aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--CHANGES2
-rw-r--r--theories/ZArith/Znat.v2
-rw-r--r--theories/ZArith/Zorder.v6
3 files changed, 6 insertions, 4 deletions
diff --git a/CHANGES b/CHANGES
index eec408d528..4168ac3a02 100644
--- a/CHANGES
+++ b/CHANGES
@@ -155,6 +155,8 @@ Library
- Lemmas in library Relations and Reals have been homogenized a bit.
- The implicit argument of Logic.eq is now maximally inserted, allowing
to simply write "eq" instead of "@eq _" in morphism signatures.
+- Wrongly named lemmas (Zlt_gt_succ and Zlt_succ_gt) fixed (potential source
+ of incompatibilities)
- List library:
- Definitions of list, length and app are now in Init/Datatypes.
Support for compatibility is provided.
diff --git a/theories/ZArith/Znat.v b/theories/ZArith/Znat.v
index 0fc27e38bd..dfd9b54506 100644
--- a/theories/ZArith/Znat.v
+++ b/theories/ZArith/Znat.v
@@ -91,7 +91,7 @@ Qed.
Theorem inj_lt : forall n m:nat, (n < m)%nat -> Z_of_nat n < Z_of_nat m.
Proof.
- intros x y H; apply Zgt_lt; apply Zlt_succ_gt; rewrite <- inj_S; apply inj_le;
+ intros x y H; apply Zgt_lt; apply Zle_succ_gt; rewrite <- inj_S; apply inj_le;
exact H.
Qed.
diff --git a/theories/ZArith/Zorder.v b/theories/ZArith/Zorder.v
index aad90a1e8c..511c364bc7 100644
--- a/theories/ZArith/Zorder.v
+++ b/theories/ZArith/Zorder.v
@@ -413,7 +413,7 @@ Proof.
| elim (Zcompare_Gt_Lt_antisym (n + 1) p); intros H4 H5; apply H4; exact H3 ].
Qed.
-Lemma Zlt_gt_succ : forall n m:Z, n <= m -> Zsucc m > n.
+Lemma Zle_gt_succ : forall n m:Z, n <= m -> Zsucc m > n.
Proof.
intros n p H; apply Zgt_le_trans with p.
apply Zgt_succ.
@@ -422,7 +422,7 @@ Qed.
Lemma Zle_lt_succ : forall n m:Z, n <= m -> n < Zsucc m.
Proof.
- intros n m H; apply Zgt_lt; apply Zlt_gt_succ; assumption.
+ intros n m H; apply Zgt_lt; apply Zle_gt_succ; assumption.
Qed.
Lemma Zlt_le_succ : forall n m:Z, n < m -> Zsucc n <= m.
@@ -440,7 +440,7 @@ Proof.
intros n m H; apply Zgt_succ_le; apply Zlt_gt; assumption.
Qed.
-Lemma Zlt_succ_gt : forall n m:Z, Zsucc n <= m -> m > n.
+Lemma Zle_succ_gt : forall n m:Z, Zsucc n <= m -> m > n.
Proof.
intros n m H; apply Zle_gt_trans with (m := Zsucc n);
[ assumption | apply Zgt_succ ].