diff options
| -rw-r--r-- | contrib/ring/ArithRing.v | 8 | ||||
| -rw-r--r-- | contrib/ring/ZArithRing.v | 6 |
2 files changed, 7 insertions, 7 deletions
diff --git a/contrib/ring/ArithRing.v b/contrib/ring/ArithRing.v index 6c600e7976..a2da5dd57a 100644 --- a/contrib/ring/ArithRing.v +++ b/contrib/ring/ArithRing.v @@ -32,12 +32,12 @@ Proof. trivial. Qed. -Hint Resolve nateq_prop eq2eqT: arithring. +Hint Resolve nateq_prop: arithring. Definition NatTheory : Semi_Ring_Theory plus mult 1 0 nateq. split; intros; auto with arith arithring. - apply eq2eqT; apply (fun n m p:nat => plus_reg_l m p n) with (n := n). - apply eqT2eq; trivial. + apply (fun n m p:nat => plus_reg_l m p n) with (n := n). + trivial. Defined. @@ -86,4 +86,4 @@ Ltac rewrite_S_to_plus := change (t1 = t2) in |- * end. -Ltac ring_nat := rewrite_S_to_plus; ring.
\ No newline at end of file +Ltac ring_nat := rewrite_S_to_plus; ring. diff --git a/contrib/ring/ZArithRing.v b/contrib/ring/ZArithRing.v index e6a7bf2af7..8981a46a51 100644 --- a/contrib/ring/ZArithRing.v +++ b/contrib/ring/ZArithRing.v @@ -27,10 +27,10 @@ Lemma Zeq_prop : forall x y:Z, Is_true (Zeq x y) -> x = y. Qed. Definition ZTheory : Ring_Theory Zplus Zmult 1%Z 0%Z Zopp Zeq. - split; intros; apply eq2eqT; eauto with zarith. - apply eqT2eq; apply Zeq_prop; assumption. + split; intros; eauto with zarith. + apply Zeq_prop; assumption. Qed. (* NatConstants and NatTheory are defined in Ring_theory.v *) Add Ring Z Zplus Zmult 1%Z 0%Z Zopp Zeq ZTheory - [ Zpos Zneg 0%Z xO xI 1%positive ].
\ No newline at end of file + [ Zpos Zneg 0%Z xO xI 1%positive ]. |
