aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--contrib/ring/ArithRing.v8
-rw-r--r--contrib/ring/ZArithRing.v6
2 files changed, 7 insertions, 7 deletions
diff --git a/contrib/ring/ArithRing.v b/contrib/ring/ArithRing.v
index 6c600e7976..a2da5dd57a 100644
--- a/contrib/ring/ArithRing.v
+++ b/contrib/ring/ArithRing.v
@@ -32,12 +32,12 @@ Proof.
trivial.
Qed.
-Hint Resolve nateq_prop eq2eqT: arithring.
+Hint Resolve nateq_prop: arithring.
Definition NatTheory : Semi_Ring_Theory plus mult 1 0 nateq.
split; intros; auto with arith arithring.
- apply eq2eqT; apply (fun n m p:nat => plus_reg_l m p n) with (n := n).
- apply eqT2eq; trivial.
+ apply (fun n m p:nat => plus_reg_l m p n) with (n := n).
+ trivial.
Defined.
@@ -86,4 +86,4 @@ Ltac rewrite_S_to_plus :=
change (t1 = t2) in |- *
end.
-Ltac ring_nat := rewrite_S_to_plus; ring. \ No newline at end of file
+Ltac ring_nat := rewrite_S_to_plus; ring.
diff --git a/contrib/ring/ZArithRing.v b/contrib/ring/ZArithRing.v
index e6a7bf2af7..8981a46a51 100644
--- a/contrib/ring/ZArithRing.v
+++ b/contrib/ring/ZArithRing.v
@@ -27,10 +27,10 @@ Lemma Zeq_prop : forall x y:Z, Is_true (Zeq x y) -> x = y.
Qed.
Definition ZTheory : Ring_Theory Zplus Zmult 1%Z 0%Z Zopp Zeq.
- split; intros; apply eq2eqT; eauto with zarith.
- apply eqT2eq; apply Zeq_prop; assumption.
+ split; intros; eauto with zarith.
+ apply Zeq_prop; assumption.
Qed.
(* NatConstants and NatTheory are defined in Ring_theory.v *)
Add Ring Z Zplus Zmult 1%Z 0%Z Zopp Zeq ZTheory
- [ Zpos Zneg 0%Z xO xI 1%positive ]. \ No newline at end of file
+ [ Zpos Zneg 0%Z xO xI 1%positive ].