aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--theories/Reals/Rtrigo_def.v40
1 files changed, 13 insertions, 27 deletions
diff --git a/theories/Reals/Rtrigo_def.v b/theories/Reals/Rtrigo_def.v
index 9aed67657a..2004f40f00 100644
--- a/theories/Reals/Rtrigo_def.v
+++ b/theories/Reals/Rtrigo_def.v
@@ -41,8 +41,13 @@ Proof.
red; intro; rewrite H0 in H; elim (lt_irrefl _ H).
Qed.
-Lemma exist_exp0 : exp_in 0 1.
+(* Value of [exp 0] *)
+Lemma exp_0 : exp 0 = 1.
Proof.
+ cut (exp_in 0 1).
+ cut (exp_in 0 (exp 0)).
+ apply uniqueness_sum.
+ exact (proj2_sig (exist_exp 0)).
unfold exp_in; unfold infinite_sum; intros.
exists 0%nat.
intros; replace (sum_f_R0 (fun i:nat => / INR (fact i) * 0 ^ i) n) with 1.
@@ -57,18 +62,6 @@ Proof.
unfold ge; apply le_O_n.
Qed.
-(* Value of [exp 0] *)
-Lemma exp_0 : exp 0 = 1.
-Proof.
- cut (exp_in 0 (exp 0)).
- cut (exp_in 0 1).
- unfold exp_in; intros; eapply uniqueness_sum.
- apply H0.
- apply H.
- exact exist_exp0.
- exact (proj2_sig (exist_exp 0)).
-Qed.
-
(*****************************************)
(** * Definition of hyperbolic functions *)
(*****************************************)
@@ -383,8 +376,14 @@ Proof.
intros; ring.
Qed.
-Lemma exist_cos0 : cos_in 0 1.
+(* Value of [cos 0] *)
+Lemma cos_0 : cos 0 = 1.
Proof.
+ cut (cos_in 0 1).
+ cut (cos_in 0 (cos 0)).
+ apply uniqueness_sum.
+ rewrite <- Rsqr_0 at 1.
+ exact (proj2_sig (exist_cos (Rsqr 0))).
unfold cos_in; unfold infinite_sum; intros; exists 0%nat.
intros.
unfold R_dist.
@@ -399,16 +398,3 @@ Proof.
apply Hrecn; unfold ge; apply le_O_n.
simpl; ring.
Qed.
-
-(* Value of [cos 0] *)
-Lemma cos_0 : cos 0 = 1.
-Proof.
- cut (cos_in 0 (cos 0)).
- cut (cos_in 0 1).
- unfold cos_in; intros; eapply uniqueness_sum.
- apply H0.
- apply H.
- exact exist_cos0.
- assert (H := proj2_sig (exist_cos (Rsqr 0))); unfold cos;
- pattern 0 at 1; replace 0 with (Rsqr 0); [ exact H | apply Rsqr_0 ].
-Qed.