diff options
| author | Pierre Courtieu | 2020-03-05 19:31:18 +0100 |
|---|---|---|
| committer | Pierre Courtieu | 2020-03-06 16:58:59 +0100 |
| commit | 9c2092b456c4ad56e2b680e700080355fc652a6b (patch) | |
| tree | 12a09c9b94b725de5323ec264014de8f6936129d /theories | |
| parent | 56b6e41c162f1aabd9e17ace7ceeab9afd556fe4 (diff) | |
Fix #11738 : Funind using deprecated Coqlib API.
Diffstat (limited to 'theories')
| -rw-r--r-- | theories/Arith/Lt.v | 8 | ||||
| -rw-r--r-- | theories/Arith/PeanoNat.v | 3 | ||||
| -rw-r--r-- | theories/Arith/Wf_nat.v | 2 | ||||
| -rw-r--r-- | theories/Init/Peano.v | 2 | ||||
| -rw-r--r-- | theories/Init/Wf.v | 3 |
5 files changed, 18 insertions, 0 deletions
diff --git a/theories/Arith/Lt.v b/theories/Arith/Lt.v index 918b0efc5a..8904f3f936 100644 --- a/theories/Arith/Lt.v +++ b/theories/Arith/Lt.v @@ -41,11 +41,15 @@ Proof. apply Nat.lt_succ_r. Qed. +Register lt_n_Sm_le as num.nat.lt_n_Sm_le. + Theorem le_lt_n_Sm n m : n <= m -> n < S m. Proof. apply Nat.lt_succ_r. Qed. +Register le_lt_n_Sm as num.nat.le_lt_n_Sm. + Hint Immediate lt_le_S: arith. Hint Immediate lt_n_Sm_le: arith. Hint Immediate le_lt_n_Sm: arith. @@ -99,6 +103,8 @@ Proof. apply Nat.succ_lt_mono. Qed. +Register lt_S_n as num.nat.lt_S_n. + Hint Resolve lt_n_Sn lt_S lt_n_S : arith. Hint Immediate lt_S_n : arith. @@ -133,6 +139,8 @@ Notation lt_trans := Nat.lt_trans (only parsing). Notation lt_le_trans := Nat.lt_le_trans (only parsing). Notation le_lt_trans := Nat.le_lt_trans (only parsing). +Register le_lt_trans as num.nat.le_lt_trans. + Hint Resolve lt_trans lt_le_trans le_lt_trans: arith. (** * Large = strict or equal *) diff --git a/theories/Arith/PeanoNat.v b/theories/Arith/PeanoNat.v index f12785029a..4657b7f46d 100644 --- a/theories/Arith/PeanoNat.v +++ b/theories/Arith/PeanoNat.v @@ -764,6 +764,9 @@ Infix "mod" := Nat.modulo (at level 40, no associativity) : nat_scope. Hint Unfold Nat.le : core. Hint Unfold Nat.lt : core. +Register Nat.le_trans as num.nat.le_trans. +Register Nat.nlt_0_r as num.nat.nlt_0_r. + (** [Nat] contains an [order] tactic for natural numbers *) (** Note that [Nat.order] is domain-agnostic: it will not prove diff --git a/theories/Arith/Wf_nat.v b/theories/Arith/Wf_nat.v index 1c183930f9..c5a6651c05 100644 --- a/theories/Arith/Wf_nat.v +++ b/theories/Arith/Wf_nat.v @@ -34,6 +34,8 @@ Proof. intros a. apply (H (S (f a))). auto with arith. Defined. +Register well_founded_ltof as num.nat.well_founded_ltof. + Theorem well_founded_gtof : well_founded gtof. Proof. exact well_founded_ltof. diff --git a/theories/Init/Peano.v b/theories/Init/Peano.v index 149a7a0cc5..beb06ea912 100644 --- a/theories/Init/Peano.v +++ b/theories/Init/Peano.v @@ -159,6 +159,8 @@ Inductive le (n:nat) : nat -> Prop := where "n <= m" := (le n m) : nat_scope. +Register le_n as num.nat.le_n. + Hint Constructors le: core. (*i equivalent to : "Hints Resolve le_n le_S : core." i*) diff --git a/theories/Init/Wf.v b/theories/Init/Wf.v index 998bbc7047..bd5185fdb0 100644 --- a/theories/Init/Wf.v +++ b/theories/Init/Wf.v @@ -32,11 +32,14 @@ Section Well_founded. Inductive Acc (x: A) : Prop := Acc_intro : (forall y:A, R y x -> Acc y) -> Acc x. + Register Acc as core.wf.acc. + Lemma Acc_inv : forall x:A, Acc x -> forall y:A, R y x -> Acc y. destruct 1; trivial. Defined. Global Arguments Acc_inv [x] _ [y] _, [x] _ y _. + Register Acc_inv as core.wf.acc_inv. (** A relation is well-founded if every element is accessible *) |
