aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--theories/ZArith/Zpow_def.v6
1 files changed, 3 insertions, 3 deletions
diff --git a/theories/ZArith/Zpow_def.v b/theories/ZArith/Zpow_def.v
index 8609a6af98..d4f58c3b04 100644
--- a/theories/ZArith/Zpow_def.v
+++ b/theories/ZArith/Zpow_def.v
@@ -25,9 +25,9 @@ Notation Zpower_Ppow := Pos2Z.inj_pow (only parsing).
Lemma Zpower_theory : power_theory 1 Z.mul (@eq Z) Z.of_N Z.pow.
Proof.
- constructor. intros.
- destruct n;simpl;trivial.
+ constructor. intros z n.
+ destruct n as [|p];simpl;trivial.
unfold Z.pow_pos.
rewrite <- (Z.mul_1_r (pow_pos _ _ _)). generalize 1.
- induction p; simpl; intros; rewrite ?IHp, ?Z.mul_assoc; trivial.
+ induction p as [p IHp|p IHp|]; simpl; intros; rewrite ?IHp, ?Z.mul_assoc; trivial.
Qed.