diff options
| -rw-r--r-- | theories/ZArith/fast_integer.v | 6 |
1 files changed, 3 insertions, 3 deletions
diff --git a/theories/ZArith/fast_integer.v b/theories/ZArith/fast_integer.v index 4ecc1b984e..180ab9fd2b 100644 --- a/theories/ZArith/fast_integer.v +++ b/theories/ZArith/fast_integer.v @@ -813,9 +813,9 @@ Qed. Lemma convert_xI : (p:positive) (convert (xI p))=(S (mult (2) (convert p))). Proof. Induction p. Unfold convert. Simpl. Intro p0. Intro. Rewrite positive_to_nat_2. - Rewrite positive_to_nat_4. Inversion H. Rewrite H1. Rewrite <- plus_Snm_nSm. Reflexivity. + Rewrite positive_to_nat_4; Injection H; Intro H1; Rewrite H1; Rewrite <- plus_Snm_nSm; Reflexivity. Unfold convert. Simpl. Intros. Rewrite positive_to_nat_2. Rewrite positive_to_nat_4. - Inversion H. Rewrite H1. Reflexivity. + Injection H; Intro H1; Rewrite H1; Reflexivity. Reflexivity. Qed. @@ -1305,7 +1305,7 @@ Definition Prec : (A:Set)A->(positive->A->A)->positive->A := (** Test *) -Eval Compute in +Check let fact = (Prec positive xH [p;r](times (add_un p) r)) in let seven = (xI (xI xH)) in let five_thousand_forty= (xO(xO(xO(xO(xI(xI(xO(xI(xI(xI(xO(xO xH)))))))))))) |
