diff options
| -rw-r--r-- | theories/ssr/ssrbool.v | 13 |
1 files changed, 8 insertions, 5 deletions
diff --git a/theories/ssr/ssrbool.v b/theories/ssr/ssrbool.v index f35da63fd6..e8a036bbb0 100644 --- a/theories/ssr/ssrbool.v +++ b/theories/ssr/ssrbool.v @@ -1401,8 +1401,8 @@ Definition mem T (pT : predType T) : pT -> mem_pred T := let: PredType toP := pT in fun A => Mem [eta toP A]. Arguments mem {T pT} A : rename, simpl never. -Notation "x \in A" := (in_mem x (mem A)) : bool_scope. -Notation "x \in A" := (in_mem x (mem A)) : bool_scope. +Notation "x \in A" := (in_mem x (mem A)) (only parsing) : bool_scope. +Notation "x \in A" := (in_mem x (mem A)) (only printing) : bool_scope. Notation "x \notin A" := (~~ (x \in A)) : bool_scope. Notation "A =i B" := (eq_mem (mem A) (mem B)) : type_scope. Notation "{ 'subset' A <= B }" := (sub_mem (mem A) (mem B)) : type_scope. @@ -1573,9 +1573,12 @@ Arguments has_quality n {T}. Lemma qualifE n T p x : (x \in @Qualifier n T p) = p x. Proof. by []. Qed. -Notation "x \is A" := (x \in has_quality 0 A) : bool_scope. -Notation "x \is 'a' A" := (x \in has_quality 1 A) : bool_scope. -Notation "x \is 'an' A" := (x \in has_quality 2 A) : bool_scope. +Notation "x \is A" := (x \in has_quality 0 A) (only parsing) : bool_scope. +Notation "x \is A" := (x \in has_quality 0 A) (only printing) : bool_scope. +Notation "x \is 'a' A" := (x \in has_quality 1 A) (only parsing) : bool_scope. +Notation "x \is 'a' A" := (x \in has_quality 1 A) (only printing) : bool_scope. +Notation "x \is 'an' A" := (x \in has_quality 2 A) (only parsing) : bool_scope. +Notation "x \is 'an' A" := (x \in has_quality 2 A) (only printing) : bool_scope. Notation "x \isn't A" := (x \notin has_quality 0 A) : bool_scope. Notation "x \isn't 'a' A" := (x \notin has_quality 1 A) : bool_scope. Notation "x \isn't 'an' A" := (x \notin has_quality 2 A) : bool_scope. |
