aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--doc/changelog/10-standard-library/09811-remove-zlogarithm.rst3
-rw-r--r--doc/stdlib/index-list.html.template1
-rw-r--r--theories/Numbers/Cyclic/ZModulo/ZModulo.v58
-rw-r--r--theories/ZArith/ZArith.v1
-rw-r--r--theories/ZArith/Zlogarithm.v273
5 files changed, 19 insertions, 317 deletions
diff --git a/doc/changelog/10-standard-library/09811-remove-zlogarithm.rst b/doc/changelog/10-standard-library/09811-remove-zlogarithm.rst
new file mode 100644
index 0000000000..3533764964
--- /dev/null
+++ b/doc/changelog/10-standard-library/09811-remove-zlogarithm.rst
@@ -0,0 +1,3 @@
+- Removes deprecated module `Coq.ZArith.Zlogarithm`
+ (#9881 <https://github.com/coq/coq/pull/9811>
+ by Vincent Laporte).
diff --git a/doc/stdlib/index-list.html.template b/doc/stdlib/index-list.html.template
index a561de1d0c..8d481b7f03 100644
--- a/doc/stdlib/index-list.html.template
+++ b/doc/stdlib/index-list.html.template
@@ -188,7 +188,6 @@ through the <tt>Require Import</tt> command.</p>
theories/ZArith/Zdiv.v
theories/ZArith/Zquot.v
theories/ZArith/Zeuclid.v
- theories/ZArith/Zlogarithm.v
(theories/ZArith/ZArith.v)
theories/ZArith/Zgcd_alt.v
theories/ZArith/Zwf.v
diff --git a/theories/Numbers/Cyclic/ZModulo/ZModulo.v b/theories/Numbers/Cyclic/ZModulo/ZModulo.v
index 28565b2fe3..2785e89c5d 100644
--- a/theories/Numbers/Cyclic/ZModulo/ZModulo.v
+++ b/theories/Numbers/Cyclic/ZModulo/ZModulo.v
@@ -648,40 +648,15 @@ Section ZModulo.
apply two_power_pos_correct.
Qed.
- Definition head0 x := match [|x|] with
+ Definition head0 x :=
+ match [| x |] with
| Z0 => zdigits
- | Zpos p => zdigits - log_inf p - 1
- | _ => 0
- end.
+ | Zneg _ => 0
+ | (Zpos _) as p => zdigits - Z.log2 p - 1
+ end.
Lemma spec_head00: forall x, [|x|] = 0 -> [|head0 x|] = Zpos digits.
- Proof.
- unfold head0; intros.
- rewrite H; simpl.
- apply spec_zdigits.
- Qed.
-
- Lemma log_inf_bounded : forall x p, Zpos x < 2^p -> log_inf x < p.
- Proof.
- induction x; simpl; intros.
-
- assert (0 < p) by (destruct p; compute; auto with zarith; discriminate).
- cut (log_inf x < p - 1); [omega| ].
- apply IHx.
- change (Zpos x~1) with (2*(Zpos x)+1) in H.
- replace p with (Z.succ (p-1)) in H; auto with zarith.
- rewrite Z.pow_succ_r in H; auto with zarith.
-
- assert (0 < p) by (destruct p; compute; auto with zarith; discriminate).
- cut (log_inf x < p - 1); [omega| ].
- apply IHx.
- change (Zpos x~0) with (2*(Zpos x)) in H.
- replace p with (Z.succ (p-1)) in H; auto with zarith.
- rewrite Z.pow_succ_r in H; auto with zarith.
-
- simpl; intros; destruct p; compute; auto with zarith.
- Qed.
-
+ Proof. unfold head0; intros x ->; apply spec_zdigits. Qed.
Lemma spec_head0 : forall x, 0 < [|x|] ->
wB/ 2 <= 2 ^ ([|head0 x|]) * [|x|] < wB.
@@ -689,36 +664,35 @@ Section ZModulo.
intros; unfold head0.
generalize (spec_to_Z x).
destruct [|x|]; try discriminate.
+ pose proof (Z.log2_nonneg (Zpos p)).
+ destruct (Z.log2_spec (Zpos p)); auto.
intros.
- destruct (log_inf_correct p).
- rewrite 2 two_p_power2 in H2; auto with zarith.
- assert (0 <= zdigits - log_inf p - 1 < wB).
+ assert (0 <= zdigits - Z.log2 (Zpos p) - 1 < wB) as Hrange.
split.
- cut (log_inf p < zdigits); try omega.
+ cut (Z.log2 (Zpos p) < zdigits). omega.
unfold zdigits.
unfold wB, base in *.
- apply log_inf_bounded; auto with zarith.
+ apply Z.log2_lt_pow2; intuition.
apply Z.lt_trans with zdigits.
omega.
unfold zdigits, wB, base; apply Zpower2_lt_lin; auto with zarith.
- unfold to_Z; rewrite (Zmod_small _ _ H3).
- destruct H2.
+ unfold to_Z; rewrite (Zmod_small _ _ Hrange).
split.
- apply Z.le_trans with (2^(zdigits - log_inf p - 1)*(2^log_inf p)).
+ apply Z.le_trans with (2^(zdigits - Z.log2 (Zpos p) - 1)*(2^Z.log2 (Zpos p))).
apply Zdiv_le_upper_bound; auto with zarith.
rewrite <- Zpower_exp; auto with zarith.
rewrite Z.mul_comm; rewrite <- Z.pow_succ_r; auto with zarith.
- replace (Z.succ (zdigits - log_inf p -1 +log_inf p)) with zdigits
+ replace (Z.succ (zdigits - Z.log2 (Zpos p) -1 + Z.log2 (Zpos p))) with zdigits
by ring.
unfold wB, base, zdigits; auto with zarith.
apply Z.mul_le_mono_nonneg; auto with zarith.
apply Z.lt_le_trans
- with (2^(zdigits - log_inf p - 1)*(2^(Z.succ (log_inf p)))).
+ with (2^(zdigits - Z.log2 (Zpos p) - 1)*(2^(Z.succ (Z.log2 (Zpos p))))).
apply Z.mul_lt_mono_pos_l; auto with zarith.
rewrite <- Zpower_exp; auto with zarith.
- replace (zdigits - log_inf p -1 +Z.succ (log_inf p)) with zdigits
+ replace (zdigits - Z.log2 (Zpos p) -1 +Z.succ (Z.log2 (Zpos p))) with zdigits
by ring.
unfold wB, base, zdigits; auto with zarith.
Qed.
diff --git a/theories/ZArith/ZArith.v b/theories/ZArith/ZArith.v
index c2c97fca4f..b0744caa7b 100644
--- a/theories/ZArith/ZArith.v
+++ b/theories/ZArith/ZArith.v
@@ -21,6 +21,5 @@ Require Export Zpow_def.
Require Export Zcomplements.
Require Export Zpower.
Require Export Zdiv.
-Require Export Zlogarithm.
Export ZArithRing.
diff --git a/theories/ZArith/Zlogarithm.v b/theories/ZArith/Zlogarithm.v
deleted file mode 100644
index edbd3a18fe..0000000000
--- a/theories/ZArith/Zlogarithm.v
+++ /dev/null
@@ -1,273 +0,0 @@
-(************************************************************************)
-(* * The Coq Proof Assistant / The Coq Development Team *)
-(* v * INRIA, CNRS and contributors - Copyright 1999-2019 *)
-(* <O___,, * (see CREDITS file for the list of authors) *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(* * (see LICENSE file for the text of the license) *)
-(************************************************************************)
-
-(**********************************************************************)
-
-(** The integer logarithms with base 2. *)
-
-(** THIS FILE IS DEPRECATED.
- Please rather use [Z.log2] (or [Z.log2_up]), which
- are defined in [BinIntDef], and whose properties can
- be found in [BinInt.Z]. *)
-
-(* There are three logarithms defined here,
- depending on the rounding of the real 2-based logarithm:
- - [Log_inf]: [y = (Log_inf x) iff 2^y <= x < 2^(y+1)]
- i.e. [Log_inf x] is the biggest integer that is smaller than [Log x]
- - [Log_sup]: [y = (Log_sup x) iff 2^(y-1) < x <= 2^y]
- i.e. [Log_inf x] is the smallest integer that is bigger than [Log x]
- - [Log_nearest]: [y= (Log_nearest x) iff 2^(y-1/2) < x <= 2^(y+1/2)]
- i.e. [Log_nearest x] is the integer nearest from [Log x] *)
-
-Require Import ZArith_base Omega Zcomplements Zpower.
-Local Open Scope Z_scope.
-
-Section Log_pos. (* Log of positive integers *)
-
- (** First we build [log_inf] and [log_sup] *)
-
- Fixpoint log_inf (p:positive) : Z :=
- match p with
- | xH => 0 (* 1 *)
- | xO q => Z.succ (log_inf q) (* 2n *)
- | xI q => Z.succ (log_inf q) (* 2n+1 *)
- end.
-
- Fixpoint log_sup (p:positive) : Z :=
- match p with
- | xH => 0 (* 1 *)
- | xO n => Z.succ (log_sup n) (* 2n *)
- | xI n => Z.succ (Z.succ (log_inf n)) (* 2n+1 *)
- end.
-
- Hint Unfold log_inf log_sup : core.
-
- Lemma Psize_log_inf : forall p, Zpos (Pos.size p) = Z.succ (log_inf p).
- Proof.
- induction p; simpl; now rewrite ?Pos2Z.inj_succ, ?IHp.
- Qed.
-
- Lemma Zlog2_log_inf : forall p, Z.log2 (Zpos p) = log_inf p.
- Proof.
- unfold Z.log2. destruct p; simpl; trivial; apply Psize_log_inf.
- Qed.
-
- Lemma Zlog2_up_log_sup : forall p, Z.log2_up (Zpos p) = log_sup p.
- Proof.
- induction p; simpl log_sup.
- - change (Zpos p~1) with (2*(Zpos p)+1).
- rewrite Z.log2_up_succ_double, Zlog2_log_inf; try easy.
- unfold Z.succ. now rewrite !(Z.add_comm _ 1), Z.add_assoc.
- - change (Zpos p~0) with (2*Zpos p).
- now rewrite Z.log2_up_double, IHp.
- - reflexivity.
- Qed.
-
- (** Then we give the specifications of [log_inf] and [log_sup]
- and prove their validity *)
-
- Hint Resolve Z.le_trans: zarith.
-
- Theorem log_inf_correct :
- forall x:positive,
- 0 <= log_inf x /\ two_p (log_inf x) <= Zpos x < two_p (Z.succ (log_inf x)).
- Proof.
- simple induction x; intros; simpl;
- [ elim H; intros Hp HR; clear H; split;
- [ auto with zarith
- | rewrite two_p_S with (x := Z.succ (log_inf p)) by (apply Z.le_le_succ_r; trivial);
- rewrite two_p_S by trivial;
- rewrite two_p_S in HR by trivial; rewrite (BinInt.Pos2Z.inj_xI p);
- omega ]
- | elim H; intros Hp HR; clear H; split;
- [ auto with zarith
- | rewrite two_p_S with (x := Z.succ (log_inf p)) by (apply Z.le_le_succ_r; trivial);
- rewrite two_p_S by trivial;
- rewrite two_p_S in HR by trivial; rewrite (BinInt.Pos2Z.inj_xO p);
- omega ]
- | unfold two_power_pos; unfold shift_pos; simpl;
- omega ].
- Qed.
-
- Definition log_inf_correct1 (p:positive) := proj1 (log_inf_correct p).
- Definition log_inf_correct2 (p:positive) := proj2 (log_inf_correct p).
-
- Opaque log_inf_correct1 log_inf_correct2.
-
- Hint Resolve log_inf_correct1 log_inf_correct2: zarith.
-
- Lemma log_sup_correct1 : forall p:positive, 0 <= log_sup p.
- Proof.
- simple induction p; intros; simpl; auto with zarith.
- Qed.
-
- (** For every [p], either [p] is a power of two and [(log_inf p)=(log_sup p)]
- either [(log_sup p)=(log_inf p)+1] *)
-
- Theorem log_sup_log_inf :
- forall p:positive,
- IF Zpos p = two_p (log_inf p) then Zpos p = two_p (log_sup p)
- else log_sup p = Z.succ (log_inf p).
- Proof.
- simple induction p; intros;
- [ elim H; right; simpl;
- rewrite (two_p_S (log_inf p0) (log_inf_correct1 p0));
- rewrite BinInt.Pos2Z.inj_xI; unfold Z.succ; omega
- | elim H; clear H; intro Hif;
- [ left; simpl;
- rewrite (two_p_S (log_inf p0) (log_inf_correct1 p0));
- rewrite (two_p_S (log_sup p0) (log_sup_correct1 p0));
- rewrite <- (proj1 Hif); rewrite <- (proj2 Hif);
- auto
- | right; simpl;
- rewrite (two_p_S (log_inf p0) (log_inf_correct1 p0));
- rewrite BinInt.Pos2Z.inj_xO; unfold Z.succ;
- omega ]
- | left; auto ].
- Qed.
-
- Theorem log_sup_correct2 :
- forall x:positive, two_p (Z.pred (log_sup x)) < Zpos x <= two_p (log_sup x).
- Proof.
- intro.
- elim (log_sup_log_inf x).
- (* x is a power of two and [log_sup = log_inf] *)
- intros [E1 E2]; rewrite E2.
- split; [ apply two_p_pred; apply log_sup_correct1 | apply Z.le_refl ].
- intros [E1 E2]; rewrite E2.
- rewrite (Z.pred_succ (log_inf x)).
- generalize (log_inf_correct2 x); omega.
- Qed.
-
- Lemma log_inf_le_log_sup : forall p:positive, log_inf p <= log_sup p.
- Proof.
- simple induction p; simpl; intros; omega.
- Qed.
-
- Lemma log_sup_le_Slog_inf : forall p:positive, log_sup p <= Z.succ (log_inf p).
- Proof.
- simple induction p; simpl; intros; omega.
- Qed.
-
- (** Now it's possible to specify and build the [Log] rounded to the nearest *)
-
- Fixpoint log_near (x:positive) : Z :=
- match x with
- | xH => 0
- | xO xH => 1
- | xI xH => 2
- | xO y => Z.succ (log_near y)
- | xI y => Z.succ (log_near y)
- end.
-
- Theorem log_near_correct1 : forall p:positive, 0 <= log_near p.
- Proof.
- simple induction p; simpl; intros;
- [ elim p0; auto with zarith
- | elim p0; auto with zarith
- | trivial with zarith ].
- intros; apply Z.le_le_succ_r.
- generalize H0; now elim p1.
- intros; apply Z.le_le_succ_r.
- generalize H0; now elim p1.
- Qed.
-
- Theorem log_near_correct2 :
- forall p:positive, log_near p = log_inf p \/ log_near p = log_sup p.
- Proof.
- simple induction p.
- intros p0 [Einf| Esup].
- simpl. rewrite Einf.
- case p0; [ left | left | right ]; reflexivity.
- simpl; rewrite Esup.
- elim (log_sup_log_inf p0).
- generalize (log_inf_le_log_sup p0).
- generalize (log_sup_le_Slog_inf p0).
- case p0; auto with zarith.
- intros; omega.
- case p0; intros; auto with zarith.
- intros p0 [Einf| Esup].
- simpl.
- repeat rewrite Einf.
- case p0; intros; auto with zarith.
- simpl.
- repeat rewrite Esup.
- case p0; intros; auto with zarith.
- auto.
- Qed.
-
-End Log_pos.
-
-Section divers.
-
- (** Number of significative digits. *)
-
- Definition N_digits (x:Z) :=
- match x with
- | Zpos p => log_inf p
- | Zneg p => log_inf p
- | Z0 => 0
- end.
-
- Lemma ZERO_le_N_digits : forall x:Z, 0 <= N_digits x.
- Proof.
- simple induction x; simpl;
- [ apply Z.le_refl | exact log_inf_correct1 | exact log_inf_correct1 ].
- Qed.
-
- Lemma log_inf_shift_nat : forall n:nat, log_inf (shift_nat n 1) = Z.of_nat n.
- Proof.
- simple induction n; intros;
- [ try trivial | rewrite Nat2Z.inj_succ; rewrite <- H; reflexivity ].
- Qed.
-
- Lemma log_sup_shift_nat : forall n:nat, log_sup (shift_nat n 1) = Z.of_nat n.
- Proof.
- simple induction n; intros;
- [ try trivial | rewrite Nat2Z.inj_succ; rewrite <- H; reflexivity ].
- Qed.
-
- (** [Is_power p] means that p is a power of two *)
- Fixpoint Is_power (p:positive) : Prop :=
- match p with
- | xH => True
- | xO q => Is_power q
- | xI q => False
- end.
-
- Lemma Is_power_correct :
- forall p:positive, Is_power p <-> (exists y : nat, p = shift_nat y 1).
- Proof.
- split;
- [ elim p;
- [ simpl; tauto
- | simpl; intros; generalize (H H0); intro H1; elim H1;
- intros y0 Hy0; exists (S y0); rewrite Hy0; reflexivity
- | intro; exists 0%nat; reflexivity ]
- | intros; elim H; intros; rewrite H0; elim x; intros; simpl; trivial ].
- Qed.
-
- Lemma Is_power_or : forall p:positive, Is_power p \/ ~ Is_power p.
- Proof.
- simple induction p;
- [ intros; right; simpl; tauto
- | intros; elim H;
- [ intros; left; simpl; exact H0
- | intros; right; simpl; exact H0 ]
- | left; simpl; trivial ].
- Qed.
-
-End divers.
-
-
-
-
-
-