aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--theories/Logic/Hurkens.v10
1 files changed, 7 insertions, 3 deletions
diff --git a/theories/Logic/Hurkens.v b/theories/Logic/Hurkens.v
index 74629fccad..44d2594312 100644
--- a/theories/Logic/Hurkens.v
+++ b/theories/Logic/Hurkens.v
@@ -45,6 +45,7 @@ Definition I : U->Prop :=
[x]((i:U->bool)(b2p (le i x))->(b2p (i [v](sb v U le x))))->B.
Lemma Omega : (i:U->bool)(induct i)->(b2p (i WF)).
+Proof.
Intros i y.
Apply y.
Unfold le WF induct.
@@ -54,7 +55,8 @@ Apply y.
Exact H0.
Qed.
-Lemma lemma : (induct [u](p2b (I u))).
+Lemma lemma1 : (induct [u](p2b (I u))).
+Proof.
Unfold induct.
Intros x p.
Apply (p2p2 (I x)).
@@ -65,14 +67,16 @@ Apply q with i:=[y:?](i [v:V](sb v U le y)).
Qed.
Lemma lemma2 : ((i:U->bool)(induct i)->(b2p (i WF)))->B.
+Proof.
Intro x.
-Apply (p2p1 (I WF) (x [u](p2b (I u)) lemma)).
+Apply (p2p1 (I WF) (x [u](p2b (I u)) lemma1)).
Intros i H0.
Apply (x [y](i [v](sb v U le y))).
Apply (p2p1 ? H0).
Qed.
-Lemma paradox : B.
+Theorem paradox : B.
+Proof.
Exact (lemma2 Omega).
Qed.