aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--theories/micromega/Ztac.v8
1 files changed, 4 insertions, 4 deletions
diff --git a/theories/micromega/Ztac.v b/theories/micromega/Ztac.v
index 5fb92aba44..a97ea85ceb 100644
--- a/theories/micromega/Ztac.v
+++ b/theories/micromega/Ztac.v
@@ -26,7 +26,7 @@ Qed.
Lemma elim_concl_eq :
forall x y, (x < y \/ y < x -> False) -> x = y.
Proof.
- intros.
+ intros x y H.
destruct (Z_lt_le_dec x y).
exfalso. apply H ; auto.
destruct (Zle_lt_or_eq y x);auto.
@@ -37,7 +37,7 @@ Qed.
Lemma elim_concl_le :
forall x y, (y < x -> False) -> x <= y.
Proof.
- intros.
+ intros x y H.
destruct (Z_lt_le_dec y x).
exfalso ; auto.
auto.
@@ -46,7 +46,7 @@ Qed.
Lemma elim_concl_lt :
forall x y, (y <= x -> False) -> x < y.
Proof.
- intros.
+ intros x y H.
destruct (Z_lt_le_dec x y).
auto.
exfalso ; auto.
@@ -93,7 +93,7 @@ Qed.
Lemma mul_le : forall e1 e2, 0 <= e1 -> 0 <= e2 -> 0 <= e1*e2.
Proof.
- intros.
+ intros e1 e2 H H0.
change 0 with (0* e2).
apply Zmult_le_compat_r; auto.
Qed.