diff options
| -rw-r--r-- | contrib/field/Field_Tactic.v | 4 | ||||
| -rw-r--r-- | theories/Reals/SplitAbsolu.v | 4 | ||||
| -rw-r--r-- | theories/Reals/SplitRmult.v | 2 |
3 files changed, 5 insertions, 5 deletions
diff --git a/contrib/field/Field_Tactic.v b/contrib/field/Field_Tactic.v index e893c9f36c..7aa1d0b3e3 100644 --- a/contrib/field/Field_Tactic.v +++ b/contrib/field/Field_Tactic.v @@ -214,7 +214,7 @@ Tactic Definition ApplyInverse mul FT lvar trm := Tactic Definition StrongFail tac := First [tac|Fail 2]. -Tactic Definition InverseTestAux FT trm := +Recursive Tactic Definition InverseTestAux FT trm := Let AplusT = Eval Cbv Beta Delta [Aplus] Iota in (Aplus FT) And AmultT = Eval Cbv Beta Delta [Amult] Iota in (Amult FT) And AoppT = Eval Cbv Beta Delta [Aopp] Iota in (Aopp FT) @@ -261,7 +261,7 @@ Tactic Definition Reduce FT := Cbv Beta Delta -[AzeroT AoneT AplusT AmultT AoppT AinvT] Zeta Iota Orelse Compute. -Tactic Definition Field_Gen_Aux FT := +Recursive Tactic Definition Field_Gen_Aux FT := Let AplusT = Eval Cbv Beta Delta [Aplus] Iota in (Aplus FT) In Match Context With | [|- ?1==?2] -> diff --git a/theories/Reals/SplitAbsolu.v b/theories/Reals/SplitAbsolu.v index e904c238d5..bc876692d7 100644 --- a/theories/Reals/SplitAbsolu.v +++ b/theories/Reals/SplitAbsolu.v @@ -10,13 +10,13 @@ Require Rbasic_fun. -Tactic Definition SplitAbs := +Recursive Tactic Definition SplitAbs := Match Context With | [ |- [(case_Rabsolu ?1)] ] -> Case (case_Rabsolu ?1); Try SplitAbs. -Tactic Definition SplitAbsolu := +Recursive Tactic Definition SplitAbsolu := Match Context With | [ id:[(Rabsolu ?)] |- ? ] -> Generalize id; Clear id;Try SplitAbsolu | [ |- [(Rabsolu ?1)] ] -> Unfold Rabsolu; Try SplitAbs;Intros. diff --git a/theories/Reals/SplitRmult.v b/theories/Reals/SplitRmult.v index e799c7b8be..71b2ebf215 100644 --- a/theories/Reals/SplitRmult.v +++ b/theories/Reals/SplitRmult.v @@ -13,7 +13,7 @@ Require Rbase. -Tactic Definition SplitRmult := +Recursive Tactic Definition SplitRmult := Match Context With | [ |- ~(Rmult ?1 ?2)==R0 ] -> Apply mult_non_zero; Split;Try SplitRmult. |
