aboutsummaryrefslogtreecommitdiff
path: root/theories
diff options
context:
space:
mode:
authorcoqbot-app[bot]2021-04-07 09:10:11 +0000
committerGitHub2021-04-07 09:10:11 +0000
commit6f6825636ffe705442dfbbdacfef2e925553b28b (patch)
tree5ca28b3f8f65625843aba7fa47c2f845fe7f5929 /theories
parentae4c38571697528b96dd1f5319873dfe5a11d581 (diff)
parent4e28d88de719711a608389a02f9358182eec5235 (diff)
Merge PR #14056: Miscellaneous mini-"typos" fixes
Reviewed-by: SkySkimmer Reviewed-by: jfehrle Reviewed-by: silene
Diffstat (limited to 'theories')
-rw-r--r--theories/Logic/ChoiceFacts.v2
-rw-r--r--theories/Logic/ExtensionalityFacts.v2
-rw-r--r--theories/micromega/OrderedRing.v3
-rw-r--r--theories/micromega/ZifyInst.v20
4 files changed, 13 insertions, 14 deletions
diff --git a/theories/Logic/ChoiceFacts.v b/theories/Logic/ChoiceFacts.v
index 3dac62c476..23bc396fd7 100644
--- a/theories/Logic/ChoiceFacts.v
+++ b/theories/Logic/ChoiceFacts.v
@@ -676,7 +676,7 @@ Qed.
We show instead that functional relation reification and the
functional form of the axiom of choice are equivalent on decidable
- relation with [nat] as codomain
+ relations with [nat] as codomain.
*)
Require Import Wf_nat.
diff --git a/theories/Logic/ExtensionalityFacts.v b/theories/Logic/ExtensionalityFacts.v
index 4735d6c9ca..a151cca3af 100644
--- a/theories/Logic/ExtensionalityFacts.v
+++ b/theories/Logic/ExtensionalityFacts.v
@@ -43,7 +43,7 @@ Definition is_inverse A B f g := (forall a:A, g (f a) = a) /\ (forall b:B, f (g
#[universes(template)]
Record Delta A := { pi1:A; pi2:A; eq:pi1=pi2 }.
-Definition delta {A} (a:A) := {|pi1 := a; pi2 := a; eq := eq_refl a |}.
+Definition delta {A} (a:A) := {| pi1 := a; pi2 := a; eq := eq_refl a |}.
Arguments pi1 {A} _.
Arguments pi2 {A} _.
diff --git a/theories/micromega/OrderedRing.v b/theories/micromega/OrderedRing.v
index 5fa3740ab1..bfbd6fd8d3 100644
--- a/theories/micromega/OrderedRing.v
+++ b/theories/micromega/OrderedRing.v
@@ -423,7 +423,7 @@ Qed.
(* The following theorems are used to build a morphism from Z to R and
prove its properties in ZCoeff.v. They are not used in RingMicromega.v. *)
-(* Surprisingly, multilication is needed to prove the following theorem *)
+(* Surprisingly, multiplication is needed to prove the following theorem *)
Theorem Ropp_neg_pos : forall n : R, - n < 0 <-> 0 < n.
Proof.
@@ -457,4 +457,3 @@ apply Rtimes_pos_pos. assumption. now apply -> Rlt_lt_minus.
Qed.*)
End STRICT_ORDERED_RING.
-
diff --git a/theories/micromega/ZifyInst.v b/theories/micromega/ZifyInst.v
index 9881e73f76..dd31b998d4 100644
--- a/theories/micromega/ZifyInst.v
+++ b/theories/micromega/ZifyInst.v
@@ -307,15 +307,15 @@ Instance Op_N_mul : BinOp N.mul :=
Add Zify BinOp Op_N_mul.
Instance Op_N_sub : BinOp N.sub :=
- {| TBOp := fun x y => Z.max 0 (x - y) ; TBOpInj := N2Z.inj_sub_max|}.
+ {| TBOp := fun x y => Z.max 0 (x - y) ; TBOpInj := N2Z.inj_sub_max |}.
Add Zify BinOp Op_N_sub.
Instance Op_N_div : BinOp N.div :=
- {| TBOp := Z.div ; TBOpInj := N2Z.inj_div|}.
+ {| TBOp := Z.div ; TBOpInj := N2Z.inj_div |}.
Add Zify BinOp Op_N_div.
Instance Op_N_mod : BinOp N.modulo :=
- {| TBOp := Z.rem ; TBOpInj := N2Z.inj_rem|}.
+ {| TBOp := Z.rem ; TBOpInj := N2Z.inj_rem |}.
Add Zify BinOp Op_N_mod.
Instance Op_N_pred : UnOp N.pred :=
@@ -332,19 +332,19 @@ Add Zify UnOp Op_N_succ.
(* zify_Z_rel *)
Instance Op_Z_ge : BinRel Z.ge :=
- {| TR := Z.ge ; TRInj := fun x y => iff_refl (x>= y)|}.
+ {| TR := Z.ge ; TRInj := fun x y => iff_refl (x>= y) |}.
Add Zify BinRel Op_Z_ge.
Instance Op_Z_lt : BinRel Z.lt :=
- {| TR := Z.lt ; TRInj := fun x y => iff_refl (x < y)|}.
+ {| TR := Z.lt ; TRInj := fun x y => iff_refl (x < y) |}.
Add Zify BinRel Op_Z_lt.
Instance Op_Z_gt : BinRel Z.gt :=
- {| TR := Z.gt ;TRInj := fun x y => iff_refl (x > y)|}.
+ {| TR := Z.gt ;TRInj := fun x y => iff_refl (x > y) |}.
Add Zify BinRel Op_Z_gt.
Instance Op_Z_le : BinRel Z.le :=
- {| TR := Z.le ;TRInj := fun x y => iff_refl (x <= y)|}.
+ {| TR := Z.le ;TRInj := fun x y => iff_refl (x <= y) |}.
Add Zify BinRel Op_Z_le.
Instance Op_eqZ : BinRel (@eq Z) :=
@@ -460,7 +460,7 @@ Add Zify UnOp Op_Z_to_nat.
(** Specification of derived operators over Z *)
Instance ZmaxSpec : BinOpSpec Z.max :=
- {| BPred := fun n m r => n < m /\ r = m \/ m <= n /\ r = n ; BSpec := Z.max_spec|}.
+ {| BPred := fun n m r => n < m /\ r = m \/ m <= n /\ r = n ; BSpec := Z.max_spec |}.
Add Zify BinOpSpec ZmaxSpec.
Instance ZminSpec : BinOpSpec Z.min :=
@@ -470,12 +470,12 @@ Add Zify BinOpSpec ZminSpec.
Instance ZsgnSpec : UnOpSpec Z.sgn :=
{| UPred := fun n r : Z => 0 < n /\ r = 1 \/ 0 = n /\ r = 0 \/ n < 0 /\ r = - (1) ;
- USpec := Z.sgn_spec|}.
+ USpec := Z.sgn_spec |}.
Add Zify UnOpSpec ZsgnSpec.
Instance ZabsSpec : UnOpSpec Z.abs :=
{| UPred := fun n r: Z => 0 <= n /\ r = n \/ n < 0 /\ r = - n ;
- USpec := Z.abs_spec|}.
+ USpec := Z.abs_spec |}.
Add Zify UnOpSpec ZabsSpec.
(** Saturate positivity constraints *)