diff options
| author | coqbot-app[bot] | 2021-04-07 09:10:11 +0000 |
|---|---|---|
| committer | GitHub | 2021-04-07 09:10:11 +0000 |
| commit | 6f6825636ffe705442dfbbdacfef2e925553b28b (patch) | |
| tree | 5ca28b3f8f65625843aba7fa47c2f845fe7f5929 /theories | |
| parent | ae4c38571697528b96dd1f5319873dfe5a11d581 (diff) | |
| parent | 4e28d88de719711a608389a02f9358182eec5235 (diff) | |
Merge PR #14056: Miscellaneous mini-"typos" fixes
Reviewed-by: SkySkimmer
Reviewed-by: jfehrle
Reviewed-by: silene
Diffstat (limited to 'theories')
| -rw-r--r-- | theories/Logic/ChoiceFacts.v | 2 | ||||
| -rw-r--r-- | theories/Logic/ExtensionalityFacts.v | 2 | ||||
| -rw-r--r-- | theories/micromega/OrderedRing.v | 3 | ||||
| -rw-r--r-- | theories/micromega/ZifyInst.v | 20 |
4 files changed, 13 insertions, 14 deletions
diff --git a/theories/Logic/ChoiceFacts.v b/theories/Logic/ChoiceFacts.v index 3dac62c476..23bc396fd7 100644 --- a/theories/Logic/ChoiceFacts.v +++ b/theories/Logic/ChoiceFacts.v @@ -676,7 +676,7 @@ Qed. We show instead that functional relation reification and the functional form of the axiom of choice are equivalent on decidable - relation with [nat] as codomain + relations with [nat] as codomain. *) Require Import Wf_nat. diff --git a/theories/Logic/ExtensionalityFacts.v b/theories/Logic/ExtensionalityFacts.v index 4735d6c9ca..a151cca3af 100644 --- a/theories/Logic/ExtensionalityFacts.v +++ b/theories/Logic/ExtensionalityFacts.v @@ -43,7 +43,7 @@ Definition is_inverse A B f g := (forall a:A, g (f a) = a) /\ (forall b:B, f (g #[universes(template)] Record Delta A := { pi1:A; pi2:A; eq:pi1=pi2 }. -Definition delta {A} (a:A) := {|pi1 := a; pi2 := a; eq := eq_refl a |}. +Definition delta {A} (a:A) := {| pi1 := a; pi2 := a; eq := eq_refl a |}. Arguments pi1 {A} _. Arguments pi2 {A} _. diff --git a/theories/micromega/OrderedRing.v b/theories/micromega/OrderedRing.v index 5fa3740ab1..bfbd6fd8d3 100644 --- a/theories/micromega/OrderedRing.v +++ b/theories/micromega/OrderedRing.v @@ -423,7 +423,7 @@ Qed. (* The following theorems are used to build a morphism from Z to R and prove its properties in ZCoeff.v. They are not used in RingMicromega.v. *) -(* Surprisingly, multilication is needed to prove the following theorem *) +(* Surprisingly, multiplication is needed to prove the following theorem *) Theorem Ropp_neg_pos : forall n : R, - n < 0 <-> 0 < n. Proof. @@ -457,4 +457,3 @@ apply Rtimes_pos_pos. assumption. now apply -> Rlt_lt_minus. Qed.*) End STRICT_ORDERED_RING. - diff --git a/theories/micromega/ZifyInst.v b/theories/micromega/ZifyInst.v index 9881e73f76..dd31b998d4 100644 --- a/theories/micromega/ZifyInst.v +++ b/theories/micromega/ZifyInst.v @@ -307,15 +307,15 @@ Instance Op_N_mul : BinOp N.mul := Add Zify BinOp Op_N_mul. Instance Op_N_sub : BinOp N.sub := - {| TBOp := fun x y => Z.max 0 (x - y) ; TBOpInj := N2Z.inj_sub_max|}. + {| TBOp := fun x y => Z.max 0 (x - y) ; TBOpInj := N2Z.inj_sub_max |}. Add Zify BinOp Op_N_sub. Instance Op_N_div : BinOp N.div := - {| TBOp := Z.div ; TBOpInj := N2Z.inj_div|}. + {| TBOp := Z.div ; TBOpInj := N2Z.inj_div |}. Add Zify BinOp Op_N_div. Instance Op_N_mod : BinOp N.modulo := - {| TBOp := Z.rem ; TBOpInj := N2Z.inj_rem|}. + {| TBOp := Z.rem ; TBOpInj := N2Z.inj_rem |}. Add Zify BinOp Op_N_mod. Instance Op_N_pred : UnOp N.pred := @@ -332,19 +332,19 @@ Add Zify UnOp Op_N_succ. (* zify_Z_rel *) Instance Op_Z_ge : BinRel Z.ge := - {| TR := Z.ge ; TRInj := fun x y => iff_refl (x>= y)|}. + {| TR := Z.ge ; TRInj := fun x y => iff_refl (x>= y) |}. Add Zify BinRel Op_Z_ge. Instance Op_Z_lt : BinRel Z.lt := - {| TR := Z.lt ; TRInj := fun x y => iff_refl (x < y)|}. + {| TR := Z.lt ; TRInj := fun x y => iff_refl (x < y) |}. Add Zify BinRel Op_Z_lt. Instance Op_Z_gt : BinRel Z.gt := - {| TR := Z.gt ;TRInj := fun x y => iff_refl (x > y)|}. + {| TR := Z.gt ;TRInj := fun x y => iff_refl (x > y) |}. Add Zify BinRel Op_Z_gt. Instance Op_Z_le : BinRel Z.le := - {| TR := Z.le ;TRInj := fun x y => iff_refl (x <= y)|}. + {| TR := Z.le ;TRInj := fun x y => iff_refl (x <= y) |}. Add Zify BinRel Op_Z_le. Instance Op_eqZ : BinRel (@eq Z) := @@ -460,7 +460,7 @@ Add Zify UnOp Op_Z_to_nat. (** Specification of derived operators over Z *) Instance ZmaxSpec : BinOpSpec Z.max := - {| BPred := fun n m r => n < m /\ r = m \/ m <= n /\ r = n ; BSpec := Z.max_spec|}. + {| BPred := fun n m r => n < m /\ r = m \/ m <= n /\ r = n ; BSpec := Z.max_spec |}. Add Zify BinOpSpec ZmaxSpec. Instance ZminSpec : BinOpSpec Z.min := @@ -470,12 +470,12 @@ Add Zify BinOpSpec ZminSpec. Instance ZsgnSpec : UnOpSpec Z.sgn := {| UPred := fun n r : Z => 0 < n /\ r = 1 \/ 0 = n /\ r = 0 \/ n < 0 /\ r = - (1) ; - USpec := Z.sgn_spec|}. + USpec := Z.sgn_spec |}. Add Zify UnOpSpec ZsgnSpec. Instance ZabsSpec : UnOpSpec Z.abs := {| UPred := fun n r: Z => 0 <= n /\ r = n \/ n < 0 /\ r = - n ; - USpec := Z.abs_spec|}. + USpec := Z.abs_spec |}. Add Zify UnOpSpec ZabsSpec. (** Saturate positivity constraints *) |
