diff options
| -rw-r--r-- | theories/ZArith/auxiliary.v | 3 |
1 files changed, 0 insertions, 3 deletions
diff --git a/theories/ZArith/auxiliary.v b/theories/ZArith/auxiliary.v index ec8b42ac71..b376e31beb 100644 --- a/theories/ZArith/auxiliary.v +++ b/theories/ZArith/auxiliary.v @@ -157,9 +157,6 @@ Theorem dec_Zlt: (x,y:Z) (decidable (Zlt x y)). Intros x y; Unfold decidable Zlt ; Elim (Zcompare x y); [ Right; Discriminate | Auto with arith | Right; Discriminate]. Qed. -Theorem dec_eq_nat:(x,y:nat)(decidable (x=y)). -Intros x y; Unfold decidable; Elim (eq_nat_dec x y); Auto with arith. -Qed. Theorem not_Zge : (x,y:Z) ~(Zge x y) -> (Zlt x y). Unfold Zge Zlt ; Intros x y H; Apply dec_not_not; |
