aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--doc/refman/RefMan-cic.tex8
1 files changed, 4 insertions, 4 deletions
diff --git a/doc/refman/RefMan-cic.tex b/doc/refman/RefMan-cic.tex
index 3fd5ae0b24..15b8fb9c8d 100644
--- a/doc/refman/RefMan-cic.tex
+++ b/doc/refman/RefMan-cic.tex
@@ -109,7 +109,7 @@ sets, namely the sorts {\Set} and {\Type$(j)$} for $j<i$, and all
products, subsets and function types over these sorts.
Formally, we call {\Sort} the set of sorts which is defined by:
-\[\Sort \equiv \{\Prop,\Set,\Type(i)| i \in \NN\} \]
+\[\Sort \equiv \{\Prop,\Set,\Type(i)\;|\; i \in \NN\} \]
\index{Type@{\Type}}
\index{Prop@{\Prop}}
\index{Set@{\Set}}
@@ -128,7 +128,7 @@ the universe \Type$(i)$. One only writes \Type. The
system itself generates for each instance of \Type\ a new
index for the universe and checks that the constraints between these
indexes can be solved. From the user point of view we consequently
-have {\sf Type :Type}.
+have {\Type}:{\Type}.
We shall make precise in the typing rules the constraints between the
indexes.
@@ -213,7 +213,7 @@ More precisely the language of the {\em Calculus of Inductive
\end{enumerate}
\paragraph{Notations.} Application associates to the left such that
-$(t~t_1\ldots t_n)$ represents $(\ldots (t~t_1)\ldots t_n)$. The
+$(t\;t_1\;t_2\ldots t_n)$ represents $(\ldots ((t\;t_1)\;t_2)\ldots t_n)$. The
products and arrows associate to the right such that $\forall~x:A,B\ra C\ra
D$ represents $\forall~x:A,(B\ra (C\ra D))$. One uses sometimes
$\forall~x~y:A,B$ or
@@ -421,7 +421,7 @@ term $t$ of functional type $\forall x:T, U$ with its so-called
$\eta$-expansion $\lb x:T\mto (t\ x)$ for $x$ an arbitrary variable
name fresh in $t$.
-The notion of $\eta$-reduction ${\lb x:T\mto (t\ x)}{\triangleright}{t}$
+The notion of $\eta$-reduction ${\lb x:T\mto (t\ x)}{\;\triangleright\;}{t}$
(for $x$ not occurring in $t$) is not type-sound because of subtyping
(think about $\lb x:\Type(1)\mto (f x)$ of type $\forall
x:\Type(1), \Type(1)$ for $f$ of type $\forall x:\Type(2),