)(filter_iff s x H).
+destruct (mem x s); destruct (mem x (filter f s)); destruct (f x); simpl; intuition.
+Qed.
+
+Lemma for_all_b : Proper (E.eq==>Logic.eq) f ->
+ for_all f s = forallb f (elements s).
+Proof.
+intros.
+generalize (forallb_forall f (elements s))(for_all_iff s H)(elements_iff s).
+unfold For_all.
+destruct (forallb f (elements s)); destruct (for_all f s); auto; intros.
+rewrite <- H1; intros.
+destruct H0 as (H0,_).
+rewrite (H2 x0) in H3.
+rewrite (InA_alt E.eq x0 (elements s)) in H3.
+destruct H3 as (a,(Ha1,Ha2)).
+rewrite (H _ _ Ha1).
+apply H0; auto.
+symmetry.
+rewrite H0; intros.
+destruct H1 as (_,H1).
+apply H1; auto.
+rewrite H2.
+rewrite InA_alt; eauto.
+Qed.
+
+Lemma exists_b : Proper (E.eq==>Logic.eq) f ->
+ exists_ f s = existsb f (elements s).
+Proof.
+intros.
+generalize (existsb_exists f (elements s))(exists_iff s H)(elements_iff s).
+unfold Exists.
+destruct (existsb f (elements s)); destruct (exists_ f s); auto; intros.
+rewrite <- H1; intros.
+destruct H0 as (H0,_).
+destruct H0 as (a,(Ha1,Ha2)); auto.
+exists a; split; auto.
+rewrite H2; rewrite InA_alt; eauto.
+symmetry.
+rewrite H0.
+destruct H1 as (_,H1).
+destruct H1 as (a,(Ha1,Ha2)); auto.
+rewrite (H2 a) in Ha1.
+rewrite (InA_alt E.eq a (elements s)) in Ha1.
+destruct Ha1 as (b,(Hb1,Hb2)).
+exists b; auto.
+rewrite <- (H _ _ Hb1); auto.
+Qed.
+
+End BoolSpec.
+
+(** * Declarations of morphisms with respects to [E.eq] and [Equal] *)
+
+Instance In_m : Proper (E.eq==>Equal==>iff) In.
+Proof.
+unfold Equal; intros x y H s s' H0.
+rewrite (In_eq_iff s H); auto.
+Qed.
+
+Instance Empty_m : Proper (Equal==>iff) Empty.
+Proof.
+repeat red; unfold Empty; intros s s' E.
+setoid_rewrite E; auto.
+Qed.
+
+Instance is_empty_m : Proper (Equal==>Logic.eq) is_empty.
+Proof.
+intros s s' H.
+generalize (is_empty_iff s). rewrite H at 1. rewrite is_empty_iff.
+destruct (is_empty s); destruct (is_empty s'); intuition.
+Qed.
+
+Instance mem_m : Proper (E.eq==>Equal==>Logic.eq) mem.
+Proof.
+intros x x' Hx s s' Hs.
+generalize (mem_iff s x). rewrite Hs, Hx at 1; rewrite mem_iff.
+destruct (mem x s); destruct (mem x' s'); intuition.
+Qed.
+
+Instance singleton_m : Proper (E.eq==>Equal) singleton.
+Proof.
+intros x y H a.
+rewrite !singleton_iff; split; intros; etransitivity; eauto.
+Qed.
+
+Instance add_m : Proper (E.eq==>Equal==>Equal) add.
+Proof.
+intros x x' Hx s s' Hs a. rewrite !add_iff, Hx, Hs; intuition.
+Qed.
+
+Instance remove_m : Proper (E.eq==>Equal==>Equal) remove.
+Proof.
+intros x x' Hx s s' Hs a. rewrite !remove_iff, Hx, Hs; intuition.
+Qed.
+
+Instance union_m : Proper (Equal==>Equal==>Equal) union.
+Proof.
+intros s1 s1' Hs1 s2 s2' Hs2 a. rewrite !union_iff, Hs1, Hs2; intuition.
+Qed.
+
+Instance inter_m : Proper (Equal==>Equal==>Equal) inter.
+Proof.
+intros s1 s1' Hs1 s2 s2' Hs2 a. rewrite !inter_iff, Hs1, Hs2; intuition.
+Qed.
+
+Instance diff_m : Proper (Equal==>Equal==>Equal) diff.
+Proof.
+intros s1 s1' Hs1 s2 s2' Hs2 a. rewrite !diff_iff, Hs1, Hs2; intuition.
+Qed.
+
+Instance Subset_m : Proper (Equal==>Equal==>iff) Subset.
+Proof.
+unfold Equal, Subset; firstorder.
+Qed.
+
+Instance subset_m : Proper (Equal==>Equal==>Logic.eq) subset.
+Proof.
+intros s1 s1' Hs1 s2 s2' Hs2.
+generalize (subset_iff s1 s2). rewrite Hs1, Hs2 at 1. rewrite subset_iff.
+destruct (subset s1 s2); destruct (subset s1' s2'); intuition.
+Qed.
+
+Instance equal_m : Proper (Equal==>Equal==>Logic.eq) equal.
+Proof.
+intros s1 s1' Hs1 s2 s2' Hs2.
+generalize (equal_iff s1 s2). rewrite Hs1,Hs2 at 1. rewrite equal_iff.
+destruct (equal s1 s2); destruct (equal s1' s2'); intuition.
+Qed.
+
+Instance SubsetSetoid : PreOrder Subset. (* reflexive + transitive *)
+Proof. firstorder. Qed.
+
+Definition Subset_refl := @PreOrder_Reflexive _ _ SubsetSetoid.
+Definition Subset_trans := @PreOrder_Transitive _ _ SubsetSetoid.
+
+Instance In_s_m : Morphisms.Proper (E.eq ==> Subset ++> impl) In | 1.
+Proof.
+ simpl_relation. eauto with set.
+Qed.
+
+Instance Empty_s_m : Proper (Subset-->impl) Empty.
+Proof. firstorder. Qed.
+
+Instance add_s_m : Proper (E.eq==>Subset++>Subset) add.
+Proof.
+intros x x' Hx s s' Hs a. rewrite !add_iff, Hx; intuition.
+Qed.
+
+Instance remove_s_m : Proper (E.eq==>Subset++>Subset) remove.
+Proof.
+intros x x' Hx s s' Hs a. rewrite !remove_iff, Hx; intuition.
+Qed.
+
+Instance union_s_m : Proper (Subset++>Subset++>Subset) union.
+Proof.
+intros s1 s1' Hs1 s2 s2' Hs2 a. rewrite !union_iff, Hs1, Hs2; intuition.
+Qed.
+
+Instance inter_s_m : Proper (Subset++>Subset++>Subset) inter.
+Proof.
+intros s1 s1' Hs1 s2 s2' Hs2 a. rewrite !inter_iff, Hs1, Hs2; intuition.
+Qed.
+
+Instance diff_s_m : Proper (Subset++>Subset-->Subset) diff.
+Proof.
+intros s1 s1' Hs1 s2 s2' Hs2 a. rewrite !diff_iff, Hs1, Hs2; intuition.
+Qed.
+
+
+(* [fold], [filter], [for_all], [exists_] and [partition] requires
+ some knowledge on [f] in order to be known as morphisms. *)
+
+Instance filter_equal `(Proper _ (E.eq==>Logic.eq) f) :
+ Proper (Equal==>Equal) (filter f).
+Proof.
+intros f Hf s s' Hs a. rewrite !filter_iff, Hs by auto; intuition.
+Qed.
+
+Instance filter_subset `(Proper _ (E.eq==>Logic.eq) f) :
+ Proper (Subset==>Subset) (filter f).
+Proof.
+intros f Hf s s' Hs a. rewrite !filter_iff, Hs by auto; intuition.
+Qed.
+
+Lemma filter_ext : forall f f', Proper (E.eq==>Logic.eq) f -> (forall x, f x = f' x) ->
+ forall s s', s[=]s' -> filter f s [=] filter f' s'.
+Proof.
+intros f f' Hf Hff' s s' Hss' x. rewrite 2 filter_iff; auto.
+rewrite Hff', Hss'; intuition.
+red; red; intros; rewrite <- 2 Hff'; auto.
+Qed.
+
+(* For [elements], [min_elt], [max_elt] and [choose], we would need setoid
+ structures on [list elt] and [option elt]. *)
+
+(* Later:
+Add Morphism cardinal ; cardinal_m.
+*)
+
+End WFactsOn.
+
+(** Now comes variants for self-contained weak sets and for full sets.
+ For these variants, only one argument is necessary. Thanks to
+ the subtyping [WS<=S], the [Facts] functor which is meant to be
+ used on modules [(M:S)] can simply be an alias of [WFacts]. *)
+
+Module WFacts (M:WSets) := WFactsOn M.E M.
+Module Facts := WFacts.
diff --git a/theories/MSets/MSetInterface.v b/theories/MSets/MSetInterface.v
new file mode 100644
index 0000000000..630da63028
--- /dev/null
+++ b/theories/MSets/MSetInterface.v
@@ -0,0 +1,944 @@
+(***********************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
+(* \VV/ *************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(***********************************************************************)
+
+(* $Id$ *)
+
+(** * Finite set library *)
+
+(** Set interfaces, inspired by the one of Ocaml. When compared with
+ Ocaml, the main differences are:
+ - the lack of [iter] function, useless since Coq is purely functional
+ - the use of [option] types instead of [Not_found] exceptions
+ - the use of [nat] instead of [int] for the [cardinal] function
+
+ Several variants of the set interfaces are available:
+ - [WSetsOn] : functorial signature for weak sets
+ - [WSets] : self-contained version of [WSets]
+ - [SetsOn] : functorial signature for ordered sets
+ - [Sets] : self-contained version of [Sets]
+ - [WRawSets] : a signature for weak sets that may be ill-formed
+ - [RawSets] : same for ordered sets
+
+ If unsure, [S = Sets] is probably what you're looking for: most other
+ signatures are subsets of it, while [Sets] can be obtained from
+ [RawSets] via the use of a subset type (see (W)Raw2Sets below).
+*)
+
+Require Export Bool OrderedType2 DecidableType2.
+Set Implicit Arguments.
+Unset Strict Implicit.
+
+Module Type WOps (E : DecidableType).
+
+ Definition elt := E.t.
+
+ Parameter t : Type. (** the abstract type of sets *)
+
+ Parameter empty : t.
+ (** The empty set. *)
+
+ Parameter is_empty : t -> bool.
+ (** Test whether a set is empty or not. *)
+
+ Parameter mem : elt -> t -> bool.
+ (** [mem x s] tests whether [x] belongs to the set [s]. *)
+
+ Parameter add : elt -> t -> t.
+ (** [add x s] returns a set containing all elements of [s],
+ plus [x]. If [x] was already in [s], [s] is returned unchanged. *)
+
+ Parameter singleton : elt -> t.
+ (** [singleton x] returns the one-element set containing only [x]. *)
+
+ Parameter remove : elt -> t -> t.
+ (** [remove x s] returns a set containing all elements of [s],
+ except [x]. If [x] was not in [s], [s] is returned unchanged. *)
+
+ Parameter union : t -> t -> t.
+ (** Set union. *)
+
+ Parameter inter : t -> t -> t.
+ (** Set intersection. *)
+
+ Parameter diff : t -> t -> t.
+ (** Set difference. *)
+
+ Parameter equal : t -> t -> bool.
+ (** [equal s1 s2] tests whether the sets [s1] and [s2] are
+ equal, that is, contain equal elements. *)
+
+ Parameter subset : t -> t -> bool.
+ (** [subset s1 s2] tests whether the set [s1] is a subset of
+ the set [s2]. *)
+
+ Parameter fold : forall A : Type, (elt -> A -> A) -> t -> A -> A.
+ (** [fold f s a] computes [(f xN ... (f x2 (f x1 a))...)],
+ where [x1 ... xN] are the elements of [s].
+ The order in which elements of [s] are presented to [f] is
+ unspecified. *)
+
+ Parameter for_all : (elt -> bool) -> t -> bool.
+ (** [for_all p s] checks if all elements of the set
+ satisfy the predicate [p]. *)
+
+ Parameter exists_ : (elt -> bool) -> t -> bool.
+ (** [exists p s] checks if at least one element of
+ the set satisfies the predicate [p]. *)
+
+ Parameter filter : (elt -> bool) -> t -> t.
+ (** [filter p s] returns the set of all elements in [s]
+ that satisfy predicate [p]. *)
+
+ Parameter partition : (elt -> bool) -> t -> t * t.
+ (** [partition p s] returns a pair of sets [(s1, s2)], where
+ [s1] is the set of all the elements of [s] that satisfy the
+ predicate [p], and [s2] is the set of all the elements of
+ [s] that do not satisfy [p]. *)
+
+ Parameter cardinal : t -> nat.
+ (** Return the number of elements of a set. *)
+
+ Parameter elements : t -> list elt.
+ (** Return the list of all elements of the given set, in any order. *)
+
+ Parameter choose : t -> option elt.
+ (** Return one element of the given set, or [None] if
+ the set is empty. Which element is chosen is unspecified.
+ Equal sets could return different elements. *)
+
+End WOps.
+
+
+
+
+(** ** Functorial signature for weak sets
+
+ Weak sets are sets without ordering on base elements, only
+ a decidable equality. *)
+
+Module Type WSetsOn (E : DecidableType).
+ (** First, we ask for all the functions *)
+ Include Type WOps E.
+
+ (** Logical predicates *)
+ Parameter In : elt -> t -> Prop.
+ Instance In_compat : Proper (E.eq==>eq==>iff) In.
+
+ Definition Equal s s' := forall a : elt, In a s <-> In a s'.
+ Definition Subset s s' := forall a : elt, In a s -> In a s'.
+ Definition Empty s := forall a : elt, ~ In a s.
+ Definition For_all (P : elt -> Prop) s := forall x, In x s -> P x.
+ Definition Exists (P : elt -> Prop) s := exists x, In x s /\ P x.
+
+ Notation "s [=] t" := (Equal s t) (at level 70, no associativity).
+ Notation "s [<=] t" := (Subset s t) (at level 70, no associativity).
+
+ Definition eq : t -> t -> Prop := Equal.
+ Instance eq_equiv : Equivalence eq. (* obvious, for subtyping only *)
+ Parameter eq_dec : forall s s', { eq s s' } + { ~ eq s s' }.
+
+ (** Specifications of set operators *)
+
+ Section Spec.
+ Variable s s': t.
+ Variable x y : elt.
+ Variable f : elt -> bool.
+ Notation compatb := (Proper (E.eq==>Logic.eq)) (only parsing).
+
+ Parameter mem_spec : mem x s = true <-> In x s.
+ Parameter equal_spec : equal s s' = true <-> s[=]s'.
+ Parameter subset_spec : subset s s' = true <-> s[<=]s'.
+ Parameter empty_spec : Empty empty.
+ Parameter is_empty_spec : is_empty s = true <-> Empty s.
+ Parameter add_spec : In y (add x s) <-> E.eq y x \/ In y s.
+ Parameter remove_spec : In y (remove x s) <-> In y s /\ ~E.eq y x.
+ Parameter singleton_spec : In y (singleton x) <-> E.eq y x.
+ Parameter union_spec : In x (union s s') <-> In x s \/ In x s'.
+ Parameter inter_spec : In x (inter s s') <-> In x s /\ In x s'.
+ Parameter diff_spec : In x (diff s s') <-> In x s /\ ~In x s'.
+ Parameter fold_spec : forall (A : Type) (i : A) (f : elt -> A -> A),
+ fold f s i = fold_left (flip f) (elements s) i.
+ Parameter cardinal_spec : cardinal s = length (elements s).
+ Parameter filter_spec : compatb f ->
+ (In x (filter f s) <-> In x s /\ f x = true).
+ Parameter for_all_spec : compatb f ->
+ (for_all f s = true <-> For_all (fun x => f x = true) s).
+ Parameter exists_spec : compatb f ->
+ (exists_ f s = true <-> Exists (fun x => f x = true) s).
+ Parameter partition_spec1 : compatb f ->
+ fst (partition f s) [=] filter f s.
+ Parameter partition_spec2 : compatb f ->
+ snd (partition f s) [=] filter (fun x => negb (f x)) s.
+ Parameter elements_spec1 : InA E.eq x (elements s) <-> In x s.
+ (** When compared with ordered sets, here comes the only
+ property that is really weaker: *)
+ Parameter elements_spec2w : NoDupA E.eq (elements s).
+ Parameter choose_spec1 : choose s = Some x -> In x s.
+ Parameter choose_spec2 : choose s = None -> Empty s.
+
+ End Spec.
+
+End WSetsOn.
+
+(** ** Static signature for weak sets
+
+ Similar to the functorial signature [WSetsOn], except that the
+ module [E] of base elements is incorporated in the signature. *)
+
+Module Type WSets.
+ Declare Module E : DecidableType.
+ Include Type WSetsOn E.
+End WSets.
+
+(** ** Functorial signature for sets on ordered elements
+
+ Based on [WSetsOn], plus ordering on sets and [min_elt] and [max_elt]
+ and some stronger specifications for other functions. *)
+
+Module Type SetsOn (E : OrderedType).
+ Include Type WSetsOn E.
+
+ Parameter compare : t -> t -> comparison.
+ (** Total ordering between sets. Can be used as the ordering function
+ for doing sets of sets. *)
+
+ Parameter min_elt : t -> option elt.
+ (** Return the smallest element of the given set
+ (with respect to the [E.compare] ordering),
+ or [None] if the set is empty. *)
+
+ Parameter max_elt : t -> option elt.
+ (** Same as [min_elt], but returns the largest element of the
+ given set. *)
+
+ Parameter lt : t -> t -> Prop.
+
+ (** Specification of [lt] *)
+ Instance lt_strorder : StrictOrder lt.
+ Instance lt_compat : Proper (eq==>eq==>iff) lt.
+
+ Section Spec.
+ Variable s s': t.
+ Variable x y : elt.
+
+ Parameter compare_spec : Cmp eq lt (compare s s') s s'.
+
+ (** Additional specification of [elements] *)
+ Parameter elements_spec2 : sort E.lt (elements s).
+
+ (** Remark: since [fold] is specified via [elements], this stronger
+ specification of [elements] has an indirect impact on [fold],
+ which can now be proved to receive elements in increasing order.
+ *)
+
+ Parameter min_elt_spec1 : min_elt s = Some x -> In x s.
+ Parameter min_elt_spec2 : min_elt s = Some x -> In y s -> ~ E.lt y x.
+ Parameter min_elt_spec3 : min_elt s = None -> Empty s.
+
+ Parameter max_elt_spec1 : max_elt s = Some x -> In x s.
+ Parameter max_elt_spec2 : max_elt s = Some x -> In y s -> ~ E.lt x y.
+ Parameter max_elt_spec3 : max_elt s = None -> Empty s.
+
+ (** Additional specification of [choose] *)
+ Parameter choose_spec3 : choose s = Some x -> choose s' = Some y ->
+ Equal s s' -> E.eq x y.
+
+ End Spec.
+
+End SetsOn.
+
+
+(** ** Static signature for sets on ordered elements
+
+ Similar to the functorial signature [SetsOn], except that the
+ module [E] of base elements is incorporated in the signature. *)
+
+Module Type Sets.
+ Declare Module E : OrderedType.
+ Include Type SetsOn E.
+End Sets.
+
+Module Type S := Sets.
+
+
+(** ** Some subtyping tests
+<<
+WSetsOn ---> WSets
+ | |
+ | |
+ V V
+SetsOn ---> Sets
+
+Module S_WS (M : Sets) <: WSets := M.
+Module Sfun_WSfun (E:OrderedType)(M : SetsOn E) <: WSetsOn E := M.
+Module S_Sfun (M : Sets) <: SetsOn M.E := M.
+Module WS_WSfun (M : WSets) <: WSetsOn M.E := M.
+>>
+*)
+
+
+
+(** ** Signatures for set representations with ill-formed values.
+
+ Motivation:
+
+ For many implementation of finite sets (AVL trees, sorted
+ lists, lists without duplicates), we use the same two-layer
+ approach:
+
+ - A first module deals with the datatype (eg. list or tree) without
+ any restriction on the values we consider. In this module (named
+ "Raw" in the past), some results are stated under the assumption
+ that some invariant (e.g. sortedness) holds for the input sets. We
+ also prove that this invariant is preserved by set operators.
+
+ - A second module implements the exact Sets interface by
+ using a subtype, for instance [{ l : list A | sorted l }].
+ This module is a mere wrapper around the first Raw module.
+
+ With the interfaces below, we give some respectability to
+ the "Raw" modules. This allows the interested users to directly
+ access them via the interfaces. Even better, we can build once
+ and for all a functor doing the transition between Raw and usual Sets.
+
+ Description:
+
+ The type [t] of sets may contain ill-formed values on which our
+ set operators may give wrong answers. In particular, [mem]
+ may not see a element in a ill-formed set (think for instance of a
+ unsorted list being given to an optimized [mem] that stops
+ its search as soon as a strictly larger element is encountered).
+
+ Unlike optimized operators, the [In] predicate is supposed to
+ always be correct, even on ill-formed sets. Same for [Equal] and
+ other logical predicates.
+
+ A predicate parameter [Ok] is used to discriminate between
+ well-formed and ill-formed values. Some lemmas hold only on sets
+ validating [Ok]. This predicate [Ok] is required to be
+ preserved by set operators. Moreover, a boolean function [isok]
+ should exist for identifying (at least some of) the well-formed sets.
+
+*)
+
+
+Module Type WRawSets (E : DecidableType).
+ (** First, we ask for all the functions *)
+ Include Type WOps E.
+
+ (** Is a set well-formed or ill-formed ? *)
+
+ Parameter IsOk : t -> Prop.
+ Class Ok (s:t) : Prop := { ok : IsOk s }.
+
+ (** In order to be able to validate (at least some) particular sets as
+ well-formed, we ask for a boolean function for (semi-)deciding
+ predicate [Ok]. If [Ok] isn't decidable, [isok] may be the
+ always-false function. *)
+ Parameter isok : t -> bool.
+ Instance isok_Ok `(isok s = true) : Ok s | 10.
+
+ (** Logical predicates *)
+ Parameter In : elt -> t -> Prop.
+ Instance In_compat : Proper (E.eq==>eq==>iff) In.
+
+ Definition Equal s s' := forall a : elt, In a s <-> In a s'.
+ Definition Subset s s' := forall a : elt, In a s -> In a s'.
+ Definition Empty s := forall a : elt, ~ In a s.
+ Definition For_all (P : elt -> Prop) s := forall x, In x s -> P x.
+ Definition Exists (P : elt -> Prop) s := exists x, In x s /\ P x.
+
+ Notation "s [=] t" := (Equal s t) (at level 70, no associativity).
+ Notation "s [<=] t" := (Subset s t) (at level 70, no associativity).
+
+ Definition eq : t -> t -> Prop := Equal.
+ Instance eq_equiv : Equivalence eq.
+
+ (** First, all operations are compatible with the well-formed predicate. *)
+
+ Instance empty_ok : Ok empty.
+ Instance add_ok s x `(Ok s) : Ok (add x s).
+ Instance remove_ok s x `(Ok s) : Ok (remove x s).
+ Instance singleton_ok x : Ok (singleton x).
+ Instance union_ok s s' `(Ok s, Ok s') : Ok (union s s').
+ Instance inter_ok s s' `(Ok s, Ok s') : Ok (inter s s').
+ Instance diff_ok s s' `(Ok s, Ok s') : Ok (diff s s').
+ Instance filter_ok s f `(Ok s) : Ok (filter f s).
+ Instance partition_ok1 s f `(Ok s) : Ok (fst (partition f s)).
+ Instance partition_ok2 s f `(Ok s) : Ok (snd (partition f s)).
+
+ (** Now, the specifications, with constraints on the input sets. *)
+
+ Section Spec.
+ Variable s s': t.
+ Variable x y : elt.
+ Variable f : elt -> bool.
+ Notation compatb := (Proper (E.eq==>Logic.eq)) (only parsing).
+
+ Parameter mem_spec : forall `{Ok s}, mem x s = true <-> In x s.
+ Parameter equal_spec : forall `{Ok s, Ok s'},
+ equal s s' = true <-> s[=]s'.
+ Parameter subset_spec : forall `{Ok s, Ok s'},
+ subset s s' = true <-> s[<=]s'.
+ Parameter empty_spec : Empty empty.
+ Parameter is_empty_spec : is_empty s = true <-> Empty s.
+ Parameter add_spec : forall `{Ok s},
+ In y (add x s) <-> E.eq y x \/ In y s.
+ Parameter remove_spec : forall `{Ok s},
+ In y (remove x s) <-> In y s /\ ~E.eq y x.
+ Parameter singleton_spec : In y (singleton x) <-> E.eq y x.
+ Parameter union_spec : forall `{Ok s, Ok s'},
+ In x (union s s') <-> In x s \/ In x s'.
+ Parameter inter_spec : forall `{Ok s, Ok s'},
+ In x (inter s s') <-> In x s /\ In x s'.
+ Parameter diff_spec : forall `{Ok s, Ok s'},
+ In x (diff s s') <-> In x s /\ ~In x s'.
+ Parameter fold_spec : forall (A : Type) (i : A) (f : elt -> A -> A),
+ fold f s i = fold_left (flip f) (elements s) i.
+ Parameter cardinal_spec : forall `{Ok s},
+ cardinal s = length (elements s).
+ Parameter filter_spec : compatb f ->
+ (In x (filter f s) <-> In x s /\ f x = true).
+ Parameter for_all_spec : compatb f ->
+ (for_all f s = true <-> For_all (fun x => f x = true) s).
+ Parameter exists_spec : compatb f ->
+ (exists_ f s = true <-> Exists (fun x => f x = true) s).
+ Parameter partition_spec1 : compatb f ->
+ fst (partition f s) [=] filter f s.
+ Parameter partition_spec2 : compatb f ->
+ snd (partition f s) [=] filter (fun x => negb (f x)) s.
+ Parameter elements_spec1 : InA E.eq x (elements s) <-> In x s.
+ Parameter elements_spec2w : forall `{Ok s}, NoDupA E.eq (elements s).
+ Parameter choose_spec1 : choose s = Some x -> In x s.
+ Parameter choose_spec2 : choose s = None -> Empty s.
+
+ End Spec.
+
+(*
+ BUG ?! When the Instance *_ok were under a section,
+ this re-export was mandatory !! BUG in Global Instance ?
+ Hint Resolve empty_ok add_ok remove_ok union_ok inter_ok
+ diff_ok singleton_ok filter_ok partition_ok1 partition_ok2
+ : typeclass_instances.
+*)
+
+End WRawSets.
+
+(** From weak raw sets to weak usual sets *)
+
+Module WRaw2Sets (E:DecidableType)(M:WRawSets E) <: WSets with Module E := E.
+
+ Module E := E.
+ Definition elt := E.t.
+
+ Record t_ := Mkt {this :> M.t; is_ok : M.Ok this}.
+ Definition t := t_.
+ Implicit Arguments Mkt [ [is_ok] ].
+ Hint Resolve is_ok : typeclass_instances.
+
+ Definition In x s := M.In x s.(this).
+ Definition Equal s s' := forall a : elt, In a s <-> In a s'.
+ Definition Subset s s' := forall a : elt, In a s -> In a s'.
+ Definition Empty s := forall a : elt, ~ In a s.
+ Definition For_all (P : elt -> Prop) s := forall x, In x s -> P x.
+ Definition Exists (P : elt -> Prop) s := exists x, In x s /\ P x.
+
+ Definition mem x (s : t) := M.mem x s.
+ Definition add x (s : t) := Mkt (M.add x s).
+ Definition remove x (s : t) := Mkt (M.remove x s).
+ Definition singleton x := Mkt (M.singleton x).
+ Definition union (s s' : t) := Mkt (M.union s s').
+ Definition inter (s s' : t) := Mkt (M.inter s s').
+ Definition diff (s s' : t) := Mkt (M.diff s s').
+ Definition equal (s s' : t) := M.equal s s'.
+ Definition subset (s s' : t) := M.subset s s'.
+ Definition empty := Mkt M.empty.
+ Definition is_empty (s : t) := M.is_empty s.
+ Definition elements (s : t) := M.elements s.
+ Definition choose (s : t) := M.choose s.
+ Definition fold (A : Type) f (s : t) : A -> A := M.fold f s.
+ Definition cardinal (s : t) := M.cardinal s.
+ Definition filter f (s : t) := Mkt (M.filter f s).
+ Definition for_all f (s : t) := M.for_all f s.
+ Definition exists_ f (s : t) := M.exists_ f s.
+ Definition partition f (s : t) :=
+ let p := M.partition f s in (Mkt (fst p), Mkt (snd p)).
+
+ Instance In_compat : Proper (E.eq==>eq==>iff) In.
+ Proof. repeat red. intros; apply M.In_compat; congruence. Qed.
+
+ Definition eq : t -> t -> Prop := Equal.
+
+ Instance eq_equiv : Equivalence eq.
+ Proof. firstorder. Qed.
+
+ Definition eq_dec : forall (s s':t), { eq s s' }+{ ~eq s s' }.
+ Proof.
+ intros (s,Hs) (s',Hs').
+ change ({M.Equal s s'}+{~M.Equal s s'}).
+ destruct (M.equal s s') as [ ]_eqn:H; [left|right];
+ rewrite <- M.equal_spec; congruence.
+ Defined.
+
+
+ Section Spec.
+ Variable s s' : t.
+ Variable x y : elt.
+ Variable f : elt -> bool.
+ Notation compatb := (Proper (E.eq==>Logic.eq)) (only parsing).
+
+ Lemma mem_spec : mem x s = true <-> In x s.
+ Proof. exact (@M.mem_spec _ _ _). Qed.
+ Lemma equal_spec : equal s s' = true <-> Equal s s'.
+ Proof. exact (@M.equal_spec _ _ _ _). Qed.
+ Lemma subset_spec : subset s s' = true <-> Subset s s'.
+ Proof. exact (@M.subset_spec _ _ _ _). Qed.
+ Lemma empty_spec : Empty empty.
+ Proof. exact M.empty_spec. Qed.
+ Lemma is_empty_spec : is_empty s = true <-> Empty s.
+ Proof. exact (@M.is_empty_spec _). Qed.
+ Lemma add_spec : In y (add x s) <-> E.eq y x \/ In y s.
+ Proof. exact (@M.add_spec _ _ _ _). Qed.
+ Lemma remove_spec : In y (remove x s) <-> In y s /\ ~E.eq y x.
+ Proof. exact (@M.remove_spec _ _ _ _). Qed.
+ Lemma singleton_spec : In y (singleton x) <-> E.eq y x.
+ Proof. exact (@M.singleton_spec _ _). Qed.
+ Lemma union_spec : In x (union s s') <-> In x s \/ In x s'.
+ Proof. exact (@M.union_spec _ _ _ _ _). Qed.
+ Lemma inter_spec : In x (inter s s') <-> In x s /\ In x s'.
+ Proof. exact (@M.inter_spec _ _ _ _ _). Qed.
+ Lemma diff_spec : In x (diff s s') <-> In x s /\ ~In x s'.
+ Proof. exact (@M.diff_spec _ _ _ _ _). Qed.
+ Lemma fold_spec : forall (A : Type) (i : A) (f : elt -> A -> A),
+ fold f s i = fold_left (fun a e => f e a) (elements s) i.
+ Proof. exact (@M.fold_spec _). Qed.
+ Lemma cardinal_spec : cardinal s = length (elements s).
+ Proof. exact (@M.cardinal_spec s _). Qed.
+ Lemma filter_spec : compatb f ->
+ (In x (filter f s) <-> In x s /\ f x = true).
+ Proof. exact (@M.filter_spec _ _ _). Qed.
+ Lemma for_all_spec : compatb f ->
+ (for_all f s = true <-> For_all (fun x => f x = true) s).
+ Proof. exact (@M.for_all_spec _ _). Qed.
+ Lemma exists_spec : compatb f ->
+ (exists_ f s = true <-> Exists (fun x => f x = true) s).
+ Proof. exact (@M.exists_spec _ _). Qed.
+ Lemma partition_spec1 : compatb f -> Equal (fst (partition f s)) (filter f s).
+ Proof. exact (@M.partition_spec1 _ _). Qed.
+ Lemma partition_spec2 : compatb f ->
+ Equal (snd (partition f s)) (filter (fun x => negb (f x)) s).
+ Proof. exact (@M.partition_spec2 _ _). Qed.
+ Lemma elements_spec1 : InA E.eq x (elements s) <-> In x s.
+ Proof. exact (@M.elements_spec1 _ _). Qed.
+ Lemma elements_spec2w : NoDupA E.eq (elements s).
+ Proof. exact (@M.elements_spec2w _ _). Qed.
+ Lemma choose_spec1 : choose s = Some x -> In x s.
+ Proof. exact (@M.choose_spec1 _ _). Qed.
+ Lemma choose_spec2 : choose s = None -> Empty s.
+ Proof. exact (@M.choose_spec2 _). Qed.
+
+ End Spec.
+
+End WRaw2Sets.
+
+(** Same approach for ordered sets *)
+
+Module Type RawSets (E : OrderedType).
+ Include Type WRawSets E.
+
+ Parameter compare : t -> t -> comparison.
+ Parameter min_elt : t -> option elt.
+ Parameter max_elt : t -> option elt.
+ Parameter lt : t -> t -> Prop.
+
+ (** Specification of [lt] *)
+ Instance lt_strorder : StrictOrder lt.
+ Instance lt_compat : Proper (eq==>eq==>iff) lt.
+
+ Section Spec.
+ Variable s s': t.
+ Variable x y : elt.
+
+ (** Specification of [compare] *)
+ Parameter compare_spec : forall `{Ok s, Ok s'}, Cmp eq lt (compare s s') s s'.
+
+ (** Additional specification of [elements] *)
+ Parameter elements_spec2 : forall `{Ok s}, sort E.lt (elements s).
+
+ (** Specification of [min_elt] *)
+ Parameter min_elt_spec1 : min_elt s = Some x -> In x s.
+ Parameter min_elt_spec2 : forall `{Ok s}, min_elt s = Some x -> In y s -> ~ E.lt y x.
+ Parameter min_elt_spec3 : min_elt s = None -> Empty s.
+
+ (** Specification of [max_elt] *)
+ Parameter max_elt_spec1 : max_elt s = Some x -> In x s.
+ Parameter max_elt_spec2 : forall `{Ok s}, max_elt s = Some x -> In y s -> ~ E.lt x y.
+ Parameter max_elt_spec3 : max_elt s = None -> Empty s.
+
+ (** Additional specification of [choose] *)
+ Parameter choose_spec3 : forall `{Ok s, Ok s'},
+ choose s = Some x -> choose s' = Some y -> Equal s s' -> E.eq x y.
+
+ End Spec.
+
+End RawSets.
+
+(** From Raw to usual sets *)
+
+Module Raw2Sets (O:OrderedType)(M:RawSets O) <: S with Module E := O.
+ Include WRaw2Sets O M.
+
+ Definition compare (s s':t) := M.compare s s'.
+ Definition min_elt (s:t) := M.min_elt s.
+ Definition max_elt (s:t) := M.max_elt s.
+ Definition lt (s s':t) := M.lt s s'.
+
+ (** Specification of [lt] *)
+ Instance lt_strorder : StrictOrder lt.
+ Proof.
+ unfold lt; split; repeat red.
+ intros s; eapply StrictOrder_Irreflexive; eauto.
+ intros s s' s''; eapply StrictOrder_Transitive; eauto.
+ Qed.
+
+ Instance lt_compat : Proper (eq==>eq==>iff) lt.
+ Proof.
+ repeat red. unfold eq, lt.
+ intros (s1,p1) (s2,p2) E (s1',p1') (s2',p2') E'; simpl.
+ change (M.eq s1 s2) in E.
+ change (M.eq s1' s2') in E'.
+ rewrite E,E'; intuition.
+ Qed.
+
+ Section Spec.
+ Variable s s' s'' : t.
+ Variable x y : elt.
+
+ Lemma compare_spec : Cmp eq lt (compare s s') s s'.
+ Proof.
+ generalize (@M.compare_spec s s' _ _).
+ unfold compare; destruct M.compare; auto.
+ Qed.
+
+ (** Additional specification of [elements] *)
+ Lemma elements_spec2 : sort O.lt (elements s).
+ Proof. exact (@M.elements_spec2 _ _). Qed.
+
+ (** Specification of [min_elt] *)
+ Lemma min_elt_spec1 : min_elt s = Some x -> In x s.
+ Proof. exact (@M.min_elt_spec1 _ _). Qed.
+ Lemma min_elt_spec2 : min_elt s = Some x -> In y s -> ~ O.lt y x.
+ Proof. exact (@M.min_elt_spec2 _ _ _ _). Qed.
+ Lemma min_elt_spec3 : min_elt s = None -> Empty s.
+ Proof. exact (@M.min_elt_spec3 _). Qed.
+
+ (** Specification of [max_elt] *)
+ Lemma max_elt_spec1 : max_elt s = Some x -> In x s.
+ Proof. exact (@M.max_elt_spec1 _ _). Qed.
+ Lemma max_elt_spec2 : max_elt s = Some x -> In y s -> ~ O.lt x y.
+ Proof. exact (@M.max_elt_spec2 _ _ _ _). Qed.
+ Lemma max_elt_spec3 : max_elt s = None -> Empty s.
+ Proof. exact (@M.max_elt_spec3 _). Qed.
+
+ (** Additional specification of [choose] *)
+ Lemma choose_spec3 :
+ choose s = Some x -> choose s' = Some y -> Equal s s' -> E.eq x y.
+ Proof. exact (@M.choose_spec3 _ _ _ _ _ _). Qed.
+
+ End Spec.
+
+End Raw2Sets.
+
+
+(** It is in fact possible to provide an ordering on sets with
+ very little information on them (more or less only the [In]
+ predicate). This generic build of ordering is in fact not
+ used for the moment, we rather use a simplier version
+ dedicated to sets-as-sorted-lists, see [MakeListOrdering].
+*)
+
+Module Type IN (O:OrderedType).
+ Parameter Inline t : Type.
+ Parameter Inline In : O.t -> t -> Prop.
+ Instance In_compat : Proper (O.eq==>eq==>iff) In.
+ Definition Equal s s' := forall x, In x s <-> In x s'.
+ Definition Empty s := forall x, ~In x s.
+End IN.
+
+Module MakeSetOrdering (O:OrderedType)(Import M:IN O).
+ Module Import MO := OrderedTypeFacts O.
+
+ Definition eq : t -> t -> Prop := Equal.
+
+ Instance eq_equiv : Equivalence eq.
+ Proof. firstorder. Qed.
+
+ Instance : Proper (O.eq==>eq==>iff) In.
+ Proof.
+ intros x x' Ex s s' Es. rewrite Ex. apply Es.
+ Qed.
+
+ Definition Below x s := forall y, In y s -> O.lt y x.
+ Definition Above x s := forall y, In y s -> O.lt x y.
+
+ Definition EquivBefore x s s' :=
+ forall y, O.lt y x -> (In y s <-> In y s').
+
+ Definition EmptyBetween x y s :=
+ forall z, In z s -> O.lt z y -> O.lt z x.
+
+ Definition lt s s' := exists x, EquivBefore x s s' /\
+ ((In x s' /\ Below x s) \/
+ (In x s /\ exists y, In y s' /\ O.lt x y /\ EmptyBetween x y s')).
+
+ Instance : Proper (O.eq==>eq==>eq==>iff) EquivBefore.
+ Proof.
+ unfold EquivBefore. intros x x' E s1 s1' E1 s2 s2' E2.
+ setoid_rewrite E; setoid_rewrite E1; setoid_rewrite E2; intuition.
+ Qed.
+
+ Instance : Proper (O.eq==>eq==>iff) Below.
+ Proof.
+ unfold Below. intros x x' Ex s s' Es.
+ setoid_rewrite Ex; setoid_rewrite Es; intuition.
+ Qed.
+
+ Instance : Proper (O.eq==>eq==>iff) Above.
+ Proof.
+ unfold Above. intros x x' Ex s s' Es.
+ setoid_rewrite Ex; setoid_rewrite Es; intuition.
+ Qed.
+
+ Instance : Proper (O.eq==>O.eq==>eq==>iff) EmptyBetween.
+ Proof.
+ unfold EmptyBetween. intros x x' Ex y y' Ey s s' Es.
+ setoid_rewrite Ex; setoid_rewrite Ey; setoid_rewrite Es; intuition.
+ Qed.
+
+ Instance lt_compat : Proper (eq==>eq==>iff) lt.
+ Proof.
+ unfold lt. intros s1 s1' E1 s2 s2' E2.
+ setoid_rewrite E1; setoid_rewrite E2; intuition.
+ Qed.
+
+ Instance lt_strorder : StrictOrder lt.
+ Proof.
+ split.
+ (* irreflexive *)
+ intros s (x & _ & [(IN,Em)|(IN & y & IN' & LT & Be)]).
+ specialize (Em x IN); order.
+ specialize (Be x IN LT); order.
+ (* transitive *)
+ intros s1 s2 s3 (x & EQ & [(IN,Pre)|(IN,Lex)])
+ (x' & EQ' & [(IN',Pre')|(IN',Lex')]).
+ (* 1) Pre / Pre --> Pre *)
+ assert (O.lt x x') by (specialize (Pre' x IN); auto).
+ exists x; split.
+ intros y Hy; rewrite <- (EQ' y); auto; order.
+ left; split; auto.
+ rewrite <- (EQ' x); auto.
+ (* 2) Pre / Lex *)
+ elim_compare x x'; intros Hxx'.
+ (* 2a) x=x' --> Pre *)
+ destruct Lex' as (y & INy & LT & Be).
+ exists y; split.
+ intros z Hz. split; intros INz.
+ specialize (Pre z INz). rewrite <- (EQ' z), <- (EQ z); auto; order.
+ specialize (Be z INz Hz). rewrite (EQ z), (EQ' z); auto; order.
+ left; split; auto.
+ intros z Hz. transitivity x; auto; order.
+ (* 2b) x<x' --> Pre *)
+ exists x; split.
+ intros z Hz. rewrite <- (EQ' z) by order; auto.
+ left; split; auto.
+ rewrite <- (EQ' x); auto.
+ (* 2c) x>x' --> Lex *)
+ exists x'; split.
+ intros z Hz. rewrite (EQ z) by order; auto.
+ right; split; auto.
+ rewrite (EQ x'); auto.
+ (* 3) Lex / Pre --> Lex *)
+ destruct Lex as (y & INy & LT & Be).
+ specialize (Pre' y INy).
+ exists x; split.
+ intros z Hz. rewrite <- (EQ' z) by order; auto.
+ right; split; auto.
+ exists y; repeat split; auto.
+ rewrite <- (EQ' y); auto.
+ intros z Hz LTz; apply Be; auto. rewrite (EQ' z); auto; order.
+ (* 4) Lex / Lex *)
+ elim_compare x x'; intros Hxx'.
+ (* 4a) x=x' --> impossible *)
+ destruct Lex as (y & INy & LT & Be).
+ rewrite Hxx' in LT; specialize (Be x' IN' LT); order.
+ (* 4b) x<x' --> Lex *)
+ exists x; split.
+ intros z Hz. rewrite <- (EQ' z) by order; auto.
+ right; split; auto.
+ destruct Lex as (y & INy & LT & Be).
+ elim_compare y x'; intros Hyx'.
+ (* 4ba *)
+ destruct Lex' as (y' & Iny' & LT' & Be').
+ exists y'; repeat split; auto. order.
+ intros z Hz LTz. specialize (Be' z Hz LTz).
+ rewrite <- (EQ' z) in Hz by order.
+ apply Be; auto. order.
+ (* 4bb *)
+ exists y; repeat split; auto.
+ rewrite <- (EQ' y); auto.
+ intros z Hz LTz. apply Be; auto. rewrite (EQ' z); auto; order.
+ (* 4bc*)
+ specialize (Be x' IN' Hyx'); order.
+ (* 4c) x>x' --> Lex *)
+ exists x'; split.
+ intros z Hz. rewrite (EQ z) by order; auto.
+ right; split; auto.
+ rewrite (EQ x'); auto.
+ Qed.
+
+ Lemma lt_empty_r : forall s s', Empty s' -> ~ lt s s'.
+ Proof.
+ intros s s' Hs' (x & _ & [(IN,_)|(_ & y & IN & _)]).
+ elim (Hs' x IN).
+ elim (Hs' y IN).
+ Qed.
+
+ Definition Add x s s' := forall y, In y s' <-> O.eq x y \/ In y s.
+
+ Lemma lt_empty_l : forall x s1 s2 s2',
+ Empty s1 -> Above x s2 -> Add x s2 s2' -> lt s1 s2'.
+ Proof.
+ intros x s1 s2 s2' Em Ab Ad.
+ exists x; split.
+ intros y Hy; split; intros IN.
+ elim (Em y IN).
+ rewrite (Ad y) in IN; destruct IN as [EQ|IN]. order.
+ specialize (Ab y IN). order.
+ left; split.
+ rewrite (Ad x); auto.
+ intros y Hy. elim (Em y Hy).
+ Qed.
+
+ Lemma lt_add_lt : forall x1 x2 s1 s1' s2 s2',
+ Above x1 s1 -> Above x2 s2 -> Add x1 s1 s1' -> Add x2 s2 s2' ->
+ O.lt x1 x2 -> lt s1' s2'.
+ Proof.
+ intros x1 x2 s1 s1' s2 s2' Ab1 Ab2 Ad1 Ad2 LT.
+ exists x1; split; [ | right; split]; auto.
+ intros y Hy. rewrite (Ad1 y), (Ad2 y).
+ split; intros [U|U]; try order.
+ specialize (Ab1 y U). order.
+ specialize (Ab2 y U). order.
+ rewrite (Ad1 x1); auto.
+ exists x2; repeat split; auto.
+ rewrite (Ad2 x2); auto.
+ intros y. rewrite (Ad2 y). intros [U|U]. order.
+ specialize (Ab2 y U). order.
+ Qed.
+
+ Lemma lt_add_eq : forall x1 x2 s1 s1' s2 s2',
+ Above x1 s1 -> Above x2 s2 -> Add x1 s1 s1' -> Add x2 s2 s2' ->
+ O.eq x1 x2 -> lt s1 s2 -> lt s1' s2'.
+ Proof.
+ intros x1 x2 s1 s1' s2 s2' Ab1 Ab2 Ad1 Ad2 Hx (x & EQ & Disj).
+ assert (O.lt x1 x).
+ destruct Disj as [(IN,_)|(IN,_)]; auto. rewrite Hx; auto.
+ exists x; split.
+ intros z Hz. rewrite (Ad1 z), (Ad2 z).
+ split; intros [U|U]; try order.
+ right; rewrite <- (EQ z); auto.
+ right; rewrite (EQ z); auto.
+ destruct Disj as [(IN,Em)|(IN & y & INy & LTy & Be)].
+ left; split; auto.
+ rewrite (Ad2 x); auto.
+ intros z. rewrite (Ad1 z); intros [U|U]; try specialize (Ab1 z U); order.
+ right; split; auto.
+ rewrite (Ad1 x); auto.
+ exists y; repeat split; auto.
+ rewrite (Ad2 y); auto.
+ intros z. rewrite (Ad2 z). intros [U|U]; try specialize (Ab2 z U); order.
+ Qed.
+
+End MakeSetOrdering.
+
+
+Module MakeListOrdering (O:OrderedType).
+ Module MO:=OrderedTypeFacts O.
+
+ Notation t := (list O.t).
+ Notation In := (InA O.eq).
+
+ Definition eq s s' := forall x, In x s <-> In x s'.
+
+ Instance eq_equiv : Equivalence eq.
+
+ Inductive lt_list : t -> t -> Prop :=
+ | lt_nil : forall x s, lt_list nil (x :: s)
+ | lt_cons_lt : forall x y s s',
+ O.lt x y -> lt_list (x :: s) (y :: s')
+ | lt_cons_eq : forall x y s s',
+ O.eq x y -> lt_list s s' -> lt_list (x :: s) (y :: s').
+ Hint Constructors lt_list.
+
+ Definition lt := lt_list.
+ Hint Unfold lt.
+
+ Instance lt_strorder : StrictOrder lt.
+ Proof.
+ split.
+ (* irreflexive *)
+ assert (forall s s', s=s' -> ~lt s s').
+ red; induction 2.
+ discriminate.
+ inversion H; subst.
+ apply (StrictOrder_Irreflexive y); auto.
+ inversion H; subst; auto.
+ intros s Hs; exact (H s s (eq_refl s) Hs).
+ (* transitive *)
+ intros s s' s'' H; generalize s''; clear s''; elim H.
+ intros x l s'' H'; inversion_clear H'; auto.
+ intros x x' l l' E s'' H'; inversion_clear H'; auto.
+ constructor 2. transitivity x'; auto.
+ constructor 2. rewrite <- H0; auto.
+ intros.
+ inversion_clear H3.
+ constructor 2. rewrite H0; auto.
+ constructor 3; auto. transitivity y; auto. unfold lt in *; auto.
+ Qed.
+
+ Instance lt_compat' :
+ Proper (eqlistA O.eq==>eqlistA O.eq==>iff) lt.
+ Proof.
+ apply proper_sym_impl_iff_2; auto with *.
+ intros s1 s1' E1 s2 s2' E2 H.
+ revert s1' E1 s2' E2.
+ induction H; intros; inversion_clear E1; inversion_clear E2.
+ constructor 1.
+ constructor 2. MO.order.
+ constructor 3. MO.order. unfold lt in *; auto.
+ Qed.
+
+ Lemma eq_cons :
+ forall l1 l2 x y,
+ O.eq x y -> eq l1 l2 -> eq (x :: l1) (y :: l2).
+ Proof.
+ unfold eq; intros l1 l2 x y Exy E12 z.
+ split; inversion_clear 1.
+ left; MO.order. right; rewrite <- E12; auto.
+ left; MO.order. right; rewrite E12; auto.
+ Qed.
+ Hint Resolve eq_cons.
+
+ Lemma cons_Cmp : forall c x1 x2 l1 l2, O.eq x1 x2 ->
+ Cmp eq lt c l1 l2 -> Cmp eq lt c (x1::l1) (x2::l2).
+ Proof.
+ destruct c; simpl; unfold flip; auto.
+ Qed.
+ Hint Resolve cons_Cmp.
+
+End MakeListOrdering.
diff --git a/theories/MSets/MSetList.v b/theories/MSets/MSetList.v
new file mode 100644
index 0000000000..2b7dbb586f
--- /dev/null
+++ b/theories/MSets/MSetList.v
@@ -0,0 +1,866 @@
+(***********************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
+(* \VV/ *************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(***********************************************************************)
+
+(* $Id$ *)
+
+(** * Finite sets library *)
+
+(** This file proposes an implementation of the non-dependant
+ interface [MSetInterface.S] using strictly ordered list. *)
+
+Require Export MSetInterface.
+Set Implicit Arguments.
+Unset Strict Implicit.
+
+(** * Functions over lists
+
+ First, we provide sets as lists which are not necessarily sorted.
+ The specs are proved under the additional condition of being sorted.
+ And the functions returning sets are proved to preserve this invariant. *)
+
+Module Ops (X:OrderedType) <: WOps X.
+
+ Definition elt := X.t.
+ Definition t := list elt.
+
+ Definition empty : t := nil.
+
+ Definition is_empty (l : t) := if l then true else false.
+
+ (** ** The set operations. *)
+
+ Fixpoint mem x s :=
+ match s with
+ | nil => false
+ | y :: l =>
+ match X.compare x y with
+ | Lt => false
+ | Eq => true
+ | Gt => mem x l
+ end
+ end.
+
+ Fixpoint add x s :=
+ match s with
+ | nil => x :: nil
+ | y :: l =>
+ match X.compare x y with
+ | Lt => x :: s
+ | Eq => s
+ | Gt => y :: add x l
+ end
+ end.
+
+ Definition singleton (x : elt) := x :: nil.
+
+ Fixpoint remove x s :=
+ match s with
+ | nil => nil
+ | y :: l =>
+ match X.compare x y with
+ | Lt => s
+ | Eq => l
+ | Gt => y :: remove x l
+ end
+ end.
+
+ Fixpoint union (s : t) : t -> t :=
+ match s with
+ | nil => fun s' => s'
+ | x :: l =>
+ (fix union_aux (s' : t) : t :=
+ match s' with
+ | nil => s
+ | x' :: l' =>
+ match X.compare x x' with
+ | Lt => x :: union l s'
+ | Eq => x :: union l l'
+ | Gt => x' :: union_aux l'
+ end
+ end)
+ end.
+
+ Fixpoint inter (s : t) : t -> t :=
+ match s with
+ | nil => fun _ => nil
+ | x :: l =>
+ (fix inter_aux (s' : t) : t :=
+ match s' with
+ | nil => nil
+ | x' :: l' =>
+ match X.compare x x' with
+ | Lt => inter l s'
+ | Eq => x :: inter l l'
+ | Gt => inter_aux l'
+ end
+ end)
+ end.
+
+ Fixpoint diff (s : t) : t -> t :=
+ match s with
+ | nil => fun _ => nil
+ | x :: l =>
+ (fix diff_aux (s' : t) : t :=
+ match s' with
+ | nil => s
+ | x' :: l' =>
+ match X.compare x x' with
+ | Lt => x :: diff l s'
+ | Eq => diff l l'
+ | Gt => diff_aux l'
+ end
+ end)
+ end.
+
+ Fixpoint equal (s : t) : t -> bool :=
+ fun s' : t =>
+ match s, s' with
+ | nil, nil => true
+ | x :: l, x' :: l' =>
+ match X.compare x x' with
+ | Eq => equal l l'
+ | _ => false
+ end
+ | _, _ => false
+ end.
+
+ Fixpoint subset s s' :=
+ match s, s' with
+ | nil, _ => true
+ | x :: l, x' :: l' =>
+ match X.compare x x' with
+ | Lt => false
+ | Eq => subset l l'
+ | Gt => subset s l'
+ end
+ | _, _ => false
+ end.
+
+ Definition fold (B : Type) (f : elt -> B -> B) (s : t) (i : B) : B :=
+ fold_left (flip f) s i.
+
+ Fixpoint filter (f : elt -> bool) (s : t) : t :=
+ match s with
+ | nil => nil
+ | x :: l => if f x then x :: filter f l else filter f l
+ end.
+
+ Fixpoint for_all (f : elt -> bool) (s : t) : bool :=
+ match s with
+ | nil => true
+ | x :: l => if f x then for_all f l else false
+ end.
+
+ Fixpoint exists_ (f : elt -> bool) (s : t) : bool :=
+ match s with
+ | nil => false
+ | x :: l => if f x then true else exists_ f l
+ end.
+
+ Fixpoint partition (f : elt -> bool) (s : t) : t * t :=
+ match s with
+ | nil => (nil, nil)
+ | x :: l =>
+ let (s1, s2) := partition f l in
+ if f x then (x :: s1, s2) else (s1, x :: s2)
+ end.
+
+ Definition cardinal (s : t) : nat := length s.
+
+ Definition elements (x : t) : list elt := x.
+
+ Definition min_elt (s : t) : option elt :=
+ match s with
+ | nil => None
+ | x :: _ => Some x
+ end.
+
+ Fixpoint max_elt (s : t) : option elt :=
+ match s with
+ | nil => None
+ | x :: nil => Some x
+ | _ :: l => max_elt l
+ end.
+
+ Definition choose := min_elt.
+
+ Fixpoint compare s s' :=
+ match s, s' with
+ | nil, nil => Eq
+ | nil, _ => Lt
+ | _, nil => Gt
+ | x::s, x'::s' =>
+ match X.compare x x' with
+ | Eq => compare s s'
+ | Lt => Lt
+ | Gt => Gt
+ end
+ end.
+
+End Ops.
+
+Module MakeRaw (X: OrderedType) <: RawSets X.
+ Module Import MX := OrderedTypeFacts X.
+
+ Include Ops X.
+
+ (** ** Proofs of set operation specifications. *)
+
+ Section ForNotations.
+
+ Notation Sort := (sort X.lt).
+ Notation Inf := (lelistA X.lt).
+ Notation In := (InA X.eq).
+
+ Definition IsOk := Sort.
+
+ Class Ok (s:t) : Prop := { ok : Sort s }.
+
+ Hint Resolve @ok.
+ Hint Constructors Ok.
+
+ Instance Sort_Ok `(Hs : Sort s) : Ok s := Hs.
+
+ Ltac inv_ok := match goal with
+ | H:Ok (_ :: _) |- _ => apply @ok in H; inversion_clear H; inv_ok
+ | H:Ok nil |- _ => clear H; inv_ok
+ | H:Sort ?l |- _ => generalize (Build_Ok H); clear H; intro H; inv_ok
+ | _ => idtac
+ end.
+
+ Ltac inv := invlist InA; inv_ok; invlist lelistA.
+ Ltac constructors := repeat constructor.
+
+ Ltac sort_inf_in := match goal with
+ | H:Inf ?x ?l, H':In ?y ?l |- _ =>
+ cut (X.lt x y); [ intro | apply Sort_Inf_In with l; auto]
+ | _ => fail
+ end.
+
+ Definition inf x l :=
+ match l with
+ | nil => true
+ | y::_ => match X.compare x y with Lt => true | _ => false end
+ end.
+
+ Fixpoint isok l :=
+ match l with
+ | nil => true
+ | x::l => inf x l && isok l
+ end.
+
+ Lemma inf_iff : forall x l, Inf x l <-> inf x l = true.
+ Proof.
+ induction l as [ | y l IH].
+ simpl; split; auto.
+ simpl.
+ elim_compare x y; intuition; try discriminate.
+ inv; order.
+ inv; order.
+ Qed.
+
+ Lemma isok_iff : forall l, Ok l <-> isok l = true.
+ Proof.
+ induction l as [ | x l IH].
+ simpl; split; auto; constructor.
+ simpl.
+ rewrite andb_true_iff, <- inf_iff, <- IH.
+ split.
+ intros; inv; auto.
+ constructor; intuition.
+ Qed.
+
+ Global Instance isok_Ok `(isok s = true) : Ok s | 10.
+ Proof.
+ intros. apply <- isok_iff. auto.
+ Qed.
+
+ Definition Equal s s' := forall a : elt, In a s <-> In a s'.
+ Definition Subset s s' := forall a : elt, In a s -> In a s'.
+ Definition Empty s := forall a : elt, ~ In a s.
+ Definition For_all (P : elt -> Prop) s := forall x, In x s -> P x.
+ Definition Exists (P : elt -> Prop) (s : t) := exists x, In x s /\ P x.
+
+ Lemma mem_spec :
+ forall (s : t) (x : elt) (Hs : Ok s), mem x s = true <-> In x s.
+ Proof.
+ induction s; intros; inv; simpl.
+ intuition. discriminate. inv.
+ elim_compare x a; intros; rewrite InA_cons; intuition; try order.
+ discriminate.
+ sort_inf_in. order.
+ rewrite <- IHs; auto.
+ rewrite IHs; auto.
+ Qed.
+
+ Lemma add_inf :
+ forall (s : t) (x a : elt), Inf a s -> X.lt a x -> Inf a (add x s).
+ Proof.
+ simple induction s; simpl.
+ intuition.
+ intros; elim_compare x a; intros; inv; intuition.
+ Qed.
+ Hint Resolve add_inf.
+
+ Global Instance add_ok s x `(Ok s) : Ok (add x s).
+ Proof.
+ simple induction s; simpl.
+ intuition.
+ intros; elim_compare x a; intros; inv; auto.
+ Qed.
+
+ Lemma add_spec :
+ forall (s : t) (x y : elt) (Hs : Ok s),
+ In y (add x s) <-> X.eq y x \/ In y s.
+ Proof.
+ induction s; simpl; intros.
+ intuition. inv; auto.
+ elim_compare x a; intros; inv; rewrite !InA_cons, ?IHs; intuition.
+ left; order.
+ Qed.
+
+ Lemma remove_inf :
+ forall (s : t) (x a : elt) (Hs : Ok s), Inf a s -> Inf a (remove x s).
+ Proof.
+ induction s; simpl.
+ intuition.
+ intros; elim_compare x a; intros; inv; auto.
+ apply Inf_lt with a; auto.
+ Qed.
+ Hint Resolve remove_inf.
+
+ Global Instance remove_ok s x `(Ok s) : Ok (remove x s).
+ Proof.
+ induction s; simpl.
+ intuition.
+ intros; elim_compare x a; intros; inv; auto.
+ Qed.
+
+ Lemma remove_spec :
+ forall (s : t) (x y : elt) (Hs : Ok s),
+ In y (remove x s) <-> In y s /\ ~X.eq y x.
+ Proof.
+ induction s; simpl; intros.
+ intuition; inv; auto.
+ elim_compare x a; intros; inv; rewrite !InA_cons, ?IHs; intuition;
+ try sort_inf_in; try order.
+ Qed.
+
+ Global Instance singleton_ok x : Ok (singleton x).
+ Proof.
+ unfold singleton; simpl; auto.
+ Qed.
+
+ Lemma singleton_spec : forall x y : elt, In y (singleton x) <-> X.eq y x.
+ Proof.
+ unfold singleton; simpl; split; intros; inv; auto.
+ Qed.
+
+ Ltac induction2 :=
+ simple induction s;
+ [ simpl; auto; try solve [ intros; inv ]
+ | intros x l Hrec; simple induction s';
+ [ simpl; auto; try solve [ intros; inv ]
+ | intros x' l' Hrec'; simpl; elim_compare x x'; intros; inv; auto ]].
+
+ Lemma union_inf :
+ forall (s s' : t) (a : elt) (Hs : Ok s) (Hs' : Ok s'),
+ Inf a s -> Inf a s' -> Inf a (union s s').
+ Proof.
+ induction2.
+ Qed.
+ Hint Resolve union_inf.
+
+ Global Instance union_ok s s' `(Ok s, Ok s') : Ok (union s s').
+ Proof.
+ induction2; constructors; try apply @ok; auto.
+ apply Inf_eq with x'; auto; apply union_inf; auto; apply Inf_eq with x; auto.
+ change (Inf x' (union (x :: l) l')); auto.
+ Qed.
+
+ Lemma union_spec :
+ forall (s s' : t) (x : elt) (Hs : Ok s) (Hs' : Ok s'),
+ In x (union s s') <-> In x s \/ In x s'.
+ Proof.
+ induction2; try rewrite ?InA_cons, ?Hrec, ?Hrec'; intuition; inv; auto.
+ left; order.
+ Qed.
+
+ Lemma inter_inf :
+ forall (s s' : t) (a : elt) (Hs : Ok s) (Hs' : Ok s'),
+ Inf a s -> Inf a s' -> Inf a (inter s s').
+ Proof.
+ induction2.
+ apply Inf_lt with x; auto.
+ apply Hrec'; auto.
+ apply Inf_lt with x'; auto.
+ Qed.
+ Hint Resolve inter_inf.
+
+ Global Instance inter_ok s s' `(Ok s, Ok s') : Ok (inter s s').
+ Proof.
+ induction2.
+ constructors; auto.
+ apply Inf_eq with x'; auto; apply inter_inf; auto; apply Inf_eq with x; auto.
+ Qed.
+
+ Lemma inter_spec :
+ forall (s s' : t) (x : elt) (Hs : Ok s) (Hs' : Ok s'),
+ In x (inter s s') <-> In x s /\ In x s'.
+ Proof.
+ induction2; try rewrite ?InA_cons, ?Hrec, ?Hrec'; intuition; inv; auto;
+ try sort_inf_in; try order.
+ Qed.
+
+ Lemma diff_inf :
+ forall (s s' : t) (Hs : Ok s) (Hs' : Ok s') (a : elt),
+ Inf a s -> Inf a s' -> Inf a (diff s s').
+ Proof.
+ induction2.
+ apply Hrec; trivial.
+ apply Inf_lt with x; auto.
+ apply Inf_lt with x'; auto.
+ apply Hrec'; auto.
+ apply Inf_lt with x'; auto.
+ Qed.
+ Hint Resolve diff_inf.
+
+ Global Instance diff_ok s s' `(Ok s, Ok s') : Ok (diff s s').
+ Proof.
+ induction2. constructors; auto. apply @ok; auto.
+ Qed.
+
+ Lemma diff_spec :
+ forall (s s' : t) (x : elt) (Hs : Ok s) (Hs' : Ok s'),
+ In x (diff s s') <-> In x s /\ ~In x s'.
+ Proof.
+ induction2; try rewrite ?InA_cons, ?Hrec, ?Hrec'; intuition; inv; auto;
+ try sort_inf_in; try order.
+ right; intuition; inv; order.
+ Qed.
+
+ Lemma equal_spec :
+ forall (s s' : t) (Hs : Ok s) (Hs' : Ok s'),
+ equal s s' = true <-> Equal s s'.
+ Proof.
+ induction s as [ | x s IH]; intros [ | x' s'] Hs Hs'; simpl.
+ intuition.
+ split; intros H. discriminate. assert (In x' nil) by (rewrite H; auto). inv.
+ split; intros H. discriminate. assert (In x nil) by (rewrite <-H; auto). inv.
+ inv.
+ elim_compare x x'; intros C; try discriminate.
+ (* x=x' *)
+ rewrite IH; auto.
+ split; intros E y; specialize (E y).
+ rewrite !InA_cons, E, C; intuition.
+ rewrite !InA_cons, C in E. intuition; try sort_inf_in; order.
+ (* x<x' *)
+ split; intros E. discriminate.
+ assert (In x (x'::s')) by (rewrite <- E; auto).
+ inv; try sort_inf_in; order.
+ (* x>x' *)
+ split; intros E. discriminate.
+ assert (In x' (x::s)) by (rewrite E; auto).
+ inv; try sort_inf_in; order.
+ Qed.
+
+ Lemma subset_spec :
+ forall (s s' : t) (Hs : Ok s) (Hs' : Ok s'),
+ subset s s' = true <-> Subset s s'.
+ Proof.
+ intros s s'; revert s.
+ induction s' as [ | x' s' IH]; intros [ | x s] Hs Hs'; simpl; auto.
+ split; try red; intros; auto.
+ split; intros H. discriminate. assert (In x nil) by (apply H; auto). inv.
+ split; try red; intros; auto. inv.
+ inv. elim_compare x x'; intros C.
+ (* x=x' *)
+ rewrite IH; auto.
+ split; intros S y; specialize (S y).
+ rewrite !InA_cons, C. intuition.
+ rewrite !InA_cons, C in S. intuition; try sort_inf_in; order.
+ (* x<x' *)
+ split; intros S. discriminate.
+ assert (In x (x'::s')) by (apply S; auto).
+ inv; try sort_inf_in; order.
+ (* x>x' *)
+ rewrite IH; auto.
+ split; intros S y; specialize (S y).
+ rewrite !InA_cons. intuition.
+ rewrite !InA_cons in S. rewrite !InA_cons. intuition; try sort_inf_in; order.
+ Qed.
+
+ Global Instance empty_ok : Ok empty.
+ Proof.
+ constructors.
+ Qed.
+
+ Lemma empty_spec : Empty empty.
+ Proof.
+ unfold Empty, empty; intuition; inv.
+ Qed.
+
+ Lemma is_empty_spec : forall s : t, is_empty s = true <-> Empty s.
+ Proof.
+ intros [ | x s]; simpl.
+ split; auto. intros _ x H. inv.
+ split. discriminate. intros H. elim (H x); auto.
+ Qed.
+
+ Lemma elements_spec1 : forall (s : t) (x : elt), In x (elements s) <-> In x s.
+ Proof.
+ intuition.
+ Qed.
+
+ Lemma elements_spec2 : forall (s : t) (Hs : Ok s), Sort (elements s).
+ Proof.
+ auto.
+ Qed.
+
+ Lemma elements_spec2w : forall (s : t) (Hs : Ok s), NoDupA X.eq (elements s).
+ Proof.
+ auto.
+ Qed.
+
+ Lemma min_elt_spec1 : forall (s : t) (x : elt), min_elt s = Some x -> In x s.
+ Proof.
+ destruct s; simpl; inversion 1; auto.
+ Qed.
+
+ Lemma min_elt_spec2 :
+ forall (s : t) (x y : elt) (Hs : Ok s),
+ min_elt s = Some x -> In y s -> ~ X.lt y x.
+ Proof.
+ induction s as [ | x s IH]; simpl; inversion 2; subst.
+ intros; inv; try sort_inf_in; order.
+ Qed.
+
+ Lemma min_elt_spec3 : forall s : t, min_elt s = None -> Empty s.
+ Proof.
+ destruct s; simpl; red; intuition. inv. discriminate.
+ Qed.
+
+ Lemma max_elt_spec1 : forall (s : t) (x : elt), max_elt s = Some x -> In x s.
+ Proof.
+ induction s as [ | x s IH]. inversion 1.
+ destruct s as [ | y s]. simpl. inversion 1; subst; auto.
+ right; apply IH; auto.
+ Qed.
+
+ Lemma max_elt_spec2 :
+ forall (s : t) (x y : elt) (Hs : Ok s),
+ max_elt s = Some x -> In y s -> ~ X.lt x y.
+ Proof.
+ induction s as [ | a s IH]. inversion 2.
+ destruct s as [ | b s]. inversion 2; subst. intros; inv; order.
+ intros. inv; auto.
+ assert (~X.lt x b) by (apply IH; auto).
+ assert (X.lt a b) by auto.
+ order.
+ Qed.
+
+ Lemma max_elt_spec3 : forall s : t, max_elt s = None -> Empty s.
+ Proof.
+ induction s as [ | a s IH]. red; intuition; inv.
+ destruct s as [ | b s]. inversion 1.
+ intros; elim IH with b; auto.
+ Qed.
+
+ Definition choose_spec1 :
+ forall (s : t) (x : elt), choose s = Some x -> In x s := min_elt_spec1.
+
+ Definition choose_spec2 :
+ forall s : t, choose s = None -> Empty s := min_elt_spec3.
+
+ Lemma choose_spec3: forall s s' x x', Ok s -> Ok s' ->
+ choose s = Some x -> choose s' = Some x' -> Equal s s' -> X.eq x x'.
+ Proof.
+ unfold choose; intros s s' x x' Hs Hs' Hx Hx' H.
+ assert (~X.lt x x').
+ apply min_elt_spec2 with s'; auto.
+ rewrite <-H; auto using min_elt_spec1.
+ assert (~X.lt x' x).
+ apply min_elt_spec2 with s; auto.
+ rewrite H; auto using min_elt_spec1.
+ order.
+ Qed.
+
+ Lemma fold_spec :
+ forall (s : t) (A : Type) (i : A) (f : elt -> A -> A),
+ fold f s i = fold_left (flip f) (elements s) i.
+ Proof.
+ reflexivity.
+ Qed.
+
+ Lemma cardinal_spec :
+ forall (s : t) (Hs : Ok s),
+ cardinal s = length (elements s).
+ Proof.
+ auto.
+ Qed.
+
+ Lemma filter_inf :
+ forall (s : t) (x : elt) (f : elt -> bool) (Hs : Ok s),
+ Inf x s -> Inf x (filter f s).
+ Proof.
+ simple induction s; simpl.
+ intuition.
+ intros x l Hrec a f Hs Ha; inv.
+ case (f x); auto.
+ apply Hrec; auto.
+ apply Inf_lt with x; auto.
+ Qed.
+
+ Global Instance filter_ok s f `(Ok s) : Ok (filter f s).
+ Proof.
+ simple induction s; simpl.
+ auto.
+ intros x l Hrec f Hs; inv.
+ case (f x); auto.
+ constructors; auto.
+ apply filter_inf; auto.
+ Qed.
+
+ Lemma filter_spec :
+ forall (s : t) (x : elt) (f : elt -> bool),
+ Proper (X.eq==>eq) f ->
+ (In x (filter f s) <-> In x s /\ f x = true).
+ Proof.
+ induction s; simpl; intros.
+ split; intuition; inv.
+ destruct (f a) as [ ]_eqn:F; rewrite !InA_cons, ?IHs; intuition.
+ setoid_replace x with a; auto.
+ setoid_replace a with x in F; auto; congruence.
+ Qed.
+
+ Lemma for_all_spec :
+ forall (s : t) (f : elt -> bool),
+ Proper (X.eq==>eq) f ->
+ (for_all f s = true <-> For_all (fun x => f x = true) s).
+ Proof.
+ unfold For_all; induction s; simpl; intros.
+ split; intros; auto. inv.
+ destruct (f a) as [ ]_eqn:F.
+ rewrite IHs; auto. firstorder. inv; auto.
+ setoid_replace x with a; auto.
+ split; intros H'. discriminate.
+ rewrite H' in F; auto.
+ Qed.
+
+ Lemma exists_spec :
+ forall (s : t) (f : elt -> bool),
+ Proper (X.eq==>eq) f ->
+ (exists_ f s = true <-> Exists (fun x => f x = true) s).
+ Proof.
+ unfold Exists; induction s; simpl; intros.
+ firstorder. discriminate. inv.
+ destruct (f a) as [ ]_eqn:F.
+ firstorder.
+ rewrite IHs; auto.
+ firstorder.
+ inv.
+ setoid_replace a with x in F; auto; congruence.
+ exists x; auto.
+ Qed.
+
+ Lemma partition_inf1 :
+ forall (s : t) (f : elt -> bool) (x : elt) (Hs : Ok s),
+ Inf x s -> Inf x (fst (partition f s)).
+ Proof.
+ simple induction s; simpl.
+ intuition.
+ intros x l Hrec f a Hs Ha; inv.
+ generalize (Hrec f a H).
+ case (f x); case (partition f l); simpl.
+ auto.
+ intros; apply H2; apply Inf_lt with x; auto.
+ Qed.
+
+ Lemma partition_inf2 :
+ forall (s : t) (f : elt -> bool) (x : elt) (Hs : Ok s),
+ Inf x s -> Inf x (snd (partition f s)).
+ Proof.
+ simple induction s; simpl.
+ intuition.
+ intros x l Hrec f a Hs Ha; inv.
+ generalize (Hrec f a H).
+ case (f x); case (partition f l); simpl.
+ intros; apply H2; apply Inf_lt with x; auto.
+ auto.
+ Qed.
+
+ Global Instance partition_ok1 s f `(Ok s) : Ok (fst (partition f s)).
+ Proof.
+ simple induction s; simpl.
+ auto.
+ intros x l Hrec f Hs; inv.
+ generalize (Hrec f H); generalize (@partition_inf1 l f x).
+ case (f x); case (partition f l); simpl; auto.
+ Qed.
+
+ Global Instance partition_ok2 s f `(Ok s) : Ok (snd (partition f s)).
+ Proof.
+ simple induction s; simpl.
+ auto.
+ intros x l Hrec f Hs; inv.
+ generalize (Hrec f H); generalize (@partition_inf2 l f x).
+ case (f x); case (partition f l); simpl; auto.
+ Qed.
+
+ Lemma partition_spec1 :
+ forall (s : t) (f : elt -> bool),
+ Proper (X.eq==>eq) f -> Equal (fst (partition f s)) (filter f s).
+ Proof.
+ simple induction s; simpl; auto; unfold Equal.
+ split; auto.
+ intros x l Hrec f Hf.
+ generalize (Hrec f Hf); clear Hrec.
+ destruct (partition f l) as [s1 s2]; simpl; intros.
+ case (f x); simpl; auto.
+ split; inversion_clear 1; auto.
+ constructor 2; rewrite <- H; auto.
+ constructor 2; rewrite H; auto.
+ Qed.
+
+ Lemma partition_spec2 :
+ forall (s : t) (f : elt -> bool),
+ Proper (X.eq==>eq) f ->
+ Equal (snd (partition f s)) (filter (fun x => negb (f x)) s).
+ Proof.
+ simple induction s; simpl; auto; unfold Equal.
+ split; auto.
+ intros x l Hrec f Hf.
+ generalize (Hrec f Hf); clear Hrec.
+ destruct (partition f l) as [s1 s2]; simpl; intros.
+ case (f x); simpl; auto.
+ split; inversion_clear 1; auto.
+ constructor 2; rewrite <- H; auto.
+ constructor 2; rewrite H; auto.
+ Qed.
+
+ End ForNotations.
+
+ Definition In := InA X.eq.
+ Instance In_compat : Proper (X.eq==>eq==> iff) In.
+ Proof. repeat red; intros; rewrite H, H0; auto. Qed.
+
+(*
+ Module IN <: IN X.
+ Definition t := t.
+ Definition In := In.
+ Instance In_compat : Proper (X.eq==>eq==>iff) In.
+ Proof.
+ intros x x' Ex s s' Es. subst. rewrite Ex; intuition.
+ Qed.
+ Definition Equal := Equal.
+ Definition Empty := Empty.
+ End IN.
+ Include MakeSetOrdering X IN.
+
+ Lemma Ok_Above_Add : forall x s, Ok (x::s) -> Above x s /\ Add x s (x::s).
+ Proof.
+ intros.
+ inver Ok.
+ split.
+ intros y Hy. eapply Sort_Inf_In; eauto.
+ red. intuition. inver In; auto. rewrite <- H2; left; auto.
+ right; auto.
+ Qed.
+
+ Lemma compare_spec :
+ forall (s s' : t) (Hs : Ok s) (Hs' : Ok s'), Cmp eq lt (compare s s') s s'.
+ Proof.
+ induction s as [|x s IH]; intros [|x' s'] Hs Hs'; simpl; intuition.
+ destruct (Ok_Above_Add Hs').
+ eapply lt_empty_l; eauto. intros y Hy. inver InA.
+ destruct (Ok_Above_Add Hs).
+ eapply lt_empty_l; eauto. intros y Hy. inver InA.
+ destruct (Ok_Above_Add Hs); destruct (Ok_Above_Add Hs').
+ inver Ok. unfold Ok in IH. specialize (IH s').
+ elim_compare x x'; intros.
+ destruct (compare s s'); unfold Cmp, flip in IH; auto.
+ intro y; split; intros; inver InA; try (left; order).
+ right; rewrite <- IH; auto.
+ right; rewrite IH; auto.
+ eapply (@lt_add_eq x x'); eauto.
+ eapply (@lt_add_eq x' x); eauto.
+ eapply (@lt_add_lt x x'); eauto.
+ eapply (@lt_add_lt x' x); eauto.
+ Qed.
+*)
+
+ Module L := MakeListOrdering X.
+ Definition eq := L.eq.
+ Definition eq_equiv := L.eq_equiv.
+ Definition lt l1 l2 :=
+ exists l1', exists l2', Ok l1' /\ Ok l2' /\
+ eq l1 l1' /\ eq l2 l2' /\ L.lt l1' l2'.
+
+ Instance lt_strorder : StrictOrder lt.
+ Proof.
+ split.
+ intros s (s1 & s2 & B1 & B2 & E1 & E2 & L).
+ assert (eqlistA X.eq s1 s2).
+ apply SortA_equivlistA_eqlistA with (ltA:=X.lt); auto using @ok with *.
+ transitivity s; auto. symmetry; auto.
+ rewrite H in L.
+ apply (StrictOrder_Irreflexive s2); auto.
+ intros s1 s2 s3 (s1' & s2' & B1 & B2 & E1 & E2 & L12)
+ (s2'' & s3' & B2' & B3 & E2' & E3 & L23).
+ exists s1', s3'; do 4 (split; trivial).
+ assert (eqlistA X.eq s2' s2'').
+ apply SortA_equivlistA_eqlistA with (ltA:=X.lt); auto using @ok with *.
+ transitivity s2; auto. symmetry; auto.
+ transitivity s2'; auto.
+ rewrite H; auto.
+ Qed.
+
+ Instance lt_compat : Proper (eq==>eq==>iff) lt.
+ Proof.
+ intros s1 s2 E12 s3 s4 E34. split.
+ intros (s1' & s3' & B1 & B3 & E1 & E3 & LT).
+ exists s1', s3'; do 2 (split; trivial).
+ split. transitivity s1; auto. symmetry; auto.
+ split; auto. transitivity s3; auto. symmetry; auto.
+ intros (s1' & s3' & B1 & B3 & E1 & E3 & LT).
+ exists s1', s3'; do 2 (split; trivial).
+ split. transitivity s2; auto.
+ split; auto. transitivity s4; auto.
+ Qed.
+
+ Lemma compare_spec_aux : forall s s', Cmp eq L.lt (compare s s') s s'.
+ Proof.
+ induction s as [|x s IH]; intros [|x' s']; simpl; intuition.
+ red; auto.
+ elim_compare x x'; intros; auto.
+ specialize (IH s').
+ destruct (compare s s'); unfold Cmp, flip, eq in IH; auto.
+ apply L.eq_cons; auto.
+ Qed.
+
+ Lemma compare_spec : forall s s', Ok s -> Ok s' ->
+ Cmp eq lt (compare s s') s s'.
+ Proof.
+ intros s s' Hs Hs'.
+ generalize (compare_spec_aux s s').
+ destruct (compare s s'); unfold Cmp, flip in *; auto.
+ exists s, s'; repeat split; auto using @ok.
+ exists s', s; repeat split; auto using @ok.
+ Qed.
+
+End MakeRaw.
+
+(** * Encapsulation
+
+ Now, in order to really provide a functor implementing [S], we
+ need to encapsulate everything into a type of strictly ordered lists. *)
+
+Module Make (X: OrderedType) <: S with Module E := X.
+ Module Raw := MakeRaw X.
+ Include Raw2Sets X Raw.
+End Make.
diff --git a/theories/MSets/MSetProperties.v b/theories/MSets/MSetProperties.v
new file mode 100644
index 0000000000..24e889eeed
--- /dev/null
+++ b/theories/MSets/MSetProperties.v
@@ -0,0 +1,1183 @@
+(***********************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
+(* \VV/ *************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(***********************************************************************)
+
+(* $Id$ *)
+
+(** * Finite sets library *)
+
+(** This functor derives additional properties from [MSetInterface.S].
+ Contrary to the functor in [MSetEqProperties] it uses
+ predicates over sets instead of sets operations, i.e.
+ [In x s] instead of [mem x s=true],
+ [Equal s s'] instead of [equal s s'=true], etc. *)
+
+Require Export MSetInterface.
+Require Import DecidableTypeEx MSetFacts MSetDecide.
+Set Implicit Arguments.
+Unset Strict Implicit.
+
+Hint Unfold transpose.
+
+(** First, a functor for Weak Sets in functorial version. *)
+
+Module WPropertiesOn (Import E : DecidableType)(M : WSetsOn E).
+ Module Import Dec := WDecideOn E M.
+ Module Import FM := Dec.F (* MSetFacts.WFactsOn E M *).
+ Import M.
+
+ Lemma In_dec : forall x s, {In x s} + {~ In x s}.
+ Proof.
+ intros; generalize (mem_iff s x); case (mem x s); intuition.
+ Qed.
+
+ Definition Add x s s' := forall y, In y s' <-> E.eq x y \/ In y s.
+
+ Lemma Add_Equal : forall x s s', Add x s s' <-> s' [=] add x s.
+ Proof.
+ unfold Add.
+ split; intros.
+ red; intros.
+ rewrite H; clear H.
+ fsetdec.
+ fsetdec.
+ Qed.
+
+ Ltac expAdd := repeat rewrite Add_Equal.
+
+ Section BasicProperties.
+
+ Variable s s' s'' s1 s2 s3 : t.
+ Variable x x' : elt.
+
+ Lemma equal_refl : s[=]s.
+ Proof. fsetdec. Qed.
+
+ Lemma equal_sym : s[=]s' -> s'[=]s.
+ Proof. fsetdec. Qed.
+
+ Lemma equal_trans : s1[=]s2 -> s2[=]s3 -> s1[=]s3.
+ Proof. fsetdec. Qed.
+
+ Lemma subset_refl : s[<=]s.
+ Proof. fsetdec. Qed.
+
+ Lemma subset_trans : s1[<=]s2 -> s2[<=]s3 -> s1[<=]s3.
+ Proof. fsetdec. Qed.
+
+ Lemma subset_antisym : s[<=]s' -> s'[<=]s -> s[=]s'.
+ Proof. fsetdec. Qed.
+
+ Lemma subset_equal : s[=]s' -> s[<=]s'.
+ Proof. fsetdec. Qed.
+
+ Lemma subset_empty : empty[<=]s.
+ Proof. fsetdec. Qed.
+
+ Lemma subset_remove_3 : s1[<=]s2 -> remove x s1 [<=] s2.
+ Proof. fsetdec. Qed.
+
+ Lemma subset_diff : s1[<=]s3 -> diff s1 s2 [<=] s3.
+ Proof. fsetdec. Qed.
+
+ Lemma subset_add_3 : In x s2 -> s1[<=]s2 -> add x s1 [<=] s2.
+ Proof. fsetdec. Qed.
+
+ Lemma subset_add_2 : s1[<=]s2 -> s1[<=] add x s2.
+ Proof. fsetdec. Qed.
+
+ Lemma in_subset : In x s1 -> s1[<=]s2 -> In x s2.
+ Proof. fsetdec. Qed.
+
+ Lemma double_inclusion : s1[=]s2 <-> s1[<=]s2 /\ s2[<=]s1.
+ Proof. intuition fsetdec. Qed.
+
+ Lemma empty_is_empty_1 : Empty s -> s[=]empty.
+ Proof. fsetdec. Qed.
+
+ Lemma empty_is_empty_2 : s[=]empty -> Empty s.
+ Proof. fsetdec. Qed.
+
+ Lemma add_equal : In x s -> add x s [=] s.
+ Proof. fsetdec. Qed.
+
+ Lemma add_add : add x (add x' s) [=] add x' (add x s).
+ Proof. fsetdec. Qed.
+
+ Lemma remove_equal : ~ In x s -> remove x s [=] s.
+ Proof. fsetdec. Qed.
+
+ Lemma Equal_remove : s[=]s' -> remove x s [=] remove x s'.
+ Proof. fsetdec. Qed.
+
+ Lemma add_remove : In x s -> add x (remove x s) [=] s.
+ Proof. fsetdec. Qed.
+
+ Lemma remove_add : ~In x s -> remove x (add x s) [=] s.
+ Proof. fsetdec. Qed.
+
+ Lemma singleton_equal_add : singleton x [=] add x empty.
+ Proof. fsetdec. Qed.
+
+ Lemma remove_singleton_empty :
+ In x s -> remove x s [=] empty -> singleton x [=] s.
+ Proof. fsetdec. Qed.
+
+ Lemma union_sym : union s s' [=] union s' s.
+ Proof. fsetdec. Qed.
+
+ Lemma union_subset_equal : s[<=]s' -> union s s' [=] s'.
+ Proof. fsetdec. Qed.
+
+ Lemma union_equal_1 : s[=]s' -> union s s'' [=] union s' s''.
+ Proof. fsetdec. Qed.
+
+ Lemma union_equal_2 : s'[=]s'' -> union s s' [=] union s s''.
+ Proof. fsetdec. Qed.
+
+ Lemma union_assoc : union (union s s') s'' [=] union s (union s' s'').
+ Proof. fsetdec. Qed.
+
+ Lemma add_union_singleton : add x s [=] union (singleton x) s.
+ Proof. fsetdec. Qed.
+
+ Lemma union_add : union (add x s) s' [=] add x (union s s').
+ Proof. fsetdec. Qed.
+
+ Lemma union_remove_add_1 :
+ union (remove x s) (add x s') [=] union (add x s) (remove x s').
+ Proof. fsetdec. Qed.
+
+ Lemma union_remove_add_2 : In x s ->
+ union (remove x s) (add x s') [=] union s s'.
+ Proof. fsetdec. Qed.
+
+ Lemma union_subset_1 : s [<=] union s s'.
+ Proof. fsetdec. Qed.
+
+ Lemma union_subset_2 : s' [<=] union s s'.
+ Proof. fsetdec. Qed.
+
+ Lemma union_subset_3 : s[<=]s'' -> s'[<=]s'' -> union s s' [<=] s''.
+ Proof. fsetdec. Qed.
+
+ Lemma union_subset_4 : s[<=]s' -> union s s'' [<=] union s' s''.
+ Proof. fsetdec. Qed.
+
+ Lemma union_subset_5 : s[<=]s' -> union s'' s [<=] union s'' s'.
+ Proof. fsetdec. Qed.
+
+ Lemma empty_union_1 : Empty s -> union s s' [=] s'.
+ Proof. fsetdec. Qed.
+
+ Lemma empty_union_2 : Empty s -> union s' s [=] s'.
+ Proof. fsetdec. Qed.
+
+ Lemma not_in_union : ~In x s -> ~In x s' -> ~In x (union s s').
+ Proof. fsetdec. Qed.
+
+ Lemma inter_sym : inter s s' [=] inter s' s.
+ Proof. fsetdec. Qed.
+
+ Lemma inter_subset_equal : s[<=]s' -> inter s s' [=] s.
+ Proof. fsetdec. Qed.
+
+ Lemma inter_equal_1 : s[=]s' -> inter s s'' [=] inter s' s''.
+ Proof. fsetdec. Qed.
+
+ Lemma inter_equal_2 : s'[=]s'' -> inter s s' [=] inter s s''.
+ Proof. fsetdec. Qed.
+
+ Lemma inter_assoc : inter (inter s s') s'' [=] inter s (inter s' s'').
+ Proof. fsetdec. Qed.
+
+ Lemma union_inter_1 : inter (union s s') s'' [=] union (inter s s'') (inter s' s'').
+ Proof. fsetdec. Qed.
+
+ Lemma union_inter_2 : union (inter s s') s'' [=] inter (union s s'') (union s' s'').
+ Proof. fsetdec. Qed.
+
+ Lemma inter_add_1 : In x s' -> inter (add x s) s' [=] add x (inter s s').
+ Proof. fsetdec. Qed.
+
+ Lemma inter_add_2 : ~ In x s' -> inter (add x s) s' [=] inter s s'.
+ Proof. fsetdec. Qed.
+
+ Lemma empty_inter_1 : Empty s -> Empty (inter s s').
+ Proof. fsetdec. Qed.
+
+ Lemma empty_inter_2 : Empty s' -> Empty (inter s s').
+ Proof. fsetdec. Qed.
+
+ Lemma inter_subset_1 : inter s s' [<=] s.
+ Proof. fsetdec. Qed.
+
+ Lemma inter_subset_2 : inter s s' [<=] s'.
+ Proof. fsetdec. Qed.
+
+ Lemma inter_subset_3 :
+ s''[<=]s -> s''[<=]s' -> s''[<=] inter s s'.
+ Proof. fsetdec. Qed.
+
+ Lemma empty_diff_1 : Empty s -> Empty (diff s s').
+ Proof. fsetdec. Qed.
+
+ Lemma empty_diff_2 : Empty s -> diff s' s [=] s'.
+ Proof. fsetdec. Qed.
+
+ Lemma diff_subset : diff s s' [<=] s.
+ Proof. fsetdec. Qed.
+
+ Lemma diff_subset_equal : s[<=]s' -> diff s s' [=] empty.
+ Proof. fsetdec. Qed.
+
+ Lemma remove_diff_singleton :
+ remove x s [=] diff s (singleton x).
+ Proof. fsetdec. Qed.
+
+ Lemma diff_inter_empty : inter (diff s s') (inter s s') [=] empty.
+ Proof. fsetdec. Qed.
+
+ Lemma diff_inter_all : union (diff s s') (inter s s') [=] s.
+ Proof. fsetdec. Qed.
+
+ Lemma Add_add : Add x s (add x s).
+ Proof. expAdd; fsetdec. Qed.
+
+ Lemma Add_remove : In x s -> Add x (remove x s) s.
+ Proof. expAdd; fsetdec. Qed.
+
+ Lemma union_Add : Add x s s' -> Add x (union s s'') (union s' s'').
+ Proof. expAdd; fsetdec. Qed.
+
+ Lemma inter_Add :
+ In x s'' -> Add x s s' -> Add x (inter s s'') (inter s' s'').
+ Proof. expAdd; fsetdec. Qed.
+
+ Lemma union_Equal :
+ In x s'' -> Add x s s' -> union s s'' [=] union s' s''.
+ Proof. expAdd; fsetdec. Qed.
+
+ Lemma inter_Add_2 :
+ ~In x s'' -> Add x s s' -> inter s s'' [=] inter s' s''.
+ Proof. expAdd; fsetdec. Qed.
+
+ End BasicProperties.
+
+ Hint Immediate equal_sym add_remove remove_add union_sym inter_sym: set.
+ Hint Resolve equal_refl equal_trans subset_refl subset_equal subset_antisym
+ subset_trans subset_empty subset_remove_3 subset_diff subset_add_3
+ subset_add_2 in_subset empty_is_empty_1 empty_is_empty_2 add_equal
+ remove_equal singleton_equal_add union_subset_equal union_equal_1
+ union_equal_2 union_assoc add_union_singleton union_add union_subset_1
+ union_subset_2 union_subset_3 inter_subset_equal inter_equal_1 inter_equal_2
+ inter_assoc union_inter_1 union_inter_2 inter_add_1 inter_add_2
+ empty_inter_1 empty_inter_2 empty_union_1 empty_union_2 empty_diff_1
+ empty_diff_2 union_Add inter_Add union_Equal inter_Add_2 not_in_union
+ inter_subset_1 inter_subset_2 inter_subset_3 diff_subset diff_subset_equal
+ remove_diff_singleton diff_inter_empty diff_inter_all Add_add Add_remove
+ Equal_remove add_add : set.
+
+ (** * Properties of elements *)
+
+ Lemma elements_Empty : forall s, Empty s <-> elements s = nil.
+ Proof.
+ intros.
+ unfold Empty.
+ split; intros.
+ assert (forall a, ~ List.In a (elements s)).
+ red; intros.
+ apply (H a).
+ rewrite elements_iff.
+ rewrite InA_alt; exists a; auto.
+ destruct (elements s); auto.
+ elim (H0 e); simpl; auto.
+ red; intros.
+ rewrite elements_iff in H0.
+ rewrite InA_alt in H0; destruct H0.
+ rewrite H in H0; destruct H0 as (_,H0); inversion H0.
+ Qed.
+
+ Lemma elements_empty : elements empty = nil.
+ Proof.
+ rewrite <-elements_Empty; auto with set.
+ Qed.
+
+ (** * Conversions between lists and sets *)
+
+ Definition of_list (l : list elt) := List.fold_right add empty l.
+
+ Definition to_list := elements.
+
+ Lemma of_list_1 : forall l x, In x (of_list l) <-> InA E.eq x l.
+ Proof.
+ induction l; simpl; intro x.
+ rewrite empty_iff, InA_nil. intuition.
+ rewrite add_iff, InA_cons, IHl. intuition.
+ Qed.
+
+ Lemma of_list_2 : forall l, equivlistA E.eq (to_list (of_list l)) l.
+ Proof.
+ unfold to_list; red; intros.
+ rewrite <- elements_iff; apply of_list_1.
+ Qed.
+
+ Lemma of_list_3 : forall s, of_list (to_list s) [=] s.
+ Proof.
+ unfold to_list; red; intros.
+ rewrite of_list_1; symmetry; apply elements_iff.
+ Qed.
+
+ (** * Fold *)
+
+ Section Fold.
+
+ Notation NoDup := (NoDupA E.eq).
+ Notation InA := (InA E.eq).
+
+ (** ** Induction principles for fold (contributed by S. Lescuyer) *)
+
+ (** In the following lemma, the step hypothesis is deliberately restricted
+ to the precise set s we are considering. *)
+
+ Theorem fold_rec :
+ forall (A:Type)(P : t -> A -> Type)(f : elt -> A -> A)(i:A)(s:t),
+ (forall s', Empty s' -> P s' i) ->
+ (forall x a s' s'', In x s -> ~In x s' -> Add x s' s'' ->
+ P s' a -> P s'' (f x a)) ->
+ P s (fold f s i).
+ Proof.
+ intros A P f i s Pempty Pstep.
+ rewrite fold_1; unfold flip; rewrite <- fold_left_rev_right.
+ set (l:=rev (elements s)).
+ assert (Pstep' : forall x a s' s'', InA x l -> ~In x s' -> Add x s' s'' ->
+ P s' a -> P s'' (f x a)).
+ intros; eapply Pstep; eauto.
+ rewrite elements_iff, <- InA_rev; auto with *.
+ assert (Hdup : NoDup l) by
+ (unfold l; eauto using elements_3w, NoDupA_rev with *).
+ assert (Hsame : forall x, In x s <-> InA x l) by
+ (unfold l; intros; rewrite elements_iff, InA_rev; intuition).
+ clear Pstep; clearbody l; revert s Hsame; induction l.
+ (* empty *)
+ intros s Hsame; simpl.
+ apply Pempty. intro x. rewrite Hsame, InA_nil; intuition.
+ (* step *)
+ intros s Hsame; simpl.
+ apply Pstep' with (of_list l); auto.
+ inversion_clear Hdup; rewrite of_list_1; auto.
+ red. intros. rewrite Hsame, of_list_1, InA_cons; intuition.
+ apply IHl.
+ intros; eapply Pstep'; eauto.
+ inversion_clear Hdup; auto.
+ exact (of_list_1 l).
+ Qed.
+
+ (** Same, with [empty] and [add] instead of [Empty] and [Add]. In this
+ case, [P] must be compatible with equality of sets *)
+
+ Theorem fold_rec_bis :
+ forall (A:Type)(P : t -> A -> Type)(f : elt -> A -> A)(i:A)(s:t),
+ (forall s s' a, s[=]s' -> P s a -> P s' a) ->
+ (P empty i) ->
+ (forall x a s', In x s -> ~In x s' -> P s' a -> P (add x s') (f x a)) ->
+ P s (fold f s i).
+ Proof.
+ intros A P f i s Pmorphism Pempty Pstep.
+ apply fold_rec; intros.
+ apply Pmorphism with empty; auto with set.
+ rewrite Add_Equal in H1; auto with set.
+ apply Pmorphism with (add x s'); auto with set.
+ Qed.
+
+ Lemma fold_rec_nodep :
+ forall (A:Type)(P : A -> Type)(f : elt -> A -> A)(i:A)(s:t),
+ P i -> (forall x a, In x s -> P a -> P (f x a)) ->
+ P (fold f s i).
+ Proof.
+ intros; apply fold_rec_bis with (P:=fun _ => P); auto.
+ Qed.
+
+ (** [fold_rec_weak] is a weaker principle than [fold_rec_bis] :
+ the step hypothesis must here be applicable to any [x].
+ At the same time, it looks more like an induction principle,
+ and hence can be easier to use. *)
+
+ Lemma fold_rec_weak :
+ forall (A:Type)(P : t -> A -> Type)(f : elt -> A -> A)(i:A),
+ (forall s s' a, s[=]s' -> P s a -> P s' a) ->
+ P empty i ->
+ (forall x a s, ~In x s -> P s a -> P (add x s) (f x a)) ->
+ forall s, P s (fold f s i).
+ Proof.
+ intros; apply fold_rec_bis; auto.
+ Qed.
+
+ Lemma fold_rel :
+ forall (A B:Type)(R : A -> B -> Type)
+ (f : elt -> A -> A)(g : elt -> B -> B)(i : A)(j : B)(s : t),
+ R i j ->
+ (forall x a b, In x s -> R a b -> R (f x a) (g x b)) ->
+ R (fold f s i) (fold g s j).
+ Proof.
+ intros A B R f g i j s Rempty Rstep.
+ do 2 (rewrite fold_1; unfold flip; rewrite <- fold_left_rev_right).
+ set (l:=rev (elements s)).
+ assert (Rstep' : forall x a b, InA x l -> R a b -> R (f x a) (g x b)) by
+ (intros; apply Rstep; auto; rewrite elements_iff, <- InA_rev; auto with *).
+ clearbody l; clear Rstep s.
+ induction l; simpl; auto.
+ Qed.
+
+ (** From the induction principle on [fold], we can deduce some general
+ induction principles on sets. *)
+
+ Lemma set_induction :
+ forall P : t -> Type,
+ (forall s, Empty s -> P s) ->
+ (forall s s', P s -> forall x, ~In x s -> Add x s s' -> P s') ->
+ forall s, P s.
+ Proof.
+ intros. apply (@fold_rec _ (fun s _ => P s) (fun _ _ => tt) tt s); eauto.
+ Qed.
+
+ Lemma set_induction_bis :
+ forall P : t -> Type,
+ (forall s s', s [=] s' -> P s -> P s') ->
+ P empty ->
+ (forall x s, ~In x s -> P s -> P (add x s)) ->
+ forall s, P s.
+ Proof.
+ intros.
+ apply (@fold_rec_bis _ (fun s _ => P s) (fun _ _ => tt) tt s); eauto.
+ Qed.
+
+ (** [fold] can be used to reconstruct the same initial set. *)
+
+ Lemma fold_identity : forall s, fold add s empty [=] s.
+ Proof.
+ intros.
+ apply fold_rec with (P:=fun s acc => acc[=]s); auto with set.
+ intros. rewrite H2; rewrite Add_Equal in H1; auto with set.
+ Qed.
+
+ (** ** Alternative (weaker) specifications for [fold] *)
+
+ (** When [MSets] was first designed, the order in which Ocaml's [Set.fold]
+ takes the set elements was unspecified. This specification reflects
+ this fact:
+ *)
+
+ Lemma fold_0 :
+ forall s (A : Type) (i : A) (f : elt -> A -> A),
+ exists l : list elt,
+ NoDup l /\
+ (forall x : elt, In x s <-> InA x l) /\
+ fold f s i = fold_right f i l.
+ Proof.
+ intros; exists (rev (elements s)); split.
+ apply NoDupA_rev; auto with *.
+ split; intros.
+ rewrite elements_iff; do 2 rewrite InA_alt.
+ split; destruct 1; generalize (In_rev (elements s) x0); exists x0; intuition.
+ rewrite fold_left_rev_right.
+ apply fold_1.
+ Qed.
+
+ (** An alternate (and previous) specification for [fold] was based on
+ the recursive structure of a set. It is now lemmas [fold_1] and
+ [fold_2]. *)
+
+ Lemma fold_1 :
+ forall s (A : Type) (eqA : A -> A -> Prop)
+ (st : Equivalence eqA) (i : A) (f : elt -> A -> A),
+ Empty s -> eqA (fold f s i) i.
+ Proof.
+ unfold Empty; intros; destruct (fold_0 s i f) as (l,(H1, (H2, H3))).
+ rewrite H3; clear H3.
+ generalize H H2; clear H H2; case l; simpl; intros.
+ reflexivity.
+ elim (H e).
+ elim (H2 e); intuition.
+ Qed.
+
+ Lemma fold_2 :
+ forall s s' x (A : Type) (eqA : A -> A -> Prop)
+ (st : Equivalence eqA) (i : A) (f : elt -> A -> A),
+ Proper (E.eq==>eqA==>eqA) f ->
+ transpose eqA f ->
+ ~ In x s -> Add x s s' -> eqA (fold f s' i) (f x (fold f s i)).
+ Proof.
+ intros; destruct (fold_0 s i f) as (l,(Hl, (Hl1, Hl2)));
+ destruct (fold_0 s' i f) as (l',(Hl', (Hl'1, Hl'2))).
+ rewrite Hl2; rewrite Hl'2; clear Hl2 Hl'2.
+ apply fold_right_add with (eqA:=E.eq)(eqB:=eqA); auto.
+ eauto with *.
+ rewrite <- Hl1; auto.
+ intros a; rewrite InA_cons; rewrite <- Hl1; rewrite <- Hl'1;
+ rewrite (H2 a); intuition.
+ Qed.
+
+ (** In fact, [fold] on empty sets is more than equivalent to
+ the initial element, it is Leibniz-equal to it. *)
+
+ Lemma fold_1b :
+ forall s (A : Type)(i : A) (f : elt -> A -> A),
+ Empty s -> (fold f s i) = i.
+ Proof.
+ intros.
+ rewrite FM.fold_1.
+ rewrite elements_Empty in H; rewrite H; simpl; auto.
+ Qed.
+
+ Section Fold_More.
+
+ Variables (A:Type)(eqA:A->A->Prop)(st:Equivalence eqA).
+ Variables (f:elt->A->A)(Comp:Proper (E.eq==>eqA==>eqA) f)(Ass:transpose eqA f).
+
+ Lemma fold_commutes : forall i s x,
+ eqA (fold f s (f x i)) (f x (fold f s i)).
+ Proof.
+ intros.
+ apply fold_rel with (R:=fun u v => eqA u (f x v)); intros.
+ reflexivity.
+ transitivity (f x0 (f x b)); auto.
+ apply Comp; auto.
+ Qed.
+
+ (** ** Fold is a morphism *)
+
+ Lemma fold_init : forall i i' s, eqA i i' ->
+ eqA (fold f s i) (fold f s i').
+ Proof.
+ intros. apply fold_rel with (R:=eqA); auto.
+ intros; apply Comp; auto.
+ Qed.
+
+ Lemma fold_equal :
+ forall i s s', s[=]s' -> eqA (fold f s i) (fold f s' i).
+ Proof.
+ intros i s; pattern s; apply set_induction; clear s; intros.
+ transitivity i.
+ apply fold_1; auto.
+ symmetry; apply fold_1; auto.
+ rewrite <- H0; auto.
+ transitivity (f x (fold f s i)).
+ apply fold_2 with (eqA := eqA); auto.
+ symmetry; apply fold_2 with (eqA := eqA); auto.
+ unfold Add in *; intros.
+ rewrite <- H2; auto.
+ Qed.
+
+ (** ** Fold and other set operators *)
+
+ Lemma fold_empty : forall i, fold f empty i = i.
+ Proof.
+ intros i; apply fold_1b; auto with set.
+ Qed.
+
+ Lemma fold_add : forall i s x, ~In x s ->
+ eqA (fold f (add x s) i) (f x (fold f s i)).
+ Proof.
+ intros; apply fold_2 with (eqA := eqA); auto with set.
+ Qed.
+
+ Lemma add_fold : forall i s x, In x s ->
+ eqA (fold f (add x s) i) (fold f s i).
+ Proof.
+ intros; apply fold_equal; auto with set.
+ Qed.
+
+ Lemma remove_fold_1: forall i s x, In x s ->
+ eqA (f x (fold f (remove x s) i)) (fold f s i).
+ Proof.
+ intros.
+ symmetry.
+ apply fold_2 with (eqA:=eqA); auto with set.
+ Qed.
+
+ Lemma remove_fold_2: forall i s x, ~In x s ->
+ eqA (fold f (remove x s) i) (fold f s i).
+ Proof.
+ intros.
+ apply fold_equal; auto with set.
+ Qed.
+
+ Lemma fold_union_inter : forall i s s',
+ eqA (fold f (union s s') (fold f (inter s s') i))
+ (fold f s (fold f s' i)).
+ Proof.
+ intros; pattern s; apply set_induction; clear s; intros.
+ transitivity (fold f s' (fold f (inter s s') i)).
+ apply fold_equal; auto with set.
+ transitivity (fold f s' i).
+ apply fold_init; auto.
+ apply fold_1; auto with set.
+ symmetry; apply fold_1; auto.
+ rename s'0 into s''.
+ destruct (In_dec x s').
+ (* In x s' *)
+ transitivity (fold f (union s'' s') (f x (fold f (inter s s') i))); auto with set.
+ apply fold_init; auto.
+ apply fold_2 with (eqA:=eqA); auto with set.
+ rewrite inter_iff; intuition.
+ transitivity (f x (fold f s (fold f s' i))).
+ transitivity (fold f (union s s') (f x (fold f (inter s s') i))).
+ apply fold_equal; auto.
+ apply equal_sym; apply union_Equal with x; auto with set.
+ transitivity (f x (fold f (union s s') (fold f (inter s s') i))).
+ apply fold_commutes; auto.
+ apply Comp; auto.
+ symmetry; apply fold_2 with (eqA:=eqA); auto.
+ (* ~(In x s') *)
+ transitivity (f x (fold f (union s s') (fold f (inter s'' s') i))).
+ apply fold_2 with (eqA:=eqA); auto with set.
+ transitivity (f x (fold f (union s s') (fold f (inter s s') i))).
+ apply Comp;auto.
+ apply fold_init;auto.
+ apply fold_equal;auto.
+ apply equal_sym; apply inter_Add_2 with x; auto with set.
+ transitivity (f x (fold f s (fold f s' i))).
+ apply Comp; auto.
+ symmetry; apply fold_2 with (eqA:=eqA); auto.
+ Qed.
+
+ Lemma fold_diff_inter : forall i s s',
+ eqA (fold f (diff s s') (fold f (inter s s') i)) (fold f s i).
+ Proof.
+ intros.
+ transitivity (fold f (union (diff s s') (inter s s'))
+ (fold f (inter (diff s s') (inter s s')) i)).
+ symmetry; apply fold_union_inter; auto.
+ transitivity (fold f s (fold f (inter (diff s s') (inter s s')) i)).
+ apply fold_equal; auto with set.
+ apply fold_init; auto.
+ apply fold_1; auto with set.
+ Qed.
+
+ Lemma fold_union: forall i s s',
+ (forall x, ~(In x s/\In x s')) ->
+ eqA (fold f (union s s') i) (fold f s (fold f s' i)).
+ Proof.
+ intros.
+ transitivity (fold f (union s s') (fold f (inter s s') i)).
+ apply fold_init; auto.
+ symmetry; apply fold_1; auto with set.
+ unfold Empty; intro a; generalize (H a); set_iff; tauto.
+ apply fold_union_inter; auto.
+ Qed.
+
+ End Fold_More.
+
+ Lemma fold_plus :
+ forall s p, fold (fun _ => S) s p = fold (fun _ => S) s 0 + p.
+ Proof.
+ intros. apply fold_rel with (R:=fun u v => u = v + p); simpl; auto.
+ Qed.
+
+ End Fold.
+
+ (** * Cardinal *)
+
+ (** ** Characterization of cardinal in terms of fold *)
+
+ Lemma cardinal_fold : forall s, cardinal s = fold (fun _ => S) s 0.
+ Proof.
+ intros; rewrite cardinal_1; rewrite FM.fold_1.
+ symmetry; apply fold_left_length; auto.
+ Qed.
+
+ (** ** Old specifications for [cardinal]. *)
+
+ Lemma cardinal_0 :
+ forall s, exists l : list elt,
+ NoDupA E.eq l /\
+ (forall x : elt, In x s <-> InA E.eq x l) /\
+ cardinal s = length l.
+ Proof.
+ intros; exists (elements s); intuition; apply cardinal_1.
+ Qed.
+
+ Lemma cardinal_1 : forall s, Empty s -> cardinal s = 0.
+ Proof.
+ intros; rewrite cardinal_fold; apply fold_1; auto with *.
+ Qed.
+
+ Lemma cardinal_2 :
+ forall s s' x, ~ In x s -> Add x s s' -> cardinal s' = S (cardinal s).
+ Proof.
+ intros; do 2 rewrite cardinal_fold.
+ change S with ((fun _ => S) x).
+ apply fold_2; auto.
+ split; congruence.
+ congruence.
+ Qed.
+
+ (** ** Cardinal and (non-)emptiness *)
+
+ Lemma cardinal_Empty : forall s, Empty s <-> cardinal s = 0.
+ Proof.
+ intros.
+ rewrite elements_Empty, FM.cardinal_1.
+ destruct (elements s); intuition; discriminate.
+ Qed.
+
+ Lemma cardinal_inv_1 : forall s, cardinal s = 0 -> Empty s.
+ Proof.
+ intros; rewrite cardinal_Empty; auto.
+ Qed.
+ Hint Resolve cardinal_inv_1.
+
+ Lemma cardinal_inv_2 :
+ forall s n, cardinal s = S n -> { x : elt | In x s }.
+ Proof.
+ intros; rewrite FM.cardinal_1 in H.
+ generalize (elements_2 (s:=s)).
+ destruct (elements s); try discriminate.
+ exists e; auto.
+ Qed.
+
+ Lemma cardinal_inv_2b :
+ forall s, cardinal s <> 0 -> { x : elt | In x s }.
+ Proof.
+ intro; generalize (@cardinal_inv_2 s); destruct cardinal;
+ [intuition|eauto].
+ Qed.
+
+ (** ** Cardinal is a morphism *)
+
+ Lemma Equal_cardinal : forall s s', s[=]s' -> cardinal s = cardinal s'.
+ Proof.
+ symmetry.
+ remember (cardinal s) as n; symmetry in Heqn; revert s s' Heqn H.
+ induction n; intros.
+ apply cardinal_1; rewrite <- H; auto.
+ destruct (cardinal_inv_2 Heqn) as (x,H2).
+ revert Heqn.
+ rewrite (cardinal_2 (s:=remove x s) (s':=s) (x:=x)); auto with set.
+ rewrite (cardinal_2 (s:=remove x s') (s':=s') (x:=x)); eauto with set.
+ Qed.
+
+ Add Morphism cardinal : cardinal_m.
+ Proof.
+ exact Equal_cardinal.
+ Qed.
+
+ Hint Resolve Add_add Add_remove Equal_remove cardinal_inv_1 Equal_cardinal.
+
+ (** ** Cardinal and set operators *)
+
+ Lemma empty_cardinal : cardinal empty = 0.
+ Proof.
+ rewrite cardinal_fold; apply fold_1; auto with *.
+ Qed.
+
+ Hint Immediate empty_cardinal cardinal_1 : set.
+
+ Lemma singleton_cardinal : forall x, cardinal (singleton x) = 1.
+ Proof.
+ intros.
+ rewrite (singleton_equal_add x).
+ replace 0 with (cardinal empty); auto with set.
+ apply cardinal_2 with x; auto with set.
+ Qed.
+
+ Hint Resolve singleton_cardinal: set.
+
+ Lemma diff_inter_cardinal :
+ forall s s', cardinal (diff s s') + cardinal (inter s s') = cardinal s .
+ Proof.
+ intros; do 3 rewrite cardinal_fold.
+ rewrite <- fold_plus.
+ apply fold_diff_inter with (eqA:=@Logic.eq nat); auto with *.
+ congruence.
+ Qed.
+
+ Lemma union_cardinal:
+ forall s s', (forall x, ~(In x s/\In x s')) ->
+ cardinal (union s s')=cardinal s+cardinal s'.
+ Proof.
+ intros; do 3 rewrite cardinal_fold.
+ rewrite <- fold_plus.
+ apply fold_union; auto.
+ split; congruence.
+ congruence.
+ Qed.
+
+ Lemma subset_cardinal :
+ forall s s', s[<=]s' -> cardinal s <= cardinal s' .
+ Proof.
+ intros.
+ rewrite <- (diff_inter_cardinal s' s).
+ rewrite (inter_sym s' s).
+ rewrite (inter_subset_equal H); auto with arith.
+ Qed.
+
+ Lemma subset_cardinal_lt :
+ forall s s' x, s[<=]s' -> In x s' -> ~In x s -> cardinal s < cardinal s'.
+ Proof.
+ intros.
+ rewrite <- (diff_inter_cardinal s' s).
+ rewrite (inter_sym s' s).
+ rewrite (inter_subset_equal H).
+ generalize (@cardinal_inv_1 (diff s' s)).
+ destruct (cardinal (diff s' s)).
+ intro H2; destruct (H2 (refl_equal _) x).
+ set_iff; auto.
+ intros _.
+ change (0 + cardinal s < S n + cardinal s).
+ apply Plus.plus_lt_le_compat; auto with arith.
+ Qed.
+
+ Theorem union_inter_cardinal :
+ forall s s', cardinal (union s s') + cardinal (inter s s') = cardinal s + cardinal s' .
+ Proof.
+ intros.
+ do 4 rewrite cardinal_fold.
+ do 2 rewrite <- fold_plus.
+ apply fold_union_inter with (eqA:=@Logic.eq nat); auto with *.
+ congruence.
+ Qed.
+
+ Lemma union_cardinal_inter :
+ forall s s', cardinal (union s s') = cardinal s + cardinal s' - cardinal (inter s s').
+ Proof.
+ intros.
+ rewrite <- union_inter_cardinal.
+ rewrite Plus.plus_comm.
+ auto with arith.
+ Qed.
+
+ Lemma union_cardinal_le :
+ forall s s', cardinal (union s s') <= cardinal s + cardinal s'.
+ Proof.
+ intros; generalize (union_inter_cardinal s s').
+ intros; rewrite <- H; auto with arith.
+ Qed.
+
+ Lemma add_cardinal_1 :
+ forall s x, In x s -> cardinal (add x s) = cardinal s.
+ Proof.
+ auto with set.
+ Qed.
+
+ Lemma add_cardinal_2 :
+ forall s x, ~In x s -> cardinal (add x s) = S (cardinal s).
+ Proof.
+ intros.
+ do 2 rewrite cardinal_fold.
+ change S with ((fun _ => S) x);
+ apply fold_add with (eqA:=@Logic.eq nat); auto with *.
+ congruence.
+ Qed.
+
+ Lemma remove_cardinal_1 :
+ forall s x, In x s -> S (cardinal (remove x s)) = cardinal s.
+ Proof.
+ intros.
+ do 2 rewrite cardinal_fold.
+ change S with ((fun _ =>S) x).
+ apply remove_fold_1 with (eqA:=@Logic.eq nat); auto with *.
+ congruence.
+ Qed.
+
+ Lemma remove_cardinal_2 :
+ forall s x, ~In x s -> cardinal (remove x s) = cardinal s.
+ Proof.
+ auto with set.
+ Qed.
+
+ Hint Resolve subset_cardinal union_cardinal add_cardinal_1 add_cardinal_2.
+
+End WPropertiesOn.
+
+(** Now comes variants for self-contained weak sets and for full sets.
+ For these variants, only one argument is necessary. Thanks to
+ the subtyping [WS<=S], the [Properties] functor which is meant to be
+ used on modules [(M:S)] can simply be an alias of [WProperties]. *)
+
+Module WProperties (M:WSets) := WPropertiesOn M.E M.
+Module Properties := WProperties.
+
+
+(** Now comes some properties specific to the element ordering,
+ invalid for Weak Sets. *)
+
+Module OrdProperties (M:Sets).
+ Module ME:=OrderedTypeFacts(M.E).
+ Module Import P := Properties M.
+ Import FM.
+ Import M.E.
+ Import M.
+
+ Hint Resolve elements_spec2.
+ Hint Immediate
+ min_elt_spec1 min_elt_spec2 min_elt_spec3
+ max_elt_spec1 max_elt_spec2 max_elt_spec3 : set.
+
+ (** First, a specialized version of SortA_equivlistA_eqlistA: *)
+ Lemma sort_equivlistA_eqlistA : forall l l' : list elt,
+ sort E.lt l -> sort E.lt l' -> equivlistA E.eq l l' -> eqlistA E.eq l l'.
+ Proof.
+ apply SortA_equivlistA_eqlistA; eauto with *.
+ Qed.
+
+ Definition gtb x y := match E.compare x y with Gt => true | _ => false end.
+ Definition leb x := fun y => negb (gtb x y).
+
+ Definition elements_lt x s := List.filter (gtb x) (elements s).
+ Definition elements_ge x s := List.filter (leb x) (elements s).
+
+ Lemma gtb_1 : forall x y, gtb x y = true <-> E.lt y x.
+ Proof.
+ intros; unfold gtb; ME.elim_compare x y; intuition; try discriminate; ME.order.
+ Qed.
+
+ Lemma leb_1 : forall x y, leb x y = true <-> ~E.lt y x.
+ Proof.
+ intros; unfold leb, gtb; ME.elim_compare x y; intuition; try discriminate; ME.order.
+ Qed.
+
+ Lemma gtb_compat : forall x, Proper (E.eq==>Logic.eq) (gtb x).
+ Proof.
+ red; intros x a b H.
+ generalize (gtb_1 x a)(gtb_1 x b); destruct (gtb x a); destruct (gtb x b); auto.
+ intros.
+ symmetry; rewrite H1.
+ apply ME.eq_lt with a; auto.
+ rewrite <- H0; auto.
+ intros.
+ rewrite H0.
+ apply ME.eq_lt with b; auto.
+ rewrite <- H1; auto.
+ Qed.
+
+ Lemma leb_compat : forall x, Proper (E.eq==>Logic.eq) (leb x).
+ Proof.
+ red; intros x a b H; unfold leb.
+ f_equal; apply gtb_compat; auto.
+ Qed.
+ Hint Resolve gtb_compat leb_compat.
+
+ Lemma elements_split : forall x s,
+ elements s = elements_lt x s ++ elements_ge x s.
+ Proof.
+ unfold elements_lt, elements_ge, leb; intros.
+ eapply (@filter_split _ E.eq); eauto with *.
+ intros.
+ rewrite gtb_1 in H.
+ assert (~E.lt y x).
+ unfold gtb in *; ME.elim_compare x y; intuition;
+ try discriminate; ME.order.
+ ME.order.
+ Qed.
+
+ Lemma elements_Add : forall s s' x, ~In x s -> Add x s s' ->
+ eqlistA E.eq (elements s') (elements_lt x s ++ x :: elements_ge x s).
+ Proof.
+ intros; unfold elements_ge, elements_lt.
+ apply sort_equivlistA_eqlistA; auto with set.
+ apply (@SortA_app _ E.eq); auto with *.
+ apply (@filter_sort _ E.eq); auto with *; eauto with *.
+ constructor; auto.
+ apply (@filter_sort _ E.eq); auto with *; eauto with *.
+ rewrite ME.Inf_alt by (apply (@filter_sort _ E.eq); eauto with *).
+ intros.
+ rewrite filter_InA in H1; auto with *; destruct H1.
+ rewrite leb_1 in H2.
+ rewrite <- elements_iff in H1.
+ assert (~E.eq x y).
+ contradict H; rewrite H; auto.
+ ME.order.
+ intros.
+ rewrite filter_InA in H1; auto with *; destruct H1.
+ rewrite gtb_1 in H3.
+ inversion_clear H2.
+ ME.order.
+ rewrite filter_InA in H4; auto with *; destruct H4.
+ rewrite leb_1 in H4.
+ ME.order.
+ red; intros a.
+ rewrite InA_app_iff, InA_cons, !filter_InA, <-!elements_iff,
+ leb_1, gtb_1, (H0 a) by (auto with *).
+ intuition.
+ ME.elim_compare a x; intuition.
+ right; right; split; auto.
+ ME.order.
+ Qed.
+
+ Definition Above x s := forall y, In y s -> E.lt y x.
+ Definition Below x s := forall y, In y s -> E.lt x y.
+
+ Lemma elements_Add_Above : forall s s' x,
+ Above x s -> Add x s s' ->
+ eqlistA E.eq (elements s') (elements s ++ x::nil).
+ Proof.
+ intros.
+ apply sort_equivlistA_eqlistA; auto with set.
+ apply (@SortA_app _ E.eq); auto with *.
+ intros.
+ inversion_clear H2.
+ rewrite <- elements_iff in H1.
+ apply ME.lt_eq with x; auto.
+ inversion H3.
+ red; intros a.
+ rewrite InA_app_iff, InA_cons, InA_nil, <-!elements_iff, (H0 a)
+ by (auto with *).
+ intuition.
+ Qed.
+
+ Lemma elements_Add_Below : forall s s' x,
+ Below x s -> Add x s s' ->
+ eqlistA E.eq (elements s') (x::elements s).
+ Proof.
+ intros.
+ apply sort_equivlistA_eqlistA; auto with set.
+ change (sort E.lt ((x::nil) ++ elements s)).
+ apply (@SortA_app _ E.eq); auto with *.
+ intros.
+ inversion_clear H1.
+ rewrite <- elements_iff in H2.
+ apply ME.eq_lt with x; auto.
+ inversion H3.
+ red; intros a.
+ rewrite InA_cons, <- !elements_iff, (H0 a); intuition.
+ Qed.
+
+ (** Two other induction principles on sets: we can be more restrictive
+ on the element we add at each step. *)
+
+ Lemma set_induction_max :
+ forall P : t -> Type,
+ (forall s : t, Empty s -> P s) ->
+ (forall s s', P s -> forall x, Above x s -> Add x s s' -> P s') ->
+ forall s : t, P s.
+ Proof.
+ intros; remember (cardinal s) as n; revert s Heqn; induction n; intros; auto.
+ case_eq (max_elt s); intros.
+ apply X0 with (remove e s) e; auto with set.
+ apply IHn.
+ assert (S n = S (cardinal (remove e s))).
+ rewrite Heqn; apply cardinal_2 with e; auto with set.
+ inversion H0; auto.
+ red; intros.
+ rewrite remove_iff in H0; destruct H0.
+ generalize (@max_elt_spec2 s e y H H0); ME.order.
+
+ assert (H0:=max_elt_spec3 H).
+ rewrite cardinal_Empty in H0; rewrite H0 in Heqn; inversion Heqn.
+ Qed.
+
+ Lemma set_induction_min :
+ forall P : t -> Type,
+ (forall s : t, Empty s -> P s) ->
+ (forall s s', P s -> forall x, Below x s -> Add x s s' -> P s') ->
+ forall s : t, P s.
+ Proof.
+ intros; remember (cardinal s) as n; revert s Heqn; induction n; intros; auto.
+ case_eq (min_elt s); intros.
+ apply X0 with (remove e s) e; auto with set.
+ apply IHn.
+ assert (S n = S (cardinal (remove e s))).
+ rewrite Heqn; apply cardinal_2 with e; auto with set.
+ inversion H0; auto.
+ red; intros.
+ rewrite remove_iff in H0; destruct H0.
+ generalize (@min_elt_spec2 s e y H H0); ME.order.
+
+ assert (H0:=min_elt_spec3 H).
+ rewrite cardinal_Empty in H0; auto; rewrite H0 in Heqn; inversion Heqn.
+ Qed.
+
+ (** More properties of [fold] : behavior with respect to Above/Below *)
+
+ Lemma fold_3 :
+ forall s s' x (A : Type) (eqA : A -> A -> Prop)
+ (st : Equivalence eqA) (i : A) (f : elt -> A -> A),
+ Proper (E.eq==>eqA==>eqA) f ->
+ Above x s -> Add x s s' -> eqA (fold f s' i) (f x (fold f s i)).
+ Proof.
+ intros.
+ rewrite !FM.fold_1.
+ unfold flip; rewrite <-!fold_left_rev_right.
+ change (f x (fold_right f i (rev (elements s)))) with
+ (fold_right f i (rev (x::nil)++rev (elements s))).
+ apply (@fold_right_eqlistA E.t E.eq A eqA st); auto with *.
+ rewrite <- distr_rev.
+ apply eqlistA_rev.
+ apply elements_Add_Above; auto.
+ Qed.
+
+ Lemma fold_4 :
+ forall s s' x (A : Type) (eqA : A -> A -> Prop)
+ (st : Equivalence eqA) (i : A) (f : elt -> A -> A),
+ Proper (E.eq==>eqA==>eqA) f ->
+ Below x s -> Add x s s' -> eqA (fold f s' i) (fold f s (f x i)).
+ Proof.
+ intros.
+ rewrite !FM.fold_1.
+ change (eqA (fold_left (flip f) (elements s') i)
+ (fold_left (flip f) (x::elements s) i)).
+ unfold flip; rewrite <-!fold_left_rev_right.
+ apply (@fold_right_eqlistA E.t E.eq A eqA st); auto.
+ apply eqlistA_rev.
+ apply elements_Add_Below; auto.
+ Qed.
+
+ (** The following results have already been proved earlier,
+ but we can now prove them with one hypothesis less:
+ no need for [(transpose eqA f)]. *)
+
+ Section FoldOpt.
+ Variables (A:Type)(eqA:A->A->Prop)(st:Equivalence eqA).
+ Variables (f:elt->A->A)(Comp:Proper (E.eq==>eqA==>eqA) f).
+
+ Lemma fold_equal :
+ forall i s s', s[=]s' -> eqA (fold f s i) (fold f s' i).
+ Proof.
+ intros.
+ rewrite !FM.fold_1.
+ unfold flip; rewrite <- !fold_left_rev_right.
+ apply (@fold_right_eqlistA E.t E.eq A eqA st); auto.
+ apply eqlistA_rev.
+ apply sort_equivlistA_eqlistA; auto with set.
+ red; intro a; do 2 rewrite <- elements_iff; auto.
+ Qed.
+
+ Lemma add_fold : forall i s x, In x s ->
+ eqA (fold f (add x s) i) (fold f s i).
+ Proof.
+ intros; apply fold_equal; auto with set.
+ Qed.
+
+ Lemma remove_fold_2: forall i s x, ~In x s ->
+ eqA (fold f (remove x s) i) (fold f s i).
+ Proof.
+ intros.
+ apply fold_equal; auto with set.
+ Qed.
+
+ End FoldOpt.
+
+ (** An alternative version of [choose_3] *)
+
+ Lemma choose_equal : forall s s', Equal s s' ->
+ match choose s, choose s' with
+ | Some x, Some x' => E.eq x x'
+ | None, None => True
+ | _, _ => False
+ end.
+ Proof.
+ intros s s' H;
+ generalize (@choose_spec1 s)(@choose_spec2 s)
+ (@choose_spec1 s')(@choose_spec2 s')(@choose_spec3 s s');
+ destruct (choose s); destruct (choose s'); simpl; intuition.
+ apply H5 with e; rewrite <-H; auto.
+ apply H5 with e; rewrite H; auto.
+ Qed.
+
+End OrdProperties.
diff --git a/theories/MSets/MSetToFiniteSet.v b/theories/MSets/MSetToFiniteSet.v
new file mode 100644
index 0000000000..e8f8ab5e9f
--- /dev/null
+++ b/theories/MSets/MSetToFiniteSet.v
@@ -0,0 +1,158 @@
+(***********************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
+(* \VV/ *************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(***********************************************************************)
+
+(* $Id$ *)
+
+(** * Finite sets library : conversion to old [Finite_sets] *)
+
+Require Import Ensembles Finite_sets.
+Require Import MSetInterface MSetProperties OrderedType2Ex DecidableType2Ex.
+
+(** * Going from [MSets] with usual Leibniz equality
+ to the good old [Ensembles] and [Finite_sets] theory. *)
+
+Module WS_to_Finite_set (U:UsualDecidableType)(M: WSfun U).
+ Module MP:= WProperties_fun U M.
+ Import M MP FM Ensembles Finite_sets.
+
+ Definition mkEns : M.t -> Ensemble M.elt :=
+ fun s x => M.In x s.
+
+ Notation " !! " := mkEns.
+
+ Lemma In_In : forall s x, M.In x s <-> In _ (!!s) x.
+ Proof.
+ unfold In; compute; auto with extcore.
+ Qed.
+
+ Lemma Subset_Included : forall s s', s[<=]s' <-> Included _ (!!s) (!!s').
+ Proof.
+ unfold Subset, Included, In, mkEns; intuition.
+ Qed.
+
+ Notation " a === b " := (Same_set M.elt a b) (at level 70, no associativity).
+
+ Lemma Equal_Same_set : forall s s', s[=]s' <-> !!s === !!s'.
+ Proof.
+ intros.
+ rewrite double_inclusion.
+ unfold Subset, Included, Same_set, In, mkEns; intuition.
+ Qed.
+
+ Lemma empty_Empty_Set : !!M.empty === Empty_set _.
+ Proof.
+ unfold Same_set, Included, mkEns, In.
+ split; intro; set_iff; inversion 1.
+ Qed.
+
+ Lemma Empty_Empty_set : forall s, Empty s -> !!s === Empty_set _.
+ Proof.
+ unfold Same_set, Included, mkEns, In.
+ split; intros.
+ destruct(H x H0).
+ inversion H0.
+ Qed.
+
+ Lemma singleton_Singleton : forall x, !!(M.singleton x) === Singleton _ x .
+ Proof.
+ unfold Same_set, Included, mkEns, In.
+ split; intro; set_iff; inversion 1; try constructor; auto.
+ Qed.
+
+ Lemma union_Union : forall s s', !!(union s s') === Union _ (!!s) (!!s').
+ Proof.
+ unfold Same_set, Included, mkEns, In.
+ split; intro; set_iff; inversion 1; [ constructor 1 | constructor 2 | | ]; auto.
+ Qed.
+
+ Lemma inter_Intersection : forall s s', !!(inter s s') === Intersection _ (!!s) (!!s').
+ Proof.
+ unfold Same_set, Included, mkEns, In.
+ split; intro; set_iff; inversion 1; try constructor; auto.
+ Qed.
+
+ Lemma add_Add : forall x s, !!(add x s) === Add _ (!!s) x.
+ Proof.
+ unfold Same_set, Included, mkEns, In.
+ split; intro; set_iff; inversion 1; auto with sets.
+ inversion H0.
+ constructor 2; constructor.
+ constructor 1; auto.
+ Qed.
+
+ Lemma Add_Add : forall x s s', MP.Add x s s' -> !!s' === Add _ (!!s) x.
+ Proof.
+ unfold Same_set, Included, mkEns, In.
+ split; intros.
+ red in H; rewrite H in H0.
+ destruct H0.
+ inversion H0.
+ constructor 2; constructor.
+ constructor 1; auto.
+ red in H; rewrite H.
+ inversion H0; auto.
+ inversion H1; auto.
+ Qed.
+
+ Lemma remove_Subtract : forall x s, !!(remove x s) === Subtract _ (!!s) x.
+ Proof.
+ unfold Same_set, Included, mkEns, In.
+ split; intro; set_iff; inversion 1; auto with sets.
+ split; auto.
+ contradict H1.
+ inversion H1; auto.
+ Qed.
+
+ Lemma mkEns_Finite : forall s, Finite _ (!!s).
+ Proof.
+ intro s; pattern s; apply set_induction; clear s; intros.
+ intros; replace (!!s) with (Empty_set elt); auto with sets.
+ symmetry; apply Extensionality_Ensembles.
+ apply Empty_Empty_set; auto.
+ replace (!!s') with (Add _ (!!s) x).
+ constructor 2; auto.
+ symmetry; apply Extensionality_Ensembles.
+ apply Add_Add; auto.
+ Qed.
+
+ Lemma mkEns_cardinal : forall s, cardinal _ (!!s) (M.cardinal s).
+ Proof.
+ intro s; pattern s; apply set_induction; clear s; intros.
+ intros; replace (!!s) with (Empty_set elt); auto with sets.
+ rewrite cardinal_1; auto with sets.
+ symmetry; apply Extensionality_Ensembles.
+ apply Empty_Empty_set; auto.
+ replace (!!s') with (Add _ (!!s) x).
+ rewrite (cardinal_2 H0 H1); auto with sets.
+ symmetry; apply Extensionality_Ensembles.
+ apply Add_Add; auto.
+ Qed.
+
+ (** we can even build a function from Finite Ensemble to MSet
+ ... at least in Prop. *)
+
+ Lemma Ens_to_MSet : forall e : Ensemble M.elt, Finite _ e ->
+ exists s:M.t, !!s === e.
+ Proof.
+ induction 1.
+ exists M.empty.
+ apply empty_Empty_Set.
+ destruct IHFinite as (s,Hs).
+ exists (M.add x s).
+ apply Extensionality_Ensembles in Hs.
+ rewrite <- Hs.
+ apply add_Add.
+ Qed.
+
+End WS_to_Finite_set.
+
+
+Module S_to_Finite_set (U:UsualOrderedType)(M: Sfun U) :=
+ WS_to_Finite_set U M.
+
+
diff --git a/theories/MSets/MSetWeakList.v b/theories/MSets/MSetWeakList.v
new file mode 100644
index 0000000000..d5a85e6c2a
--- /dev/null
+++ b/theories/MSets/MSetWeakList.v
@@ -0,0 +1,528 @@
+(***********************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
+(* \VV/ *************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(***********************************************************************)
+
+(* $Id$ *)
+
+(** * Finite sets library *)
+
+(** This file proposes an implementation of the non-dependant
+ interface [MSetWeakInterface.S] using lists without redundancy. *)
+
+Require Import MSetInterface.
+Set Implicit Arguments.
+Unset Strict Implicit.
+
+(** * Functions over lists
+
+ First, we provide sets as lists which are (morally) without redundancy.
+ The specs are proved under the additional condition of no redundancy.
+ And the functions returning sets are proved to preserve this invariant. *)
+
+
+(** ** The set operations. *)
+
+Module Ops (X: DecidableType) <: WOps X.
+
+ Definition elt := X.t.
+ Definition t := list elt.
+
+ Definition empty : t := nil.
+
+ Definition is_empty (l : t) : bool := if l then true else false.
+
+ Fixpoint mem (x : elt) (s : t) : bool :=
+ match s with
+ | nil => false
+ | y :: l =>
+ if X.eq_dec x y then true else mem x l
+ end.
+
+ Fixpoint add (x : elt) (s : t) : t :=
+ match s with
+ | nil => x :: nil
+ | y :: l =>
+ if X.eq_dec x y then s else y :: add x l
+ end.
+
+ Definition singleton (x : elt) : t := x :: nil.
+
+ Fixpoint remove (x : elt) (s : t) : t :=
+ match s with
+ | nil => nil
+ | y :: l =>
+ if X.eq_dec x y then l else y :: remove x l
+ end.
+
+ Definition fold (B : Type) (f : elt -> B -> B) (s : t) (i : B) : B :=
+ fold_left (flip f) s i.
+
+ Definition union (s : t) : t -> t := fold add s.
+
+ Definition diff (s s' : t) : t := fold remove s' s.
+
+ Definition inter (s s': t) : t :=
+ fold (fun x s => if mem x s' then add x s else s) s nil.
+
+ Definition subset (s s' : t) : bool := is_empty (diff s s').
+
+ Definition equal (s s' : t) : bool := andb (subset s s') (subset s' s).
+
+ Fixpoint filter (f : elt -> bool) (s : t) : t :=
+ match s with
+ | nil => nil
+ | x :: l => if f x then x :: filter f l else filter f l
+ end.
+
+ Fixpoint for_all (f : elt -> bool) (s : t) : bool :=
+ match s with
+ | nil => true
+ | x :: l => if f x then for_all f l else false
+ end.
+
+ Fixpoint exists_ (f : elt -> bool) (s : t) : bool :=
+ match s with
+ | nil => false
+ | x :: l => if f x then true else exists_ f l
+ end.
+
+ Fixpoint partition (f : elt -> bool) (s : t) : t * t :=
+ match s with
+ | nil => (nil, nil)
+ | x :: l =>
+ let (s1, s2) := partition f l in
+ if f x then (x :: s1, s2) else (s1, x :: s2)
+ end.
+
+ Definition cardinal (s : t) : nat := length s.
+
+ Definition elements (s : t) : list elt := s.
+
+ Definition choose (s : t) : option elt :=
+ match s with
+ | nil => None
+ | x::_ => Some x
+ end.
+
+End Ops.
+
+(** ** Proofs of set operation specifications. *)
+
+Module MakeRaw (X:DecidableType) <: WRawSets X.
+ Include Ops X.
+
+ Section ForNotations.
+ Notation NoDup := (NoDupA X.eq).
+ Notation In := (InA X.eq).
+
+ Definition IsOk := NoDup.
+
+ Class Ok (s:t) : Prop := { ok : NoDup s }.
+
+ Hint Constructors Ok.
+ Hint Resolve @ok.
+
+ Instance NoDup_Ok `(nd : NoDup s) : Ok s := nd.
+
+ Ltac inv_ok := match goal with
+ | H:Ok (_ :: _) |- _ => apply @ok in H; inversion_clear H; inv_ok
+ | H:Ok nil |- _ => clear H; inv_ok
+ | H:NoDup ?l |- _ => generalize (Build_Ok H); clear H; intro H; inv_ok
+ | _ => idtac
+ end.
+
+ Ltac inv := invlist InA; inv_ok.
+ Ltac constructors := repeat constructor.
+
+ Fixpoint isok l := match l with
+ | nil => true
+ | a::l => negb (mem a l) && isok l
+ end.
+
+ Definition Equal s s' := forall a : elt, In a s <-> In a s'.
+ Definition Subset s s' := forall a : elt, In a s -> In a s'.
+ Definition Empty s := forall a : elt, ~ In a s.
+ Definition For_all (P : elt -> Prop) s := forall x, In x s -> P x.
+ Definition Exists (P : elt -> Prop) s := exists x, In x s /\ P x.
+
+ Lemma In_compat : Proper (X.eq==>eq==>iff) In.
+ Proof.
+ repeat red; intros. subst. rewrite H; auto.
+ Qed.
+
+ Lemma mem_spec : forall s x `{Ok s},
+ mem x s = true <-> In x s.
+ Proof.
+ induction s; intros.
+ split; intros; inv. discriminate.
+ simpl; destruct (X.eq_dec x a); split; intros; inv; auto.
+ right; rewrite <- IHs; auto.
+ rewrite IHs; auto.
+ Qed.
+
+ Lemma isok_iff : forall l, Ok l <-> isok l = true.
+ Proof.
+ induction l.
+ intuition.
+ simpl.
+ rewrite andb_true_iff.
+ rewrite negb_true_iff.
+ rewrite <- IHl.
+ split; intros H. inv.
+ split; auto.
+ apply not_true_is_false. rewrite mem_spec; auto.
+ destruct H; constructors; auto.
+ rewrite <- mem_spec; auto; congruence.
+ Qed.
+
+ Global Instance isok_Ok `(isok l = true) : Ok l | 10.
+ Proof.
+ intros. apply <- isok_iff; auto.
+ Qed.
+
+ Lemma add_spec :
+ forall (s : t) (x y : elt) {Hs : Ok s},
+ In y (add x s) <-> X.eq y x \/ In y s.
+ Proof.
+ induction s; simpl; intros.
+ intuition; inv; auto.
+ destruct X.eq_dec; inv; rewrite InA_cons, ?IHs; intuition.
+ left; eauto.
+ inv; auto.
+ Qed.
+
+ Global Instance add_ok s x `(Ok s) : Ok (add x s).
+ Proof.
+ induction s.
+ simpl; intuition.
+ intros; inv. simpl.
+ destruct X.eq_dec; auto.
+ constructors; auto.
+ intro; inv; auto.
+ rewrite add_spec in *; intuition.
+ Qed.
+
+ Lemma remove_spec :
+ forall (s : t) (x y : elt) {Hs : Ok s},
+ In y (remove x s) <-> In y s /\ ~X.eq y x.
+ Proof.
+ induction s; simpl; intros.
+ intuition; inv; auto.
+ destruct X.eq_dec; inv; rewrite !InA_cons, ?IHs; intuition.
+ elim H. setoid_replace a with y; eauto.
+ elim H3. setoid_replace x with y; eauto.
+ elim n. eauto.
+ Qed.
+
+ Global Instance remove_ok s x `(Ok s) : Ok (remove x s).
+ Proof.
+ induction s; simpl; intros.
+ auto.
+ destruct X.eq_dec; inv; auto.
+ constructors; auto.
+ rewrite remove_spec; intuition.
+ Qed.
+
+ Lemma singleton_ok : forall x : elt, Ok (singleton x).
+ Proof.
+ unfold singleton; simpl; constructors; auto. intro; inv.
+ Qed.
+
+ Lemma singleton_spec : forall x y : elt, In y (singleton x) <-> X.eq y x.
+ Proof.
+ unfold singleton; simpl; split; intros. inv; auto. left; auto.
+ Qed.
+
+ Lemma empty_ok : Ok empty.
+ Proof.
+ unfold empty; constructors.
+ Qed.
+
+ Lemma empty_spec : Empty empty.
+ Proof.
+ unfold Empty, empty; red; intros; inv.
+ Qed.
+
+ Lemma is_empty_spec : forall s : t, is_empty s = true <-> Empty s.
+ Proof.
+ unfold Empty; destruct s; simpl; split; intros; auto.
+ intro; inv.
+ discriminate.
+ elim (H e); auto.
+ Qed.
+
+ Lemma elements_spec1 : forall (s : t) (x : elt), In x (elements s) <-> In x s.
+ Proof.
+ unfold elements; intuition.
+ Qed.
+
+ Lemma elements_spec2w : forall (s : t) {Hs : Ok s}, NoDup (elements s).
+ Proof.
+ unfold elements; auto.
+ Qed.
+
+ Lemma fold_spec :
+ forall (s : t) (A : Type) (i : A) (f : elt -> A -> A),
+ fold f s i = fold_left (flip f) (elements s) i.
+ Proof.
+ reflexivity.
+ Qed.
+
+ Global Instance union_ok s s' `(Ok s, Ok s') : Ok (union s s').
+ Proof.
+ induction s; simpl; auto; intros; inv; unfold flip; auto with *.
+ Qed.
+
+ Lemma union_spec :
+ forall (s s' : t) (x : elt) {Hs : Ok s} {Hs' : Ok s'},
+ In x (union s s') <-> In x s \/ In x s'.
+ Proof.
+ induction s; simpl in *; unfold flip; intros; auto; inv.
+ intuition; inv.
+ rewrite IHs, add_spec, InA_cons; intuition.
+ Qed.
+
+ Global Instance inter_ok s s' `(Ok s, Ok s') : Ok (inter s s').
+ Proof.
+ unfold inter, fold, flip; intros s.
+ set (acc := nil (A:=elt)).
+ assert (Hacc : Ok acc) by constructors.
+ clearbody acc; revert acc Hacc.
+ induction s; simpl; auto; intros. inv.
+ apply IHs; auto.
+ destruct (mem a s'); auto with *.
+ Qed.
+
+ Lemma inter_spec :
+ forall (s s' : t) (x : elt) {Hs : Ok s} {Hs' : Ok s'},
+ In x (inter s s') <-> In x s /\ In x s'.
+ Proof.
+ unfold inter, fold, flip; intros.
+ set (acc := nil (A:=elt)) in *.
+ assert (Hacc : Ok acc) by constructors.
+ assert (IFF : (In x s /\ In x s') <-> (In x s /\ In x s') \/ In x acc).
+ intuition; unfold acc in *; inv.
+ rewrite IFF; clear IFF. clearbody acc.
+ revert acc Hacc x s' Hs Hs'.
+ induction s; simpl; intros.
+ intuition; inv.
+ inv.
+ case_eq (mem a s'); intros Hm.
+ rewrite IHs, add_spec, InA_cons; intuition.
+ rewrite mem_spec in Hm; auto.
+ left; split; auto. rewrite H1; auto.
+ rewrite IHs, InA_cons; intuition.
+ rewrite H2, <- mem_spec in H3; auto. congruence.
+ Qed.
+
+ Global Instance diff_ok s s' `(Ok s, Ok s') : Ok (diff s s').
+ Proof.
+ unfold diff; intros s s'; revert s.
+ induction s'; simpl; unfold flip; auto; intros. inv; auto with *.
+ Qed.
+
+ Lemma diff_spec :
+ forall (s s' : t) (x : elt) {Hs : Ok s} {Hs' : Ok s'},
+ In x (diff s s') <-> In x s /\ ~In x s'.
+ Proof.
+ unfold diff; intros s s'; revert s.
+ induction s'; simpl; unfold flip.
+ intuition; inv.
+ intros. inv.
+ rewrite IHs', remove_spec, InA_cons; intuition.
+ Qed.
+
+ Lemma subset_spec :
+ forall (s s' : t) {Hs : Ok s} {Hs' : Ok s'},
+ subset s s' = true <-> Subset s s'.
+ Proof.
+ unfold subset, Subset; intros.
+ rewrite is_empty_spec.
+ unfold Empty; intros.
+ intuition.
+ specialize (H a). rewrite diff_spec in H; intuition.
+ rewrite <- (mem_spec a) in H |- *. destruct (mem a s'); intuition.
+ rewrite diff_spec in H0; intuition.
+ Qed.
+
+ Lemma equal_spec :
+ forall (s s' : t) {Hs : Ok s} {Hs' : Ok s'},
+ equal s s' = true <-> Equal s s'.
+ Proof.
+ unfold Equal, equal; intros.
+ rewrite andb_true_iff, !subset_spec.
+ unfold Subset; intuition. rewrite <- H; auto. rewrite H; auto.
+ Qed.
+
+ Definition choose_spec1 :
+ forall (s : t) (x : elt), choose s = Some x -> In x s.
+ Proof.
+ destruct s; simpl; intros; inversion H; auto.
+ Qed.
+
+ Definition choose_spec2 : forall s : t, choose s = None -> Empty s.
+ Proof.
+ destruct s; simpl; intros.
+ intros x H0; inversion H0.
+ inversion H.
+ Qed.
+
+ Lemma cardinal_spec :
+ forall (s : t) {Hs : Ok s}, cardinal s = length (elements s).
+ Proof.
+ auto.
+ Qed.
+
+ Lemma filter_spec' : forall s x f,
+ In x (filter f s) -> In x s.
+ Proof.
+ induction s; simpl.
+ intuition; inv.
+ intros; destruct (f a); inv; intuition; right; eauto.
+ Qed.
+
+ Lemma filter_spec :
+ forall (s : t) (x : elt) (f : elt -> bool),
+ Proper (X.eq==>eq) f ->
+ (In x (filter f s) <-> In x s /\ f x = true).
+ Proof.
+ induction s; simpl.
+ intuition; inv.
+ intros.
+ destruct (f a) as [ ]_eqn:E; rewrite ?InA_cons, IHs; intuition.
+ setoid_replace x with a; auto.
+ setoid_replace a with x in E; auto. congruence.
+ Qed.
+
+ Global Instance filter_ok s f `(Ok s) : Ok (filter f s).
+ Proof.
+ induction s; simpl.
+ auto.
+ intros; inv.
+ case (f a); auto.
+ constructors; auto.
+ contradict H0.
+ eapply filter_spec'; eauto.
+ Qed.
+
+ Lemma for_all_spec :
+ forall (s : t) (f : elt -> bool),
+ Proper (X.eq==>eq) f ->
+ (for_all f s = true <-> For_all (fun x => f x = true) s).
+ Proof.
+ unfold For_all; induction s; simpl.
+ intuition. inv.
+ intros; inv.
+ destruct (f a) as [ ]_eqn:F.
+ rewrite IHs; intuition. inv; auto.
+ setoid_replace x with a; auto.
+ split; intros H'; try discriminate.
+ intros.
+ rewrite <- F, <- (H' a); auto.
+ Qed.
+
+ Lemma exists_spec :
+ forall (s : t) (f : elt -> bool),
+ Proper (X.eq==>eq) f ->
+ (exists_ f s = true <-> Exists (fun x => f x = true) s).
+ Proof.
+ unfold Exists; induction s; simpl.
+ split; [discriminate| intros (x & Hx & _); inv].
+ intros.
+ destruct (f a) as [ ]_eqn:F.
+ split; auto.
+ exists a; auto.
+ rewrite IHs; firstorder.
+ inv.
+ setoid_replace a with x in F; auto; congruence.
+ exists x; auto.
+ Qed.
+
+ Lemma partition_spec1 :
+ forall (s : t) (f : elt -> bool),
+ Proper (X.eq==>eq) f ->
+ Equal (fst (partition f s)) (filter f s).
+ Proof.
+ simple induction s; simpl; auto; unfold Equal.
+ firstorder.
+ intros x l Hrec f Hf.
+ generalize (Hrec f Hf); clear Hrec.
+ case (partition f l); intros s1 s2; simpl; intros.
+ case (f x); simpl; firstorder; inversion H0; intros; firstorder.
+ Qed.
+
+ Lemma partition_spec2 :
+ forall (s : t) (f : elt -> bool),
+ Proper (X.eq==>eq) f ->
+ Equal (snd (partition f s)) (filter (fun x => negb (f x)) s).
+ Proof.
+ simple induction s; simpl; auto; unfold Equal.
+ firstorder.
+ intros x l Hrec f Hf.
+ generalize (Hrec f Hf); clear Hrec.
+ case (partition f l); intros s1 s2; simpl; intros.
+ case (f x); simpl; firstorder; inversion H0; intros; firstorder.
+ Qed.
+
+ Lemma partition_ok1' :
+ forall (s : t) {Hs : Ok s} (f : elt -> bool)(x:elt),
+ In x (fst (partition f s)) -> In x s.
+ Proof.
+ induction s; simpl; auto; intros. inv.
+ generalize (IHs H1 f x).
+ destruct (f a); destruct (partition f s); simpl in *; auto.
+ inversion_clear H; auto.
+ Qed.
+
+ Lemma partition_ok2' :
+ forall (s : t) {Hs : Ok s} (f : elt -> bool)(x:elt),
+ In x (snd (partition f s)) -> In x s.
+ Proof.
+ induction s; simpl; auto; intros. inv.
+ generalize (IHs H1 f x).
+ destruct (f a); destruct (partition f s); simpl in *; auto.
+ inversion_clear H; auto.
+ Qed.
+
+ Global Instance partition_ok1 s f `(Ok s) : Ok (fst (partition f s)).
+ Proof.
+ simple induction s; simpl.
+ auto.
+ intros x l Hrec f Hs; inv.
+ generalize (@partition_ok1' _ _ f x).
+ generalize (Hrec f H0).
+ case (f x); case (partition f l); simpl; constructors; auto.
+ Qed.
+
+ Global Instance partition_ok2 s f `(Ok s) : Ok (snd (partition f s)).
+ Proof.
+ simple induction s; simpl.
+ auto.
+ intros x l Hrec f Hs; inv.
+ generalize (@partition_ok2' _ _ f x).
+ generalize (Hrec f H0).
+ case (f x); case (partition f l); simpl; constructors; auto.
+ Qed.
+
+ End ForNotations.
+
+ Definition In := InA X.eq.
+ Definition eq := Equal.
+ Instance eq_equiv : Equivalence eq.
+
+End MakeRaw.
+
+(** * Encapsulation
+
+ Now, in order to really provide a functor implementing [S], we
+ need to encapsulate everything into a type of lists without redundancy. *)
+
+Module Make (X: DecidableType) <: WSets with Module E := X.
+ Module Raw := MakeRaw X.
+ Include WRaw2Sets X Raw.
+End Make.
+
diff --git a/theories/MSets/MSets.v b/theories/MSets/MSets.v
new file mode 100644
index 0000000000..42966c7fc2
--- /dev/null
+++ b/theories/MSets/MSets.v
@@ -0,0 +1,23 @@
+(***********************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
+(* \VV/ *************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(***********************************************************************)
+
+(* $Id$ *)
+
+Require Export OrderedType2.
+Require Export OrderedType2Ex.
+Require Export OrderedType2Alt.
+Require Export DecidableType2.
+Require Export DecidableType2Ex.
+Require Export MSetInterface.
+Require Export MSetFacts.
+Require Export MSetDecide.
+Require Export MSetProperties.
+Require Export MSetEqProperties.
+Require Export MSetWeakList.
+Require Export MSetList.
+Require Export MSetAVL. \ No newline at end of file
diff --git a/theories/Logic/DecidableType.v b/theories/Structures/DecidableType.v
index 625f776bfa..625f776bfa 100644
--- a/theories/Logic/DecidableType.v
+++ b/theories/Structures/DecidableType.v
diff --git a/theories/Structures/DecidableType2.v b/theories/Structures/DecidableType2.v
new file mode 100644
index 0000000000..0b3ebfa295
--- /dev/null
+++ b/theories/Structures/DecidableType2.v
@@ -0,0 +1,164 @@
+(***********************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
+(* \VV/ *************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(***********************************************************************)
+
+(* $Id$ *)
+
+Require Export SetoidList2.
+Set Implicit Arguments.
+Unset Strict Implicit.
+
+(** * Types with Equalities, and nothing more (for subtyping purpose) *)
+
+Module Type EqualityType.
+ Parameter Inline t : Type.
+ Parameter Inline eq : t -> t -> Prop.
+ Instance eq_equiv : Equivalence eq.
+
+ Hint Resolve (@Equivalence_Reflexive _ _ eq_equiv).
+ Hint Resolve (@Equivalence_Transitive _ _ eq_equiv).
+ Hint Immediate (@Equivalence_Symmetric _ _ eq_equiv).
+End EqualityType.
+
+(** * Types with decidable Equalities (but no ordering) *)
+
+Module Type DecidableType.
+ Include Type EqualityType.
+ Parameter eq_dec : forall x y : t, { eq x y } + { ~ eq x y }.
+End DecidableType.
+
+(** * Additional notions about keys and datas used in FMap *)
+
+Module KeyDecidableType(D:DecidableType).
+ Import D.
+
+ Section Elt.
+ Variable elt : Type.
+ Notation key:=t.
+
+ Definition eqk (p p':key*elt) := eq (fst p) (fst p').
+ Definition eqke (p p':key*elt) :=
+ eq (fst p) (fst p') /\ (snd p) = (snd p').
+
+ Global Hint Unfold eqk eqke.
+ Global Hint Extern 2 (eqke ?a ?b) => split.
+
+ (* eqke is stricter than eqk *)
+
+ Lemma eqke_eqk : forall x x', eqke x x' -> eqk x x'.
+ Proof.
+ unfold eqk, eqke; intuition.
+ Qed.
+
+ (* eqk, eqke are equalities *)
+
+ Instance eqk_equiv : Equivalence eqk.
+ Proof.
+ constructor; eauto.
+ Qed.
+
+ Instance eqke_equiv : Equivalence eqke.
+ Proof.
+ constructor. auto.
+ red; unfold eqke; intuition.
+ red; unfold eqke; intuition; [ eauto | congruence ].
+ Qed.
+
+ Global Hint Resolve (@Equivalence_Reflexive _ _ eqk_equiv).
+ Global Hint Resolve (@Equivalence_Transitive _ _ eqk_equiv).
+ Global Hint Immediate (@Equivalence_Symmetric _ _ eqk_equiv).
+ Global Hint Resolve (@Equivalence_Reflexive _ _ eqke_equiv).
+ Global Hint Resolve (@Equivalence_Transitive _ _ eqke_equiv).
+ Global Hint Immediate (@Equivalence_Symmetric _ _ eqke_equiv).
+
+ Lemma InA_eqke_eqk :
+ forall x m, InA eqke x m -> InA eqk x m.
+ Proof.
+ unfold eqke; induction 1; intuition.
+ Qed.
+ Global Hint Resolve InA_eqke_eqk.
+
+ Lemma InA_eqk : forall p q m, eqk p q -> InA eqk p m -> InA eqk q m.
+ Proof.
+ intros. rewrite <- H; auto.
+ Qed.
+
+ Definition MapsTo (k:key)(e:elt):= InA eqke (k,e).
+ Definition In k m := exists e:elt, MapsTo k e m.
+
+ Global Hint Unfold MapsTo In.
+
+ (* An alternative formulation for [In k l] is [exists e, InA eqk (k,e) l] *)
+
+ Lemma In_alt : forall k l, In k l <-> exists e, InA eqk (k,e) l.
+ Proof.
+ firstorder.
+ exists x; auto.
+ induction H.
+ destruct y.
+ exists e; auto.
+ destruct IHInA as [e H0].
+ exists e; auto.
+ Qed.
+
+ Global Instance MapsTo_compat :
+ Proper (eq==>Logic.eq==>Logic.eq==>iff) MapsTo.
+ Proof.
+ intros x x' Hxx' e e' Hee' l l' Hll'; subst.
+ unfold MapsTo.
+ assert (EQN : eqke (x,e') (x',e')) by (compute;auto).
+ rewrite EQN; intuition.
+ Qed.
+
+ Lemma MapsTo_eq : forall l x y e, eq x y -> MapsTo x e l -> MapsTo y e l.
+ Proof.
+ intros; rewrite <- H; auto.
+ Qed.
+
+ Global Instance In_compat : Proper (eq==>Logic.eq==>iff) In.
+ Proof.
+ intros x x' Hxx' l l' Hll'; subst l.
+ unfold In.
+ split; intros (e,He); exists e.
+ rewrite <- Hxx'; auto.
+ rewrite Hxx'; auto.
+ Qed.
+
+ Lemma In_eq : forall l x y, eq x y -> In x l -> In y l.
+ Proof.
+ intros; rewrite <- H; auto.
+ Qed.
+
+ Lemma In_inv : forall k k' e l, In k ((k',e) :: l) -> eq k k' \/ In k l.
+ Proof.
+ inversion 1.
+ inversion_clear H0; eauto.
+ destruct H1; simpl in *; intuition.
+ Qed.
+
+ Lemma In_inv_2 : forall k k' e e' l,
+ InA eqk (k, e) ((k', e') :: l) -> ~ eq k k' -> InA eqk (k, e) l.
+ Proof.
+ inversion_clear 1; compute in H0; intuition.
+ Qed.
+
+ Lemma In_inv_3 : forall x x' l,
+ InA eqke x (x' :: l) -> ~ eqk x x' -> InA eqke x l.
+ Proof.
+ inversion_clear 1; compute in H0; intuition.
+ Qed.
+
+ End Elt.
+
+ Hint Resolve In_inv_2 In_inv_3.
+
+End KeyDecidableType.
+
+
+
+
+
diff --git a/theories/Structures/DecidableType2Ex.v b/theories/Structures/DecidableType2Ex.v
new file mode 100644
index 0000000000..7b9c052ec4
--- /dev/null
+++ b/theories/Structures/DecidableType2Ex.v
@@ -0,0 +1,85 @@
+(***********************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
+(* \VV/ *************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(***********************************************************************)
+
+(* $Id$ *)
+
+Require Import DecidableType2.
+Set Implicit Arguments.
+Unset Strict Implicit.
+
+(** * Examples of Decidable Type structures. *)
+
+(** A particular case of [DecidableType] where
+ the equality is the usual one of Coq. *)
+
+Module Type UsualDecidableType.
+ Parameter Inline t : Type.
+ Definition eq := @eq t.
+ Program Instance eq_equiv : Equivalence eq.
+ Parameter eq_dec : forall x y, { eq x y }+{~eq x y }.
+End UsualDecidableType.
+
+(** a [UsualDecidableType] is in particular an [DecidableType]. *)
+
+Module UDT_to_DT (U:UsualDecidableType) <: DecidableType := U.
+
+(** an shortcut for easily building a UsualDecidableType *)
+
+Module Type MiniDecidableType.
+ Parameter Inline t : Type.
+ Parameter eq_dec : forall x y:t, { x=y }+{ x<>y }.
+End MiniDecidableType.
+
+Module Make_UDT (M:MiniDecidableType) <: UsualDecidableType.
+ Definition t:=M.t.
+ Definition eq := @eq t.
+ Program Instance eq_equiv : Equivalence eq.
+ Definition eq_dec := M.eq_dec.
+End Make_UDT.
+
+(** From two decidable types, we can build a new DecidableType
+ over their cartesian product. *)
+
+Module PairDecidableType(D1 D2:DecidableType) <: DecidableType.
+
+ Definition t := prod D1.t D2.t.
+
+ Definition eq x y := D1.eq (fst x) (fst y) /\ D2.eq (snd x) (snd y).
+
+ Instance eq_equiv : Equivalence eq.
+ Proof.
+ constructor.
+ intros (x1,x2); red; simpl; auto.
+ intros (x1,x2) (y1,y2); unfold eq; simpl; intuition.
+ intros (x1,x2) (y1,y2) (z1,z2); unfold eq; simpl; intuition eauto.
+ Qed.
+
+ Definition eq_dec : forall x y, { eq x y }+{ ~eq x y }.
+ Proof.
+ intros (x1,x2) (y1,y2); unfold eq; simpl.
+ destruct (D1.eq_dec x1 y1); destruct (D2.eq_dec x2 y2); intuition.
+ Defined.
+
+End PairDecidableType.
+
+(** Similarly for pairs of UsualDecidableType *)
+
+Module PairUsualDecidableType(D1 D2:UsualDecidableType) <: UsualDecidableType.
+ Definition t := prod D1.t D2.t.
+ Definition eq := @eq t.
+ Program Instance eq_equiv : Equivalence eq.
+ Definition eq_dec : forall x y, { eq x y }+{ ~eq x y }.
+ Proof.
+ intros (x1,x2) (y1,y2);
+ destruct (D1.eq_dec x1 y1); destruct (D2.eq_dec x2 y2);
+ unfold eq, D1.eq, D2.eq in *; simpl;
+ (left; f_equal; auto; fail) ||
+ (right; intro H; injection H; auto).
+ Defined.
+
+End PairUsualDecidableType.
diff --git a/theories/Logic/DecidableTypeEx.v b/theories/Structures/DecidableTypeEx.v
index 022102f70d..022102f70d 100644
--- a/theories/Logic/DecidableTypeEx.v
+++ b/theories/Structures/DecidableTypeEx.v
diff --git a/theories/FSets/OrderedType.v b/theories/Structures/OrderedType.v
index f17eb43a95..f17eb43a95 100644
--- a/theories/FSets/OrderedType.v
+++ b/theories/Structures/OrderedType.v
diff --git a/theories/Structures/OrderedType2.v b/theories/Structures/OrderedType2.v
new file mode 100644
index 0000000000..e1b7f4e22c
--- /dev/null
+++ b/theories/Structures/OrderedType2.v
@@ -0,0 +1,680 @@
+(***********************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
+(* \VV/ *************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(***********************************************************************)
+
+(* $Id$ *)
+
+Require Export SetoidList2 DecidableType2.
+Set Implicit Arguments.
+Unset Strict Implicit.
+
+(** * Ordered types *)
+
+Definition Cmp (A:Type)(eq lt : relation A) c :=
+ match c with
+ | Eq => eq
+ | Lt => lt
+ | Gt => flip lt
+ end.
+
+Module Type MiniOrderedType.
+ Include Type EqualityType.
+
+ Parameter Inline lt : t -> t -> Prop.
+ Instance lt_strorder : StrictOrder lt.
+ Instance lt_compat : Proper (eq==>eq==>iff) lt.
+
+ Parameter compare : t -> t -> comparison.
+ Axiom compare_spec : forall x y, Cmp eq lt (compare x y) x y.
+
+End MiniOrderedType.
+
+Module Type OrderedType.
+ Include Type MiniOrderedType.
+
+ (** A [eq_dec] can be deduced from [compare] below. But adding this
+ redundant field allows to see an OrderedType as a DecidableType. *)
+ Parameter eq_dec : forall x y, { eq x y } + { ~ eq x y }.
+
+End OrderedType.
+
+Module MOT_to_OT (Import O : MiniOrderedType) <: OrderedType.
+ Include O.
+
+ Definition eq_dec : forall x y : t, {eq x y} + {~ eq x y}.
+ Proof.
+ intros.
+ generalize (compare_spec x y); destruct (compare x y);
+ unfold Cmp, flip; intros.
+ left; auto.
+ right. intro H'; rewrite <- H' in H.
+ apply (StrictOrder_Irreflexive x); auto.
+ right. intro H'; rewrite <- H' in H.
+ apply (StrictOrder_Irreflexive x); auto.
+ Defined.
+
+End MOT_to_OT.
+
+(** * Ordered types properties *)
+
+(** Additional properties that can be derived from signature
+ [OrderedType]. *)
+
+Module OrderedTypeFacts (Import O: OrderedType).
+
+ Infix "==" := eq (at level 70, no associativity) : order.
+ Infix "<" := lt : order.
+ Notation "x <= y" := (~lt y x) : order.
+ Infix "?=" := compare (at level 70, no associativity) : order.
+
+ Local Open Scope order.
+
+ (** The following lemmas are re-phrasing of eq_equiv and lt_strorder.
+ Interest: compatibility, simple use (e.g. in tactic order), etc. *)
+
+ Definition eq_refl (x:t) : x==x := Equivalence_Reflexive x.
+
+ Definition eq_sym (x y:t) : x==y -> y==x := Equivalence_Symmetric x y.
+
+ Definition eq_trans (x y z:t) : x==y -> y==z -> x==z :=
+ Equivalence_Transitive x y z.
+
+ Definition lt_trans (x y z:t) : x<y -> y<z -> x<z :=
+ StrictOrder_Transitive x y z.
+
+ Definition lt_antirefl (x:t) : ~x<x := StrictOrder_Irreflexive x.
+
+ Lemma lt_not_eq : forall x y, x<y -> ~x==y.
+ Proof.
+ intros x y H H'. rewrite H' in H.
+ apply lt_antirefl with y; auto.
+ Qed.
+
+ Lemma lt_eq : forall x y z, x<y -> y==z -> x<z.
+ Proof.
+ intros x y z H H'. rewrite <- H'; auto.
+ Qed.
+
+ Lemma eq_lt : forall x y z, x==y -> y<z -> x<z.
+ Proof.
+ intros x y z H H'. rewrite H; auto.
+ Qed.
+
+ Lemma le_eq : forall x y z, x<=y -> y==z -> x<=z.
+ Proof.
+ intros x y z H H' H''. rewrite H' in H; auto.
+ Qed.
+
+ Lemma eq_le : forall x y z, x==y -> y<=z -> x<=z.
+ Proof.
+ intros x y z H H'. rewrite H; auto.
+ Qed.
+
+ Lemma neq_eq : forall x y z, ~x==y -> y==z -> ~x==z.
+ Proof.
+ intros x y z H H'; rewrite <-H'; auto.
+ Qed.
+
+ Lemma eq_neq : forall x y z, x==y -> ~y==z -> ~x==z.
+ Proof.
+ intros x y z H H'; rewrite H; auto.
+ Qed.
+
+ Hint Resolve eq_trans eq_refl lt_trans.
+ Hint Immediate eq_sym eq_lt lt_eq le_eq eq_le neq_eq eq_neq.
+
+ Ltac elim_compare x y :=
+ generalize (compare_spec x y); destruct (compare x y);
+ unfold Cmp, flip.
+
+ Lemma le_lt_trans : forall x y z, x<=y -> y<z -> x<z.
+ Proof.
+ intros. elim_compare x y; intro H'.
+ rewrite H'; auto.
+ transitivity y; auto.
+ intuition.
+ Qed.
+
+ Lemma lt_le_trans : forall x y z, x<y -> y<=z -> x<z.
+ Proof.
+ intros. elim_compare y z; intro H'.
+ rewrite <- H'; auto.
+ transitivity y; auto.
+ intuition.
+ Qed.
+
+ Lemma le_trans : forall x y z, x<=y -> y<=z -> x<=z.
+ Proof.
+ intros x y z Hxy Hyz Hzx.
+ apply Hxy.
+ eapply le_lt_trans; eauto.
+ Qed.
+
+ Lemma le_antisym : forall x y, x<=y -> y<=x -> x==y.
+ Proof.
+ intros. elim_compare x y; intuition.
+ Qed.
+
+ Lemma le_neq : forall x y, x<=y -> ~x==y -> x<y.
+ Proof.
+ intros. elim_compare x y; intuition.
+ Qed.
+
+ Lemma neq_sym : forall x y, ~x==y -> ~y==x.
+ Proof.
+ intuition.
+ Qed.
+
+(** The order tactic *)
+
+(** This tactic is designed to solve systems of (in)equations
+ involving eq and lt and ~eq and ~lt (i.e. ge). All others
+ parts of the goal will be discarded. This tactic is
+ domain-agnostic : it will only use equivalence+order axioms.
+ Moreover it doesn't directly use totality of the order
+ (but uses above lemmas such as le_trans that rely on it).
+ A typical use of this tactic is transitivity problems. *)
+
+Definition hide_eq := eq.
+
+(** order_eq : replace x by y in all (in)equations thanks
+ to equality EQ (where eq has been hidden in order to avoid
+ self-rewriting).
+
+ NB: order_saturate_eq could be written in a shorter way thanks
+ to rewrite, but proof terms would be uglier *)
+
+Ltac order_eq x y EQ :=
+ let rewr H t := generalize t; clear H; intro H
+ in
+ match goal with
+ | H : x == _ |- _ => rewr H (eq_trans (eq_sym EQ) H); order_eq x y EQ
+ | H : _ == x |- _ => rewr H (eq_trans H EQ); order_eq x y EQ
+ | H : ~x == _ |- _ => rewr H (eq_neq (eq_sym EQ) H); order_eq x y EQ
+ | H : ~_ == x |- _ => rewr H (neq_eq H EQ); order_eq x y EQ
+ | H : x < ?z |- _ => rewr H (eq_lt (eq_sym EQ) H); order_eq x y EQ
+ | H : ?z < x |- _ => rewr H (lt_eq H EQ); order_eq x y EQ
+ | H : x <= ?z |- _ => rewr H (eq_le (eq_sym EQ) H); order_eq x y EQ
+ | H : ?z <= x |- _ => rewr H (le_eq H EQ); order_eq x y EQ
+ (* NB: no negation in the goal, see below *)
+ | |- x == ?z => apply eq_trans with y; [apply EQ| ]; order_eq x y EQ
+ | |- ?z == x => apply eq_trans with y; [ | apply (eq_sym EQ) ];
+ order_eq x y EQ
+ | |- x < ?z => apply eq_lt with y; [apply EQ| ]; order_eq x y EQ
+ | |- ?z < x => apply lt_eq with y; [ | apply (eq_sym EQ) ];
+ order_eq x y EQ
+ | _ => clear EQ
+end.
+
+Ltac order := intros; trivial;
+ match goal with
+ | |- ~ _ => intro; order
+ | H : ?A -> False |- _ => change (~A) in H; order
+ (* First, successful situations *)
+ | H : ?x < ?x |- _ => elim (lt_antirefl H)
+ | H : ~ ?x == ?x |- _ => elim (H (Equivalence_Reflexive x))
+ | |- ?x == ?x => apply (Equivalence_Reflexive x)
+ (* Second, useless hyps or goal *)
+ | H : ?x == ?x |- _ => clear H; order
+ | H : ?x <= ?x |- _ => clear H; order
+ | |- ?x < ?x => elimtype False; order
+ (* We eliminate equalities *)
+ | H : ?x == ?y |- _ =>
+ change (hide_eq x y) in H; order_eq x y H; order
+ (* Simultaneous le and ge is eq *)
+ | H1 : ?x <= ?y, H2 : ?y <= ?x |- _ =>
+ generalize (le_antisym H1 H2); clear H1 H2; intro; order
+ (* Simultaneous le and ~eq is lt *)
+ | H1: ?x <= ?y, H2: ~ ?x == ?y |- _ =>
+ generalize (le_neq H1 H2); clear H1 H2; intro; order
+ | H1: ?x <= ?y, H2: ~ ?y == ?x |- _ =>
+ generalize (le_neq H1 (neq_sym H2)); clear H1 H2; intro; order
+ (* Transitivity of lt and le *)
+ | H1 : ?x < ?y, H2 : ?y < ?z |- _ =>
+ match goal with
+ | H : x < z |- _ => fail 1
+ | _ => generalize (lt_trans H1 H2); intro; order
+ end
+ | H1 : ?x <= ?y, H2 : ?y < ?z |- _ =>
+ match goal with
+ | H : x < z |- _ => fail 1
+ | _ => generalize (le_lt_trans H1 H2); intro; order
+ end
+ | H1 : ?x < ?y, H2 : ?y <= ?z |- _ =>
+ match goal with
+ | H : x < z |- _ => fail 1
+ | _ => generalize (lt_le_trans H1 H2); intro; order
+ end
+ | H1 : ?x <= ?y, H2 : ?y <= ?z |- _ =>
+ match goal with
+ | H : x <= z |- _ => fail 1
+ | _ => generalize (le_trans H1 H2); intro; order
+ end
+ | _ => auto; fail
+end.
+
+Ltac false_order := elimtype False; order.
+
+ Lemma gt_not_eq : forall x y, lt y x -> ~ eq x y.
+ Proof.
+ order.
+ Qed.
+
+ Lemma eq_not_lt : forall x y : t, eq x y -> ~ lt x y.
+ Proof.
+ order.
+ Qed.
+
+ Hint Resolve gt_not_eq eq_not_lt.
+
+ Lemma eq_not_gt : forall x y : t, eq x y -> ~ lt y x.
+ Proof.
+ order.
+ Qed.
+
+ Lemma lt_not_gt : forall x y : t, lt x y -> ~ lt y x.
+ Proof.
+ order.
+ Qed.
+
+ Hint Resolve eq_not_gt lt_antirefl lt_not_gt.
+
+ Lemma compare_eq_iff : forall x y, (x ?= y) = Eq <-> x==y.
+ Proof.
+ intros; elim_compare x y; intuition; try discriminate; order.
+ Qed.
+
+ Lemma compare_lt_iff : forall x y, (x ?= y) = Lt <-> x<y.
+ Proof.
+ intros; elim_compare x y; intuition; try discriminate; order.
+ Qed.
+
+ Lemma compare_gt_iff : forall x y, (x ?= y) = Gt <-> y<x.
+ Proof.
+ intros; elim_compare x y; intuition; try discriminate; order.
+ Qed.
+
+ Lemma compare_ge_iff : forall x y, (x ?= y) <> Lt <-> y<=x.
+ Proof.
+ intros; rewrite compare_lt_iff; intuition.
+ Qed.
+
+ Lemma compare_le_iff : forall x y, (x ?= y) <> Gt <-> x<=y.
+ Proof.
+ intros; rewrite compare_gt_iff; intuition.
+ Qed.
+
+ Hint Rewrite compare_eq_iff compare_lt_iff compare_gt_iff : order.
+
+ Instance compare_compat : Proper (eq==>eq==>Logic.eq) compare.
+ Proof.
+ intros x x' Hxx' y y' Hyy'.
+ elim_compare x' y'; intros; autorewrite with order; order.
+ Qed.
+
+ Lemma compare_refl : forall x, (x ?= x) = Eq.
+ Proof.
+ intros; elim_compare x x; auto; order.
+ Qed.
+
+ Lemma compare_antisym : forall x y, (y ?= x) = CompOpp (x ?= y).
+ Proof.
+ intros; elim_compare x y; simpl; intros; autorewrite with order; order.
+ Qed.
+
+ (** For compatibility reasons *)
+ Definition eq_dec := eq_dec.
+
+ Lemma lt_dec : forall x y : t, {lt x y} + {~ lt x y}.
+ Proof.
+ intros; elim_compare x y; [ right | left | right ]; auto.
+ Defined.
+
+ Definition eqb x y : bool := if eq_dec x y then true else false.
+
+ Lemma if_eq_dec : forall x y (B:Type)(b b':B),
+ (if eq_dec x y then b else b') =
+ (match compare x y with Eq => b | _ => b' end).
+ Proof.
+ intros; destruct eq_dec; elim_compare x y; auto; order.
+ Qed.
+
+ Lemma eqb_alt :
+ forall x y, eqb x y = match compare x y with Eq => true | _ => false end.
+ Proof.
+ unfold eqb; intros; apply if_eq_dec.
+ Qed.
+
+ Instance eqb_compat : Proper (eq==>eq==>Logic.eq) eqb.
+ Proof.
+ intros x x' Hxx' y y' Hyy'.
+ rewrite 2 eqb_alt, Hxx', Hyy'; auto.
+ Qed.
+
+
+(* Specialization of resuts about lists modulo. *)
+
+Section ForNotations.
+
+Notation In:=(InA eq).
+Notation Inf:=(lelistA lt).
+Notation Sort:=(sort lt).
+Notation NoDup:=(NoDupA eq).
+
+Lemma In_eq : forall l x y, eq x y -> In x l -> In y l.
+Proof. intros. rewrite <- H; auto. Qed.
+
+Lemma ListIn_In : forall l x, List.In x l -> In x l.
+Proof. exact (In_InA eq_equiv). Qed.
+
+Lemma Inf_lt : forall l x y, lt x y -> Inf y l -> Inf x l.
+Proof. exact (InfA_ltA lt_strorder). Qed.
+
+Lemma Inf_eq : forall l x y, eq x y -> Inf y l -> Inf x l.
+Proof. exact (InfA_eqA eq_equiv lt_strorder lt_compat). Qed.
+
+Lemma Sort_Inf_In : forall l x a, Sort l -> Inf a l -> In x l -> lt a x.
+Proof. exact (SortA_InfA_InA eq_equiv lt_strorder lt_compat). Qed.
+
+Lemma ListIn_Inf : forall l x, (forall y, List.In y l -> lt x y) -> Inf x l.
+Proof. exact (@In_InfA t lt). Qed.
+
+Lemma In_Inf : forall l x, (forall y, In y l -> lt x y) -> Inf x l.
+Proof. exact (InA_InfA eq_equiv (ltA:=lt)). Qed.
+
+Lemma Inf_alt :
+ forall l x, Sort l -> (Inf x l <-> (forall y, In y l -> lt x y)).
+Proof. exact (InfA_alt eq_equiv lt_strorder lt_compat). Qed.
+
+Lemma Sort_NoDup : forall l, Sort l -> NoDup l.
+Proof. exact (SortA_NoDupA eq_equiv lt_strorder lt_compat) . Qed.
+
+End ForNotations.
+
+Hint Resolve ListIn_In Sort_NoDup Inf_lt.
+Hint Immediate In_eq Inf_lt.
+
+End OrderedTypeFacts.
+
+Definition ProdRel {A B}(RA:relation A)(RB:relation B) : relation (A*B) :=
+ fun p p' => RA (fst p) (fst p') /\ RB (snd p) (snd p').
+
+Definition FstRel {A B}(R:relation A) : relation (A*B) :=
+ fun p p' => R (fst p) (fst p').
+
+Definition SndRel {A B}(R:relation B) : relation (A*B) :=
+ fun p p' => R (snd p) (snd p').
+
+Instance ProdRel_equiv {A B} `(Equivalence A RA)`(Equivalence B RB) :
+ Equivalence (ProdRel RA RB).
+Proof. firstorder. Qed.
+
+Instance FstRel_equiv {A B} `(Equivalence A RA) :
+ Equivalence (FstRel RA (B:=B)).
+Proof. firstorder. Qed.
+
+Instance SndRel_equiv {A B} `(Equivalence B RB) :
+ Equivalence (SndRel RB (A:=A)).
+Proof. firstorder. Qed.
+
+Instance FstRel_strorder {A B} `(StrictOrder A RA) :
+ StrictOrder (FstRel RA (B:=B)).
+Proof. firstorder. Qed.
+
+Instance SndRel_strorder {A B} `(StrictOrder B RB) :
+ StrictOrder (SndRel RB (A:=A)).
+Proof. firstorder. Qed.
+
+Lemma FstRel_ProdRel {A B}(RA:relation A) : forall p p':A*B,
+ (FstRel RA) p p' <-> (ProdRel RA (fun _ _ =>True)) p p'.
+Proof. firstorder. Qed.
+
+Lemma SndRel_ProdRel {A B}(RB:relation B) : forall p p':A*B,
+ (SndRel RB) p p' <-> (ProdRel (fun _ _ =>True) RB) p p'.
+Proof. firstorder. Qed.
+
+Lemma ProdRel_alt {A B}(RA:relation A)(RB:relation B) : forall p p':A*B,
+ (ProdRel RA RB) p p' <-> relation_conjunction (FstRel RA) (SndRel RB) p p'.
+Proof. firstorder. Qed.
+
+Instance FstRel_compat {A B} (R : relation A)`(Proper _ (Ri==>Ri==>Ro) R) :
+ Proper (FstRel Ri==>FstRel Ri==>Ro) (FstRel R (B:=B)).
+Proof.
+ intros A B R Ri Ro H (a1,b1) (a1',b1') Hab1 (a2,b2) (a2',b2') Hab2.
+ unfold FstRel in *; simpl in *. apply H; auto.
+Qed.
+
+Instance SndRel_compat {A B} (R : relation B)`(Proper _ (Ri==>Ri==>Ro) R) :
+ Proper (SndRel Ri==>SndRel Ri==>Ro) (SndRel R (A:=A)).
+Proof.
+ intros A B R Ri Ro H (a1,b1) (a1',b1') Hab1 (a2,b2) (a2',b2') Hab2.
+ unfold SndRel in *; simpl in *. apply H; auto.
+Qed.
+
+Instance FstRel_sub {A B} (RA:relation A)(RB:relation B):
+ subrelation (ProdRel RA RB) (FstRel RA).
+Proof. firstorder. Qed.
+
+Instance SndRel_sub {A B} (RA:relation A)(RB:relation B):
+ subrelation (ProdRel RA RB) (SndRel RB).
+Proof. firstorder. Qed.
+
+Instance pair_compat { A B } (RA:relation A)(RB : relation B) :
+ Proper (RA==>RB==>ProdRel RA RB) (@pair A B).
+Proof. firstorder. Qed.
+
+
+Hint Unfold ProdRel FstRel SndRel.
+Hint Extern 2 (ProdRel _ _ _ _) => split.
+
+
+Module KeyOrderedType(Import O:OrderedType).
+ Module Import MO:=OrderedTypeFacts(O).
+
+ Section Elt.
+ Variable elt : Type.
+ Notation key:=t.
+
+ Definition eqk : relation (key*elt) := FstRel eq.
+ Definition eqke : relation (key*elt) := ProdRel eq Logic.eq.
+ Definition ltk : relation (key*elt) := FstRel lt.
+
+ Hint Unfold eqk eqke ltk.
+
+ (* eqke is stricter than eqk *)
+
+ Global Instance eqke_eqk : subrelation eqke eqk.
+ Proof. unfold eqke, eqk; auto with *. Qed.
+
+(*
+ (* ltk ignore the second components *)
+
+ Lemma ltk_right_r : forall x k e e', ltk x (k,e) -> ltk x (k,e').
+ Proof. auto. Qed.
+
+ Lemma ltk_right_l : forall x k e e', ltk (k,e) x -> ltk (k,e') x.
+ Proof. auto. Qed.
+ Hint Immediate ltk_right_r ltk_right_l.
+*)
+
+ (* eqk, eqke are equalities, ltk is a strict order *)
+
+ Global Instance eqk_equiv : Equivalence eqk.
+
+ Global Instance eqke_equiv : Equivalence eqke.
+
+ Global Instance ltk_strorder : StrictOrder ltk.
+
+ Global Instance ltk_compat : Proper (eqk==>eqk==>iff) ltk.
+ Proof. unfold eqk, ltk; auto with *. Qed.
+
+ (* Additionnal facts *)
+
+ Global Instance pair_compat : Proper (eq==>Logic.eq==>eqke) (@pair key elt).
+ Proof. unfold eqke; auto with *. Qed.
+
+ Lemma ltk_not_eqk : forall e e', ltk e e' -> ~ eqk e e'.
+ Proof.
+ intros e e' LT EQ; rewrite EQ in LT.
+ elim (StrictOrder_Irreflexive _ LT).
+ Qed.
+
+ Lemma ltk_not_eqke : forall e e', ltk e e' -> ~eqke e e'.
+ Proof.
+ intros e e' LT EQ; rewrite EQ in LT.
+ elim (StrictOrder_Irreflexive _ LT).
+ Qed.
+
+ Lemma InA_eqke_eqk :
+ forall x m, InA eqke x m -> InA eqk x m.
+ Proof.
+ unfold eqke, ProdRel; induction 1; intuition.
+ Qed.
+ Hint Resolve InA_eqke_eqk.
+
+ Definition MapsTo (k:key)(e:elt):= InA eqke (k,e).
+ Definition In k m := exists e:elt, MapsTo k e m.
+ Notation Sort := (sort ltk).
+ Notation Inf := (lelistA ltk).
+
+ Hint Unfold MapsTo In.
+
+ (* An alternative formulation for [In k l] is [exists e, InA eqk (k,e) l] *)
+
+ Lemma In_alt : forall k l, In k l <-> exists e, InA eqk (k,e) l.
+ Proof.
+ firstorder.
+ exists x; auto.
+ induction H.
+ destruct y; compute in H.
+ exists e; auto.
+ destruct IHInA as [e H0].
+ exists e; auto.
+ Qed.
+
+ Lemma In_alt2 : forall k l, In k l <-> ExistsL (fun p => eq k (fst p)) l.
+ Proof.
+ unfold In, MapsTo.
+ setoid_rewrite ExistsL_exists; setoid_rewrite InA_alt.
+ firstorder.
+ exists (snd x), x; auto.
+ Qed.
+
+ Lemma In_nil : forall k, In k nil <-> False.
+ Proof.
+ intros; rewrite In_alt2; apply ExistsL_nil.
+ Qed.
+
+ Lemma In_cons : forall k p l,
+ In k (p::l) <-> eq k (fst p) \/ In k l.
+ Proof.
+ intros; rewrite !In_alt2, ExistsL_cons; intuition.
+ Qed.
+
+ Global Instance MapsTo_compat :
+ Proper (eq==>Logic.eq==>equivlistA eqke==>iff) MapsTo.
+ Proof.
+ intros x x' Hx e e' He l l' Hl. unfold MapsTo.
+ rewrite Hx, He, Hl; intuition.
+ Qed.
+
+ Global Instance In_compat : Proper (eq==>equivlistA eqk==>iff) In.
+ Proof.
+ intros x x' Hx l l' Hl. rewrite !In_alt.
+ setoid_rewrite Hl. setoid_rewrite Hx. intuition.
+ Qed.
+
+ Lemma MapsTo_eq : forall l x y e, eq x y -> MapsTo x e l -> MapsTo y e l.
+ Proof. intros l x y e EQ. rewrite <- EQ; auto. Qed.
+
+ Lemma In_eq : forall l x y, eq x y -> In x l -> In y l.
+ Proof. intros l x y EQ. rewrite <- EQ; auto. Qed.
+
+ Lemma Inf_eq : forall l x x', eqk x x' -> Inf x' l -> Inf x l.
+ Proof. intros l x x' H. rewrite H; auto. Qed.
+
+ Lemma Inf_lt : forall l x x', ltk x x' -> Inf x' l -> Inf x l.
+ Proof. apply InfA_ltA; auto with *. Qed.
+
+ Hint Immediate Inf_eq.
+ Hint Resolve Inf_lt.
+
+ Lemma Sort_Inf_In :
+ forall l p q, Sort l -> Inf q l -> InA eqk p l -> ltk q p.
+ Proof. apply SortA_InfA_InA; auto with *. Qed.
+
+ Lemma Sort_Inf_NotIn :
+ forall l k e, Sort l -> Inf (k,e) l -> ~In k l.
+ Proof.
+ intros; red; intros.
+ destruct H1 as [e' H2].
+ elim (@ltk_not_eqk (k,e) (k,e')).
+ eapply Sort_Inf_In; eauto.
+ red; simpl; auto.
+ Qed.
+
+ Lemma Sort_NoDupA: forall l, Sort l -> NoDupA eqk l.
+ Proof. apply SortA_NoDupA; auto with *. Qed.
+
+ Lemma Sort_In_cons_1 : forall e l e', Sort (e::l) -> InA eqk e' l -> ltk e e'.
+ Proof.
+ intros; invlist sort; eapply Sort_Inf_In; eauto.
+ Qed.
+
+ Lemma Sort_In_cons_2 : forall l e e', Sort (e::l) -> InA eqk e' (e::l) ->
+ ltk e e' \/ eqk e e'.
+ Proof.
+ intros; invlist InA; auto.
+ left; apply Sort_In_cons_1 with l; auto.
+ Qed.
+
+ Lemma Sort_In_cons_3 :
+ forall x l k e, Sort ((k,e)::l) -> In x l -> ~eq x k.
+ Proof.
+ intros; invlist sort; red; intros.
+ eapply Sort_Inf_NotIn; eauto using In_eq.
+ Qed.
+
+ Lemma In_inv : forall k k' e l, In k ((k',e) :: l) -> eq k k' \/ In k l.
+ Proof.
+ intros; invlist In; invlist MapsTo. compute in * |- ; intuition.
+ right; exists x; auto.
+ Qed.
+
+ Lemma In_inv_2 : forall k k' e e' l,
+ InA eqk (k, e) ((k', e') :: l) -> ~ eq k k' -> InA eqk (k, e) l.
+ Proof.
+ intros; invlist InA; intuition.
+ Qed.
+
+ Lemma In_inv_3 : forall x x' l,
+ InA eqke x (x' :: l) -> ~ eqk x x' -> InA eqke x l.
+ Proof.
+ intros; invlist InA; compute in * |- ; intuition.
+ Qed.
+
+ End Elt.
+
+ Hint Resolve (fun elt => @Equivalence_Reflexive _ _ (eqk_equiv elt)).
+ Hint Resolve (fun elt => @Equivalence_Transitive _ _ (eqk_equiv elt)).
+ Hint Immediate (fun elt => @Equivalence_Symmetric _ _ (eqk_equiv elt)).
+ Hint Resolve (fun elt => @Equivalence_Reflexive _ _ (eqke_equiv elt)).
+ Hint Resolve (fun elt => @Equivalence_Transitive _ _ (eqke_equiv elt)).
+ Hint Immediate (fun elt => @Equivalence_Symmetric _ _ (eqke_equiv elt)).
+ Hint Resolve (fun elt => @StrictOrder_Transitive _ _ (ltk_strorder elt)).
+
+ Hint Unfold eqk eqke ltk.
+ Hint Extern 2 (eqke ?a ?b) => split.
+ Hint Resolve ltk_not_eqk ltk_not_eqke.
+ Hint Resolve InA_eqke_eqk.
+ Hint Unfold MapsTo In.
+ Hint Immediate Inf_eq.
+ Hint Resolve Inf_lt.
+ Hint Resolve Sort_Inf_NotIn.
+ Hint Resolve In_inv_2 In_inv_3.
+
+End KeyOrderedType.
diff --git a/theories/Structures/OrderedType2Alt.v b/theories/Structures/OrderedType2Alt.v
new file mode 100644
index 0000000000..43b3d05f8a
--- /dev/null
+++ b/theories/Structures/OrderedType2Alt.v
@@ -0,0 +1,297 @@
+(***********************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
+(* \VV/ *************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(***********************************************************************)
+
+(* Finite sets library.
+ * Authors: Pierre Letouzey and Jean-Christophe Filliâtre
+ * Institution: LRI, CNRS UMR 8623 - Université Paris Sud
+ * 91405 Orsay, France *)
+
+(* $Id$ *)
+
+Require Import OrderedType2.
+Set Implicit Arguments.
+
+(** NB: Instead of [comparison], defined in [Datatypes.v] which is [Eq|Lt|Gt],
+ we used historically the dependent type [compare] which is
+ [EQ _ | LT _ | GT _ ]
+*)
+
+Inductive Compare (X : Type) (lt eq : X -> X -> Prop) (x y : X) : Type :=
+ | LT : lt x y -> Compare lt eq x y
+ | EQ : eq x y -> Compare lt eq x y
+ | GT : lt y x -> Compare lt eq x y.
+
+(** * Some alternative (but equivalent) presentations for an Ordered Type
+ inferface. *)
+
+(** ** The original interface *)
+
+Module Type OrderedTypeOrig.
+ Parameter Inline t : Type.
+
+ Parameter Inline eq : t -> t -> Prop.
+ Axiom eq_refl : forall x : t, eq x x.
+ Axiom eq_sym : forall x y : t, eq x y -> eq y x.
+ Axiom eq_trans : forall x y z : t, eq x y -> eq y z -> eq x z.
+
+ Parameter Inline lt : t -> t -> Prop.
+ Axiom lt_trans : forall x y z : t, lt x y -> lt y z -> lt x z.
+ Axiom lt_not_eq : forall x y : t, lt x y -> ~ eq x y.
+
+ Parameter compare : forall x y : t, Compare lt eq x y.
+
+ Hint Immediate eq_sym.
+ Hint Resolve eq_refl eq_trans.
+
+End OrderedTypeOrig.
+
+(** ** An interface based on compare *)
+
+Module Type OrderedTypeAlt.
+
+ Parameter t : Type.
+
+ Parameter compare : t -> t -> comparison.
+
+ Infix "?=" := compare (at level 70, no associativity).
+
+ Parameter compare_sym :
+ forall x y, (y?=x) = CompOpp (x?=y).
+ Parameter compare_trans :
+ forall c x y z, (x?=y) = c -> (y?=z) = c -> (x?=z) = c.
+
+End OrderedTypeAlt.
+
+(** ** From OrderedTypeOrig to OrderedType. *)
+
+Module OrderedType_from_Orig (O:OrderedTypeOrig) <: OrderedType.
+
+ Import O.
+ Definition t := O.t.
+ Definition eq := O.eq.
+ Instance eq_equiv : Equivalence eq.
+ Proof.
+ split; red; [ apply eq_refl | apply eq_sym | eapply eq_trans ].
+ Qed.
+
+ Definition lt := O.lt.
+ Instance lt_strorder : StrictOrder lt.
+ Proof.
+ split; repeat red; intros.
+ eapply lt_not_eq; eauto.
+ eapply lt_trans; eauto.
+ Qed.
+
+ Lemma lt_eq : forall x y z, lt x y -> eq y z -> lt x z.
+ Proof.
+ intros; destruct (compare x z); auto.
+ elim (@lt_not_eq x y); eauto.
+ elim (@lt_not_eq z y); eauto using lt_trans.
+ Qed.
+
+ Lemma eq_lt : forall x y z, eq x y -> lt y z -> lt x z.
+ Proof.
+ intros; destruct (compare x z); auto.
+ elim (@lt_not_eq y z); eauto.
+ elim (@lt_not_eq y x); eauto using lt_trans.
+ Qed.
+
+ Instance lt_compat : Proper (eq==>eq==>iff) lt.
+ Proof.
+ apply proper_sym_impl_iff_2; auto with *.
+ repeat red; intros.
+ eapply lt_eq; eauto. eapply eq_lt; eauto. symmetry; auto.
+ Qed.
+
+ Definition compare x y :=
+ match O.compare x y with
+ | EQ _ => Eq
+ | LT _ => Lt
+ | GT _ => Gt
+ end.
+
+ Lemma compare_spec : forall x y, Cmp eq lt (compare x y) x y.
+ Proof.
+ intros; unfold compare; destruct O.compare; auto.
+ Qed.
+
+ Definition eq_dec : forall x y, { eq x y } + { ~eq x y }.
+ Proof.
+ intros; destruct (O.compare x y).
+ right. apply lt_not_eq; auto.
+ left; auto.
+ right. intro. apply (@lt_not_eq y x); auto.
+ Defined.
+
+End OrderedType_from_Orig.
+
+(** ** From OrderedType to OrderedTypeOrig. *)
+
+Module OrderedType_to_Orig (O:OrderedType) <: OrderedTypeOrig.
+
+ Import O.
+ Definition t := t.
+ Definition eq := eq.
+ Definition lt := lt.
+
+ Lemma eq_refl : Reflexive eq.
+ Proof. auto. Qed.
+ Lemma eq_sym : Symmetric eq.
+ Proof. apply eq_equiv. Qed.
+ Lemma eq_trans : Transitive eq.
+ Proof. apply eq_equiv. Qed.
+
+ Lemma lt_not_eq : forall x y, lt x y -> ~eq x y.
+ Proof.
+ intros x y L E; rewrite E in L. apply (StrictOrder_Irreflexive y); auto.
+ Qed.
+
+ Lemma lt_trans : Transitive lt.
+ Proof. apply lt_strorder. Qed.
+
+ Definition compare : forall x y, Compare lt eq x y.
+ Proof.
+ intros. generalize (compare_spec x y); unfold Cmp, flip.
+ destruct (compare x y); [apply EQ|apply LT|apply GT]; auto.
+ Defined.
+
+ Definition eq_dec := eq_dec.
+
+End OrderedType_to_Orig.
+
+
+(** ** From OrderedTypeAlt to OrderedType. *)
+
+Module OrderedType_from_Alt (O:OrderedTypeAlt) <: OrderedType.
+ Import O.
+
+ Definition t := t.
+
+ Definition eq x y := (x?=y) = Eq.
+ Definition lt x y := (x?=y) = Lt.
+
+ Instance eq_equiv : Equivalence eq.
+ Proof.
+ split; red.
+ (* refl *)
+ unfold eq; intros x.
+ assert (H:=compare_sym x x).
+ destruct (x ?= x); simpl in *; auto; discriminate.
+ (* sym *)
+ unfold eq; intros x y H.
+ rewrite compare_sym, H; simpl; auto.
+ (* trans *)
+ apply compare_trans.
+ Qed.
+
+ Instance lt_strorder : StrictOrder lt.
+ Proof.
+ split; repeat red; unfold lt; try apply compare_trans.
+ intros x H.
+ assert (eq x x) by reflexivity.
+ unfold eq in *; congruence.
+ Qed.
+
+ Lemma lt_eq : forall x y z, lt x y -> eq y z -> lt x z.
+ Proof.
+ unfold lt, eq; intros x y z Hxy Hyz.
+ destruct (compare x z) as [ ]_eqn:Hxz; auto.
+ rewrite compare_sym, CompOpp_iff in Hyz. simpl in Hyz.
+ rewrite (compare_trans Hxz Hyz) in Hxy; discriminate.
+ rewrite compare_sym, CompOpp_iff in Hxy. simpl in Hxy.
+ rewrite (compare_trans Hxy Hxz) in Hyz; discriminate.
+ Qed.
+
+ Lemma eq_lt : forall x y z, eq x y -> lt y z -> lt x z.
+ Proof.
+ unfold lt, eq; intros x y z Hxy Hyz.
+ destruct (compare x z) as [ ]_eqn:Hxz; auto.
+ rewrite compare_sym, CompOpp_iff in Hxy. simpl in Hxy.
+ rewrite (compare_trans Hxy Hxz) in Hyz; discriminate.
+ rewrite compare_sym, CompOpp_iff in Hyz. simpl in Hyz.
+ rewrite (compare_trans Hxz Hyz) in Hxy; discriminate.
+ Qed.
+
+ Instance lt_compat : Proper (eq==>eq==>iff) lt.
+ Proof.
+ apply proper_sym_impl_iff_2; auto with *.
+ repeat red; intros.
+ eapply lt_eq; eauto. eapply eq_lt; eauto. symmetry; auto.
+ Qed.
+
+ Definition compare := O.compare.
+
+ Lemma compare_spec : forall x y, Cmp eq lt (compare x y) x y.
+ Proof.
+ unfold Cmp, flip, eq, lt, compare; intros.
+ destruct (O.compare x y) as [ ]_eqn:H; auto.
+ rewrite compare_sym, H; auto.
+ Qed.
+
+ Definition eq_dec : forall x y, { eq x y } + { ~ eq x y }.
+ Proof.
+ intros; unfold eq.
+ case (x ?= y); [ left | right | right ]; auto; discriminate.
+ Defined.
+
+End OrderedType_from_Alt.
+
+(** From the original presentation to this alternative one. *)
+
+Module OrderedType_to_Alt (O:OrderedType) <: OrderedTypeAlt.
+ Import O.
+
+ Definition t := t.
+ Definition compare := compare.
+
+ Infix "?=" := compare (at level 70, no associativity).
+
+ Lemma compare_sym :
+ forall x y, (y?=x) = CompOpp (x?=y).
+ Proof.
+ intros x y; unfold compare.
+ generalize (compare_spec x y) (compare_spec y x); unfold Cmp, flip.
+ destruct (O.compare x y); destruct (O.compare y x); intros U V; auto.
+ rewrite U in V. elim (StrictOrder_Irreflexive y); auto.
+ rewrite U in V. elim (StrictOrder_Irreflexive y); auto.
+ rewrite V in U. elim (StrictOrder_Irreflexive x); auto.
+ rewrite V in U. elim (StrictOrder_Irreflexive x); auto.
+ rewrite V in U. elim (StrictOrder_Irreflexive x); auto.
+ rewrite V in U. elim (StrictOrder_Irreflexive y); auto.
+ Qed.
+
+ Lemma compare_Eq : forall x y, compare x y = Eq <-> eq x y.
+ Proof.
+ unfold compare.
+ intros x y; generalize (compare_spec x y).
+ destruct (O.compare x y); intuition; try discriminate.
+ rewrite H0 in H. elim (StrictOrder_Irreflexive y); auto.
+ rewrite H0 in H. elim (StrictOrder_Irreflexive y); auto.
+ Qed.
+
+ Lemma compare_Lt : forall x y, compare x y = Lt <-> lt x y.
+ Proof.
+ unfold compare.
+ intros x y; generalize (compare_spec x y); unfold Cmp, flip.
+ destruct (O.compare x y); intuition; try discriminate.
+ rewrite H in H0. elim (StrictOrder_Irreflexive y); auto.
+ rewrite H in H0. elim (StrictOrder_Irreflexive x); auto.
+ Qed.
+
+ Lemma compare_trans :
+ forall c x y z, (x?=y) = c -> (y?=z) = c -> (x?=z) = c.
+ Proof.
+ intros c x y z.
+ destruct c; unfold compare.
+ rewrite 3 compare_Eq; eauto.
+ rewrite 3 compare_Lt. apply StrictOrder_Transitive.
+ do 3 (rewrite compare_sym, CompOpp_iff, compare_Lt).
+ intros; apply StrictOrder_Transitive with y; auto.
+ Qed.
+
+End OrderedType_to_Alt.
diff --git a/theories/Structures/OrderedType2Ex.v b/theories/Structures/OrderedType2Ex.v
new file mode 100644
index 0000000000..73bd3810f9
--- /dev/null
+++ b/theories/Structures/OrderedType2Ex.v
@@ -0,0 +1,261 @@
+(***********************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
+(* \VV/ *************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(***********************************************************************)
+
+(* Finite sets library.
+ * Authors: Pierre Letouzey and Jean-Christophe Filliâtre
+ * Institution: LRI, CNRS UMR 8623 - Université Paris Sud
+ * 91405 Orsay, France *)
+
+(* $Id$ *)
+
+Require Import OrderedType2 DecidableType2Ex.
+Require Import ZArith NArith Ndec Compare_dec.
+
+(** * Examples of Ordered Type structures. *)
+
+(** First, a particular case of [OrderedType] where
+ the equality is the usual one of Coq. *)
+
+Module Type UsualOrderedType.
+ Include Type UsualDecidableType.
+
+ Parameter Inline lt : t -> t -> Prop.
+ Instance lt_strorder : StrictOrder lt.
+ (* The following is useless since eq is Leibniz, but should be there
+ for subtyping... *)
+ Instance lt_compat : Proper (eq==>eq==>iff) lt.
+
+ Parameter compare : t -> t -> comparison.
+ Axiom compare_spec : forall x y, Cmp eq lt (compare x y) x y.
+
+End UsualOrderedType.
+
+(** a [UsualOrderedType] is in particular an [OrderedType]. *)
+
+Module UOT_to_OT (U:UsualOrderedType) <: OrderedType := U.
+
+(** [nat] is an ordered type with respect to the usual order on natural numbers. *)
+
+Module Nat_as_OT <: UsualOrderedType.
+
+ Definition t := nat.
+ Definition eq := @eq nat.
+ Definition lt := lt.
+ Definition compare := nat_compare.
+ Definition eq_dec := eq_nat_dec.
+
+ Program Instance eq_equiv : Equivalence eq.
+
+ Instance lt_strorder : StrictOrder lt.
+ Proof.
+ constructor; [exact lt_irrefl|exact lt_trans].
+ Qed.
+
+ Instance lt_compat : Proper (eq==>eq==>iff) lt.
+ Proof.
+ unfold eq in *; repeat red; intros; subst; auto.
+ Qed.
+
+ Lemma compare_spec : forall x y, Cmp eq lt (compare x y) x y.
+ Proof.
+ intros.
+ unfold Cmp, flip, lt, eq. destruct (compare x y) as [ ]_eqn:H.
+ apply nat_compare_eq; auto.
+ apply nat_compare_Lt_lt; auto.
+ apply nat_compare_Gt_gt; auto.
+ Qed.
+
+End Nat_as_OT.
+
+
+(** [Z] is an ordered type with respect to the usual order on integers. *)
+
+Module Z_as_OT <: UsualOrderedType.
+
+ Definition t := Z.
+ Definition eq := @eq Z.
+ Definition lt := Zlt.
+ Definition compare := Zcompare.
+ Definition eq_dec := Z_eq_dec.
+
+ Program Instance eq_equiv : Equivalence eq.
+
+ Instance lt_strorder : StrictOrder lt.
+ Proof.
+ constructor; [exact Zlt_irrefl | exact Zlt_trans].
+ Qed.
+
+ Instance lt_compat : Proper (eq==>eq==>iff) lt.
+ Proof.
+ unfold eq in *; repeat red; intros; subst; auto.
+ Qed.
+
+ Lemma compare_spec : forall x y, Cmp eq lt (compare x y) x y.
+ Proof.
+ intros.
+ unfold Cmp, flip, lt, eq. destruct (compare x y) as [ ]_eqn:H.
+ apply Zcompare_Eq_eq; auto.
+ auto.
+ apply Zgt_lt; auto.
+ Qed.
+
+End Z_as_OT.
+
+(** [positive] is an ordered type with respect to the usual order
+ on natural numbers. *)
+
+Module Positive_as_OT <: UsualOrderedType.
+ Definition t:=positive.
+ Definition eq:=@eq positive.
+ Definition lt:=Plt.
+ Definition compare x y := Pcompare x y Eq.
+
+ Program Instance eq_equiv : Equivalence eq.
+
+ Instance lt_strorder : StrictOrder lt.
+ Proof.
+ constructor; [exact Plt_irrefl | exact Plt_trans].
+ Qed.
+
+ Instance lt_compat : Proper (eq==>eq==>iff) lt.
+ Proof.
+ unfold eq in *; repeat red; intros; subst; auto.
+ Qed.
+
+ Lemma compare_spec : forall x y, Cmp eq lt (compare x y) x y.
+ Proof.
+ intros.
+ unfold Cmp, flip, lt, eq. destruct (compare x y) as [ ]_eqn:H.
+ apply Pcompare_Eq_eq; auto.
+ auto.
+ apply ZC1; auto.
+ Qed.
+
+ Definition eq_dec : forall x y, { eq x y } + { ~ eq x y }.
+ Proof.
+ intros; unfold eq; decide equality.
+ Defined.
+
+End Positive_as_OT.
+
+
+(** [N] is an ordered type with respect to the usual order
+ on natural numbers. *)
+
+Module N_as_OT <: UsualOrderedType.
+ Definition t:=N.
+ Definition eq:=@eq N.
+ Definition lt:=Nlt.
+ Definition compare:=Ncompare.
+
+ Program Instance eq_equiv : Equivalence eq.
+
+ Instance lt_strorder : StrictOrder lt.
+ Proof.
+ constructor; [exact Nlt_irrefl | exact Nlt_trans].
+ Qed.
+
+ Instance lt_compat : Proper (eq==>eq==>iff) lt.
+ Proof.
+ unfold eq in *; repeat red; intros; subst; auto.
+ Qed.
+
+ Lemma compare_spec : forall x y, Cmp eq lt (compare x y) x y.
+ Proof.
+ intros.
+ unfold Cmp, flip, lt, eq. destruct (compare x y) as [ ]_eqn:H.
+ apply Ncompare_Eq_eq; auto.
+ auto.
+ apply Ngt_Nlt; auto.
+ Qed.
+
+ Definition eq_dec : forall x y, { eq x y } + { ~ eq x y }.
+ Proof.
+ intros. unfold eq. decide equality. apply Positive_as_OT.eq_dec.
+ Defined.
+
+End N_as_OT.
+
+
+(** An OrderedType can now directly be seen as a DecidableType *)
+
+Module OT_as_DT (O:OrderedType) <: DecidableType := O.
+
+(** (Usual) Decidable Type for [nat], [positive], [N], [Z] *)
+
+Module Nat_as_DT <: UsualDecidableType := Nat_as_OT.
+Module Positive_as_DT <: UsualDecidableType := Positive_as_OT.
+Module N_as_DT <: UsualDecidableType := N_as_OT.
+Module Z_as_DT <: UsualDecidableType := Z_as_OT.
+
+
+
+
+(** From two ordered types, we can build a new OrderedType
+ over their cartesian product, using the lexicographic order. *)
+
+Module PairOrderedType(O1 O2:OrderedType) <: OrderedType.
+
+ Definition t := prod O1.t O2.t.
+
+ Definition eq := ProdRel O1.eq O2.eq.
+
+ Definition lt x y :=
+ O1.lt (fst x) (fst y) \/
+ (O1.eq (fst x) (fst y) /\ O2.lt (snd x) (snd y)).
+
+ Instance eq_equiv : Equivalence eq.
+
+ Instance lt_strorder : StrictOrder lt.
+ Proof.
+ split.
+ (* irreflexive *)
+ intros (x1,x2); compute. destruct 1.
+ apply (StrictOrder_Irreflexive x1); auto.
+ apply (StrictOrder_Irreflexive x2); intuition.
+ (* transitive *)
+ intros (x1,x2) (y1,y2) (z1,z2); unfold eq, lt; simpl; intuition.
+ left; etransitivity; eauto.
+ left; rewrite <- H0; auto.
+ left; rewrite H; auto.
+ right; split; eauto. etransitivity; eauto.
+ Qed.
+
+ Instance lt_compat : Proper (eq==>eq==>iff) lt.
+ Proof.
+ intros (x1,x2) (x1',x2') (X1,X2) (y1,y2) (y1',y2') (Y1,Y2).
+ unfold lt; simpl in *.
+ rewrite X1,X2,Y1,Y2; intuition.
+ Qed.
+
+ Definition compare x y :=
+ match O1.compare (fst x) (fst y) with
+ | Eq => O2.compare (snd x) (snd y)
+ | Lt => Lt
+ | Gt => Gt
+ end.
+
+ Lemma compare_spec : forall x y, Cmp eq lt (compare x y) x y.
+ Proof.
+ intros (x1,x2) (y1,y2); unfold Cmp, flip, compare, eq, lt; simpl.
+ generalize (O1.compare_spec x1 y1); destruct (O1.compare x1 y1); intros; auto.
+ generalize (O2.compare_spec x2 y2); destruct (O2.compare x2 y2); intros; auto.
+ Qed.
+
+ Definition eq_dec : forall x y : t, {eq x y} + {~ eq x y}.
+ Proof.
+ intros; generalize (compare_spec x y); destruct (compare x y).
+ left; auto.
+ right. intros E; rewrite E in *.
+ apply (StrictOrder_Irreflexive y); auto.
+ right. intros E; rewrite E in *.
+ apply (StrictOrder_Irreflexive y); auto.
+ Defined.
+
+End PairOrderedType.
+
diff --git a/theories/FSets/OrderedTypeAlt.v b/theories/Structures/OrderedTypeAlt.v
index 23ae4c85a3..23ae4c85a3 100644
--- a/theories/FSets/OrderedTypeAlt.v
+++ b/theories/Structures/OrderedTypeAlt.v
diff --git a/theories/FSets/OrderedTypeEx.v b/theories/Structures/OrderedTypeEx.v
index a39f336a57..a39f336a57 100644
--- a/theories/FSets/OrderedTypeEx.v
+++ b/theories/Structures/OrderedTypeEx.v
diff --git a/theories/theories.itarget b/theories/theories.itarget
index fc7a1eca35..320d6d41ce 100644
--- a/theories/theories.itarget
+++ b/theories/theories.itarget
@@ -61,9 +61,29 @@ FSets/FSetProperties.vo
FSets/FSets.vo
FSets/FSetToFiniteSet.vo
FSets/FSetWeakList.vo
-FSets/OrderedTypeAlt.vo
-FSets/OrderedTypeEx.vo
-FSets/OrderedType.vo
+
+MSets/MSetAVL.vo
+MSets/MSetDecide.vo
+MSets/MSetEqProperties.vo
+MSets/MSetFacts.vo
+MSets/MSetInterface.vo
+MSets/MSetList.vo
+MSets/MSetProperties.vo
+MSets/MSets.vo
+MSets/MSetToFiniteSet.vo
+MSets/MSetWeakList.vo
+
+Structures/OrderedTypeAlt.vo
+Structures/OrderedTypeEx.vo
+Structures/OrderedType.vo
+Structures/DecidableType.vo
+Structures/DecidableTypeEx.vo
+
+Structures/OrderedType2Alt.vo
+Structures/OrderedType2Ex.vo
+Structures/OrderedType2.vo
+Structures/DecidableType2.vo
+Structures/DecidableType2Ex.vo
Init/Datatypes.vo
Init/Logic_Type.vo
@@ -79,6 +99,7 @@ Lists/ListSet.vo
Lists/ListTactics.vo
Lists/List.vo
Lists/SetoidList.vo
+Lists/SetoidList2.vo
Lists/StreamMemo.vo
Lists/Streams.vo
Lists/TheoryList.vo
@@ -96,8 +117,6 @@ Logic/Classical_Type.vo
Logic/ClassicalUniqueChoice.vo
Logic/Classical.vo
Logic/ConstructiveEpsilon.vo
-Logic/DecidableTypeEx.vo
-Logic/DecidableType.vo
Logic/Decidable.vo
Logic/Description.vo
Logic/Diaconescu.vo
diff --git a/toplevel/coqinit.ml b/toplevel/coqinit.ml
index 4007a96bb7..d9fcdb247e 100644
--- a/toplevel/coqinit.ml
+++ b/toplevel/coqinit.ml
@@ -66,12 +66,14 @@ let theories_dirs_map = [
"theories/Unicode", "Unicode" ;
"theories/Classes", "Classes" ;
"theories/Program", "Program" ;
+ "theories/MSets", "MSets" ;
"theories/FSets", "FSets" ;
"theories/Reals", "Reals" ;
"theories/Strings", "Strings" ;
"theories/Sorting", "Sorting" ;
"theories/Setoids", "Setoids" ;
"theories/Sets", "Sets" ;
+ "theories/Structures", "Structures" ;
"theories/Lists", "Lists" ;
"theories/Wellfounded", "Wellfounded" ;
"theories/Relations", "Relations" ;