diff options
| -rw-r--r-- | theories/micromega/Ztac.v | 8 |
1 files changed, 4 insertions, 4 deletions
diff --git a/theories/micromega/Ztac.v b/theories/micromega/Ztac.v index 5fb92aba44..a97ea85ceb 100644 --- a/theories/micromega/Ztac.v +++ b/theories/micromega/Ztac.v @@ -26,7 +26,7 @@ Qed. Lemma elim_concl_eq : forall x y, (x < y \/ y < x -> False) -> x = y. Proof. - intros. + intros x y H. destruct (Z_lt_le_dec x y). exfalso. apply H ; auto. destruct (Zle_lt_or_eq y x);auto. @@ -37,7 +37,7 @@ Qed. Lemma elim_concl_le : forall x y, (y < x -> False) -> x <= y. Proof. - intros. + intros x y H. destruct (Z_lt_le_dec y x). exfalso ; auto. auto. @@ -46,7 +46,7 @@ Qed. Lemma elim_concl_lt : forall x y, (y <= x -> False) -> x < y. Proof. - intros. + intros x y H. destruct (Z_lt_le_dec x y). auto. exfalso ; auto. @@ -93,7 +93,7 @@ Qed. Lemma mul_le : forall e1 e2, 0 <= e1 -> 0 <= e2 -> 0 <= e1*e2. Proof. - intros. + intros e1 e2 H H0. change 0 with (0* e2). apply Zmult_le_compat_r; auto. Qed. |
