aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--theories/Logic/ClassicalDescription.v5
1 files changed, 3 insertions, 2 deletions
diff --git a/theories/Logic/ClassicalDescription.v b/theories/Logic/ClassicalDescription.v
index 82077696d3..144d7d06a1 100644
--- a/theories/Logic/ClassicalDescription.v
+++ b/theories/Logic/ClassicalDescription.v
@@ -44,9 +44,9 @@ Qed.
(** The followig proof comes from [1] *)
-Theorem classic_set : (P:Prop)({P}+{~P} -> False) -> False.
+Theorem classic_set : (((P:Prop){P}+{~P}) -> False) -> False.
Proof.
-Intros P HnotEM.
+Intro HnotEM.
Pose R:=[A,b]A/\true=b \/ ~A/\false=b.
Assert H:(EX f:Prop->bool|(A:Prop)(R A (f A))).
Apply description.
@@ -64,6 +64,7 @@ NewDestruct (classic A) as [Ha|Hnota].
Assumption.
NewDestruct H as [f Hf].
Apply HnotEM.
+Intro P.
Assert HfP := (Hf P).
(* Elimination from Hf to Set is not allowed but from f to Set yes ! *)
NewDestruct (f P).