diff options
| author | Emilio Jesus Gallego Arias | 2020-02-05 17:46:07 +0100 |
|---|---|---|
| committer | Emilio Jesus Gallego Arias | 2020-02-13 21:12:03 +0100 |
| commit | 9193769161e1f06b371eed99dfe9e90fec9a14a6 (patch) | |
| tree | e16e5f60ce6a88656ccd802d232cde6171be927d /theories/ssr | |
| parent | eb83c142eb33de18e3bfdd7c32ecfb797a640c38 (diff) | |
[build] Consolidate stdlib's .v files under a single directory.
Currently, `.v` under the `Coq.` prefix are found in both `theories`
and `plugins`. Usually these two directories are merged by special
loadpath code that allows double-binding of the prefix.
This adds some complexity to the build and loadpath system; and in
particular, it prevents from handling the `Coq.*` prefix in the
simple, `-R theories Coq` standard way.
We thus move all `.v` files to theories, leaving `plugins` as an
OCaml-only directory, and modify accordingly the loadpath / build
infrastructure.
Note that in general `plugins/foo/Foo.v` was not self-contained, in
the sense that it depended on files in `theories` and files in
`theories` depended on it; moreover, Coq saw all these files as
belonging to the same namespace so it didn't really care where they
lived.
This could also imply a performance gain as we now effectively
traverse less directories when locating a library.
See also discussion in #10003
Diffstat (limited to 'theories/ssr')
| -rw-r--r-- | theories/ssr/ssrbool.v | 2035 | ||||
| -rw-r--r-- | theories/ssr/ssrclasses.v | 32 | ||||
| -rw-r--r-- | theories/ssr/ssreflect.v | 656 | ||||
| -rw-r--r-- | theories/ssr/ssrfun.v | 812 | ||||
| -rw-r--r-- | theories/ssr/ssrsetoid.v | 38 | ||||
| -rw-r--r-- | theories/ssr/ssrunder.v | 75 |
6 files changed, 3648 insertions, 0 deletions
diff --git a/theories/ssr/ssrbool.v b/theories/ssr/ssrbool.v new file mode 100644 index 0000000000..475859fcc2 --- /dev/null +++ b/theories/ssr/ssrbool.v @@ -0,0 +1,2035 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +(* This file is (C) Copyright 2006-2015 Microsoft Corporation and Inria. *) + +(** #<style> .doc { font-family: monospace; white-space: pre; } </style># **) + +Require Bool. +Require Import ssreflect ssrfun. + +(** + A theory of boolean predicates and operators. A large part of this file is + concerned with boolean reflection. + Definitions and notations: + is_true b == the coercion of b : bool to Prop (:= b = true). + This is just input and displayed as `b''. + reflect P b == the reflection inductive predicate, asserting + that the logical proposition P : prop with the + formula b : bool. Lemmas asserting reflect P b + are often referred to as "views". + iffP, appP, sameP, rwP :: lemmas for direct manipulation of reflection + views: iffP is used to prove reflection from + logical equivalence, appP to compose views, and + sameP and rwP to perform boolean and setoid + rewriting. + elimT :: coercion reflect >-> Funclass, which allows the + direct application of `reflect' views to + boolean assertions. + decidable P <-> P is effectively decidable (:= {P} + {~ P}. + contra, contraL, ... :: contraposition lemmas. + altP my_viewP :: natural alternative for reflection; given + lemma myviewP: reflect my_Prop my_formula, + have #[#myP | not_myP#]# := altP my_viewP. + generates two subgoals, in which my_formula has + been replaced by true and false, resp., with + new assumptions myP : my_Prop and + not_myP: ~~ my_formula. + Caveat: my_formula must be an APPLICATION, not + a variable, constant, let-in, etc. (due to the + poor behaviour of dependent index matching). + boolP my_formula :: boolean disjunction, equivalent to + altP (idP my_formula) but circumventing the + dependent index capture issue; destructing + boolP my_formula generates two subgoals with + assumptions my_formula and ~~ myformula. As + with altP, my_formula must be an application. + \unless C, P <-> we can assume property P when a something that + holds under condition C (such as C itself). + := forall G : Prop, (C -> G) -> (P -> G) -> G. + This is just C \/ P or rather its impredicative + encoding, whose usage better fits the above + description: given a lemma UCP whose conclusion + is \unless C, P we can assume P by writing: + wlog hP: / P by apply/UCP; (prove C -> goal). + or even apply: UCP id _ => hP if the goal is C. + classically P <-> we can assume P when proving is_true b. + := forall b : bool, (P -> b) -> b. + This is equivalent to ~ (~ P) when P : Prop. + implies P Q == wrapper variant type that coerces to P -> Q and + can be used as a P -> Q view unambiguously. + Useful to avoid spurious insertion of <-> views + when Q is a conjunction of foralls, as in Lemma + all_and2 below; conversely, avoids confusion in + apply views for impredicative properties, such + as \unless C, P. Also supports contrapositives. + a && b == the boolean conjunction of a and b. + a || b == the boolean disjunction of a and b. + a ==> b == the boolean implication of b by a. + ~~ a == the boolean negation of a. + a (+) b == the boolean exclusive or (or sum) of a and b. + #[# /\ P1 , P2 & P3 #]# == multiway logical conjunction, up to 5 terms. + #[# \/ P1 , P2 | P3 #]# == multiway logical disjunction, up to 4 terms. + #[#&& a, b, c & d#]# == iterated, right associative boolean conjunction + with arbitrary arity. + #[#|| a, b, c | d#]# == iterated, right associative boolean disjunction + with arbitrary arity. + #[#==> a, b, c => d#]# == iterated, right associative boolean implication + with arbitrary arity. + and3P, ... == specific reflection lemmas for iterated + connectives. + andTb, orbAC, ... == systematic names for boolean connective + properties (see suffix conventions below). + prop_congr == a tactic to move a boolean equality from + its coerced form in Prop to the equality + in bool. + bool_congr == resolution tactic for blindly weeding out + like terms from boolean equalities (can fail). + This file provides a theory of boolean predicates and relations: + pred T == the type of bool predicates (:= T -> bool). + simpl_pred T == the type of simplifying bool predicates, based on + the simpl_fun type from ssrfun.v. + mem_pred T == a specialized form of simpl_pred for "collective" + predicates (see below). + rel T == the type of bool relations. + := T -> pred T or T -> T -> bool. + simpl_rel T == type of simplifying relations. + := T -> simpl_pred T + predType == the generic predicate interface, supported for + for lists and sets. + pred_sort == the predType >-> Type projection; pred_sort is + itself a Coercion target class. Declaring a + coercion to pred_sort is an alternative way of + equiping a type with a predType structure, which + interoperates better with coercion subtyping. + This is used, e.g., for finite sets, so that finite + groups inherit the membership operation by + coercing to sets. + {pred T} == a type convertible to pred T, but whose head + constant is pred_sort. This type should be used + for parameters that can be used as collective + predicates (see below), as this will allow passing + in directly collections that implement predType + by coercion as described above, e.g., finite sets. + := pred_sort (predPredType T) + If P is a predicate the proposition "x satisfies P" can be written + applicatively as (P x), or using an explicit connective as (x \in P); in + the latter case we say that P is a "collective" predicate. We use A, B + rather than P, Q for collective predicates: + x \in A == x satisfies the (collective) predicate A. + x \notin A == x doesn't satisfy the (collective) predicate A. + The pred T type can be used as a generic predicate type for either kind, + but the two kinds of predicates should not be confused. When a "generic" + pred T value of one type needs to be passed as the other the following + conversions should be used explicitly: + SimplPred P == a (simplifying) applicative equivalent of P. + mem A == an applicative equivalent of collective predicate A: + mem A x simplifies to x \in A, as mem A has in + fact type mem_pred T. + --> In user notation collective predicates _only_ occur as arguments to mem: + A only appears as (mem A). This is hidden by notation, e.g., + x \in A := in_mem x (mem A) here, enum A := enum_mem (mem A) in fintype. + This makes it possible to unify the various ways in which A can be + interpreted as a predicate, for both pattern matching and display. + Alternatively one can use the syntax for explicit simplifying predicates + and relations (in the following x is bound in E): + #[#pred x | E#]# == simplifying (see ssrfun) predicate x => E. + #[#pred x : T | E#]# == predicate x => E, with a cast on the argument. + #[#pred : T | P#]# == constant predicate P on type T. + #[#pred x | E1 & E2#]# == #[#pred x | E1 && E2#]#; an x : T cast is allowed. + #[#pred x in A#]# == #[#pred x | x in A#]#. + #[#pred x in A | E#]# == #[#pred x | x in A & E#]#. + #[#pred x in A | E1 & E2#]# == #[#pred x in A | E1 && E2#]#. + #[#predU A & B#]# == union of two collective predicates A and B. + #[#predI A & B#]# == intersection of collective predicates A and B. + #[#predD A & B#]# == difference of collective predicates A and B. + #[#predC A#]# == complement of the collective predicate A. + #[#preim f of A#]# == preimage under f of the collective predicate A. + predU P Q, ..., preim f P == union, etc of applicative predicates. + pred0 == the empty predicate. + predT == the total (always true) predicate. + if T : predArgType, then T coerces to predT. + {: T} == T cast to predArgType (e.g., {: bool * nat}). + In the following, x and y are bound in E: + #[#rel x y | E#]# == simplifying relation x, y => E. + #[#rel x y : T | E#]# == simplifying relation with arguments cast. + #[#rel x y in A & B | E#]# == #[#rel x y | #[#&& x \in A, y \in B & E#]# #]#. + #[#rel x y in A & B#]# == #[#rel x y | (x \in A) && (y \in B) #]#. + #[#rel x y in A | E#]# == #[#rel x y in A & A | E#]#. + #[#rel x y in A#]# == #[#rel x y in A & A#]#. + relU R S == union of relations R and S. + relpre f R == preimage of relation R under f. + xpredU, ..., xrelpre == lambda terms implementing predU, ..., etc. + Explicit values of type pred T (i.e., lamdba terms) should always be used + applicatively, while values of collection types implementing the predType + interface, such as sequences or sets should always be used as collective + predicates. Defined constants and functions of type pred T or simpl_pred T + as well as the explicit simpl_pred T values described below, can generally + be used either way. Note however that x \in A will not auto-simplify when + A is an explicit simpl_pred T value; the generic simplification rule inE + must be used (when A : pred T, the unfold_in rule can be used). Constants + of type pred T with an explicit simpl_pred value do not auto-simplify when + used applicatively, but can still be expanded with inE. This behavior can + be controlled as follows: + Let A : collective_pred T := #[#pred x | ... #]#. + The collective_pred T type is just an alias for pred T, but this cast + stops rewrite inE from expanding the definition of A, thus treating A + into an abstract collection (unfold_in or in_collective can be used to + expand manually). + Let A : applicative_pred T := #[#pred x | ... #]#. + This cast causes inE to turn x \in A into the applicative A x form; + A will then have to unfolded explicitly with the /A rule. This will + also apply to any definition that reduces to A (e.g., Let B := A). + Canonical A_app_pred := ApplicativePred A. + This declaration, given after definition of A, similarly causes inE to + turn x \in A into A x, but in addition allows the app_predE rule to + turn A x back into x \in A; it can be used for any definition of type + pred T, which makes it especially useful for ambivalent predicates + as the relational transitive closure connect, that are used in both + applicative and collective styles. + Purely for aesthetics, we provide a subtype of collective predicates: + qualifier q T == a pred T pretty-printing wrapper. An A : qualifier q T + coerces to pred_sort and thus behaves as a collective + predicate, but x \in A and x \notin A are displayed as: + x \is A and x \isn't A when q = 0, + x \is a A and x \isn't a A when q = 1, + x \is an A and x \isn't an A when q = 2, respectively. + #[#qualify x | P#]# := Qualifier 0 (fun x => P), constructor for the above. + #[#qualify x : T | P#]#, #[#qualify a x | P#]#, #[#qualify an X | P#]#, etc. + variants of the above with type constraints and different + values of q. + We provide an internal interface to support attaching properties (such as + being multiplicative) to predicates: + pred_key p == phantom type that will serve as a support for properties + to be attached to p : {pred _}; instances should be + created with Fact/Qed so as to be opaque. + KeyedPred k_p == an instance of the interface structure that attaches + (k_p : pred_key P) to P; the structure projection is a + coercion to pred_sort. + KeyedQualifier k_q == an instance of the interface structure that attaches + (k_q : pred_key q) to (q : qualifier n T). + DefaultPredKey p == a default value for pred_key p; the vernacular command + Import DefaultKeying attaches this key to all predicates + that are not explicitly keyed. + Keys can be used to attach properties to predicates, qualifiers and + generic nouns in a way that allows them to be used transparently. The key + projection of a predicate property structure such as unsignedPred should + be a pred_key, not a pred, and corresponding lemmas will have the form + Lemma rpredN R S (oppS : @opprPred R S) (kS : keyed_pred oppS) : + {mono -%%R: x / x \in kS}. + Because x \in kS will be displayed as x \in S (or x \is S, etc), the + canonical instance of opprPred will not normally be exposed (it will also + be erased by /= simplification). In addition each predicate structure + should have a DefaultPredKey Canonical instance that simply issues the + property as a proof obligation (which can be caught by the Prop-irrelevant + feature of the ssreflect plugin). + Some properties of predicates and relations: + A =i B <-> A and B are extensionally equivalent. + {subset A <= B} <-> A is a (collective) subpredicate of B. + subpred P Q <-> P is an (applicative) subpredicate or Q. + subrel R S <-> R is a subrelation of S. + In the following R is in rel T: + reflexive R <-> R is reflexive. + irreflexive R <-> R is irreflexive. + symmetric R <-> R (in rel T) is symmetric (equation). + pre_symmetric R <-> R is symmetric (implication). + antisymmetric R <-> R is antisymmetric. + total R <-> R is total. + transitive R <-> R is transitive. + left_transitive R <-> R is a congruence on its left hand side. + right_transitive R <-> R is a congruence on its right hand side. + equivalence_rel R <-> R is an equivalence relation. + Localization of (Prop) predicates; if P1 is convertible to forall x, Qx, + P2 to forall x y, Qxy and P3 to forall x y z, Qxyz : + {for y, P1} <-> Qx{y / x}. + {in A, P1} <-> forall x, x \in A -> Qx. + {in A1 & A2, P2} <-> forall x y, x \in A1 -> y \in A2 -> Qxy. + {in A &, P2} <-> forall x y, x \in A -> y \in A -> Qxy. + {in A1 & A2 & A3, Q3} <-> forall x y z, + x \in A1 -> y \in A2 -> z \in A3 -> Qxyz. + {in A1 & A2 &, Q3} := {in A1 & A2 & A2, Q3}. + {in A1 && A3, Q3} := {in A1 & A1 & A3, Q3}. + {in A &&, Q3} := {in A & A & A, Q3}. + {in A, bijective f} <-> f has a right inverse in A. + {on C, P1} <-> forall x, (f x) \in C -> Qx + when P1 is also convertible to Pf f, e.g., + {on C, involutive f}. + {on C &, P2} == forall x y, f x \in C -> f y \in C -> Qxy + when P2 is also convertible to Pf f, e.g., + {on C &, injective f}. + {on C, P1' & g} == forall x, (f x) \in cd -> Qx + when P1' is convertible to Pf f + and P1' g is convertible to forall x, Qx, e.g., + {on C, cancel f & g}. + {on C, bijective f} == f has a right inverse on C. + This file extends the lemma name suffix conventions of ssrfun as follows: + A -- associativity, as in andbA : associative andb. + AC -- right commutativity. + ACA -- self-interchange (inner commutativity), e.g., + orbACA : (a || b) || (c || d) = (a || c) || (b || d). + b -- a boolean argument, as in andbb : idempotent andb. + C -- commutativity, as in andbC : commutative andb, + or predicate complement, as in predC. + CA -- left commutativity. + D -- predicate difference, as in predD. + E -- elimination, as in negbFE : ~~ b = false -> b. + F or f -- boolean false, as in andbF : b && false = false. + I -- left/right injectivity, as in addbI : right_injective addb, + or predicate intersection, as in predI. + l -- a left-hand operation, as andb_orl : left_distributive andb orb. + N or n -- boolean negation, as in andbN : a && (~~ a) = false. + P -- a characteristic property, often a reflection lemma, as in + andP : reflect (a /\ b) (a && b). + r -- a right-hand operation, as orb_andr : rightt_distributive orb andb. + T or t -- boolean truth, as in andbT: right_id true andb. + U -- predicate union, as in predU. + W -- weakening, as in in1W : (forall x, P) -> {in D, forall x, P}. **) + + +Set Implicit Arguments. +Unset Strict Implicit. +Unset Printing Implicit Defensive. +Set Warnings "-projection-no-head-constant". + +Notation reflect := Bool.reflect. +Notation ReflectT := Bool.ReflectT. +Notation ReflectF := Bool.ReflectF. + +Reserved Notation "~~ b" (at level 35, right associativity). +Reserved Notation "b ==> c" (at level 55, right associativity). +Reserved Notation "b1 (+) b2" (at level 50, left associativity). + +Reserved Notation "x \in A" (at level 70, no associativity, + format "'[hv' x '/ ' \in A ']'"). +Reserved Notation "x \notin A" (at level 70, no associativity, + format "'[hv' x '/ ' \notin A ']'"). +Reserved Notation "x \is A" (at level 70, no associativity, + format "'[hv' x '/ ' \is A ']'"). +Reserved Notation "x \isn't A" (at level 70, no associativity, + format "'[hv' x '/ ' \isn't A ']'"). +Reserved Notation "x \is 'a' A" (at level 70, no associativity, + format "'[hv' x '/ ' \is 'a' A ']'"). +Reserved Notation "x \isn't 'a' A" (at level 70, no associativity, + format "'[hv' x '/ ' \isn't 'a' A ']'"). +Reserved Notation "x \is 'an' A" (at level 70, no associativity, + format "'[hv' x '/ ' \is 'an' A ']'"). +Reserved Notation "x \isn't 'an' A" (at level 70, no associativity, + format "'[hv' x '/ ' \isn't 'an' A ']'"). +Reserved Notation "p1 =i p2" (at level 70, no associativity, + format "'[hv' p1 '/ ' =i p2 ']'"). +Reserved Notation "{ 'subset' A <= B }" (at level 0, A, B at level 69, + format "'[hv' { 'subset' A '/ ' <= B } ']'"). + +Reserved Notation "{ : T }" (at level 0, format "{ : T }"). +Reserved Notation "{ 'pred' T }" (at level 0, format "{ 'pred' T }"). +Reserved Notation "[ 'predType' 'of' T ]" (at level 0, + format "[ 'predType' 'of' T ]"). + +Reserved Notation "[ 'pred' : T | E ]" (at level 0, + format "'[hv' [ 'pred' : T | '/ ' E ] ']'"). +Reserved Notation "[ 'pred' x | E ]" (at level 0, x ident, + format "'[hv' [ 'pred' x | '/ ' E ] ']'"). +Reserved Notation "[ 'pred' x : T | E ]" (at level 0, x ident, + format "'[hv' [ 'pred' x : T | '/ ' E ] ']'"). +Reserved Notation "[ 'pred' x | E1 & E2 ]" (at level 0, x ident, + format "'[hv' [ 'pred' x | '/ ' E1 & '/ ' E2 ] ']'"). +Reserved Notation "[ 'pred' x : T | E1 & E2 ]" (at level 0, x ident, + format "'[hv' [ 'pred' x : T | '/ ' E1 & E2 ] ']'"). +Reserved Notation "[ 'pred' x 'in' A ]" (at level 0, x ident, + format "'[hv' [ 'pred' x 'in' A ] ']'"). +Reserved Notation "[ 'pred' x 'in' A | E ]" (at level 0, x ident, + format "'[hv' [ 'pred' x 'in' A | '/ ' E ] ']'"). +Reserved Notation "[ 'pred' x 'in' A | E1 & E2 ]" (at level 0, x ident, + format "'[hv' [ 'pred' x 'in' A | '/ ' E1 & '/ ' E2 ] ']'"). + +Reserved Notation "[ 'qualify' x | P ]" (at level 0, x at level 99, + format "'[hv' [ 'qualify' x | '/ ' P ] ']'"). +Reserved Notation "[ 'qualify' x : T | P ]" (at level 0, x at level 99, + format "'[hv' [ 'qualify' x : T | '/ ' P ] ']'"). +Reserved Notation "[ 'qualify' 'a' x | P ]" (at level 0, x at level 99, + format "'[hv' [ 'qualify' 'a' x | '/ ' P ] ']'"). +Reserved Notation "[ 'qualify' 'a' x : T | P ]" (at level 0, x at level 99, + format "'[hv' [ 'qualify' 'a' x : T | '/ ' P ] ']'"). +Reserved Notation "[ 'qualify' 'an' x | P ]" (at level 0, x at level 99, + format "'[hv' [ 'qualify' 'an' x | '/ ' P ] ']'"). +Reserved Notation "[ 'qualify' 'an' x : T | P ]" (at level 0, x at level 99, + format "'[hv' [ 'qualify' 'an' x : T | '/ ' P ] ']'"). + +Reserved Notation "[ 'rel' x y | E ]" (at level 0, x ident, y ident, + format "'[hv' [ 'rel' x y | '/ ' E ] ']'"). +Reserved Notation "[ 'rel' x y : T | E ]" (at level 0, x ident, y ident, + format "'[hv' [ 'rel' x y : T | '/ ' E ] ']'"). +Reserved Notation "[ 'rel' x y 'in' A & B | E ]" (at level 0, x ident, y ident, + format "'[hv' [ 'rel' x y 'in' A & B | '/ ' E ] ']'"). +Reserved Notation "[ 'rel' x y 'in' A & B ]" (at level 0, x ident, y ident, + format "'[hv' [ 'rel' x y 'in' A & B ] ']'"). +Reserved Notation "[ 'rel' x y 'in' A | E ]" (at level 0, x ident, y ident, + format "'[hv' [ 'rel' x y 'in' A | '/ ' E ] ']'"). +Reserved Notation "[ 'rel' x y 'in' A ]" (at level 0, x ident, y ident, + format "'[hv' [ 'rel' x y 'in' A ] ']'"). + +Reserved Notation "[ 'mem' A ]" (at level 0, format "[ 'mem' A ]"). +Reserved Notation "[ 'predI' A & B ]" (at level 0, + format "[ 'predI' A & B ]"). +Reserved Notation "[ 'predU' A & B ]" (at level 0, + format "[ 'predU' A & B ]"). +Reserved Notation "[ 'predD' A & B ]" (at level 0, + format "[ 'predD' A & B ]"). +Reserved Notation "[ 'predC' A ]" (at level 0, + format "[ 'predC' A ]"). +Reserved Notation "[ 'preim' f 'of' A ]" (at level 0, + format "[ 'preim' f 'of' A ]"). + +Reserved Notation "\unless C , P" (at level 200, C at level 100, + format "'[hv' \unless C , '/ ' P ']'"). + +Reserved Notation "{ 'for' x , P }" (at level 0, + format "'[hv' { 'for' x , '/ ' P } ']'"). +Reserved Notation "{ 'in' d , P }" (at level 0, + format "'[hv' { 'in' d , '/ ' P } ']'"). +Reserved Notation "{ 'in' d1 & d2 , P }" (at level 0, + format "'[hv' { 'in' d1 & d2 , '/ ' P } ']'"). +Reserved Notation "{ 'in' d & , P }" (at level 0, + format "'[hv' { 'in' d & , '/ ' P } ']'"). +Reserved Notation "{ 'in' d1 & d2 & d3 , P }" (at level 0, + format "'[hv' { 'in' d1 & d2 & d3 , '/ ' P } ']'"). +Reserved Notation "{ 'in' d1 & & d3 , P }" (at level 0, + format "'[hv' { 'in' d1 & & d3 , '/ ' P } ']'"). +Reserved Notation "{ 'in' d1 & d2 & , P }" (at level 0, + format "'[hv' { 'in' d1 & d2 & , '/ ' P } ']'"). +Reserved Notation "{ 'in' d & & , P }" (at level 0, + format "'[hv' { 'in' d & & , '/ ' P } ']'"). +Reserved Notation "{ 'on' cd , P }" (at level 0, + format "'[hv' { 'on' cd , '/ ' P } ']'"). +Reserved Notation "{ 'on' cd & , P }" (at level 0, + format "'[hv' { 'on' cd & , '/ ' P } ']'"). +Reserved Notation "{ 'on' cd , P & g }" (at level 0, g at level 8, + format "'[hv' { 'on' cd , '/ ' P & g } ']'"). +Reserved Notation "{ 'in' d , 'bijective' f }" (at level 0, f at level 8, + format "'[hv' { 'in' d , '/ ' 'bijective' f } ']'"). +Reserved Notation "{ 'on' cd , 'bijective' f }" (at level 0, f at level 8, + format "'[hv' { 'on' cd , '/ ' 'bijective' f } ']'"). + + +(** + We introduce a number of n-ary "list-style" notations that share a common + format, namely + #[#op arg1, arg2, ... last_separator last_arg#]# + This usually denotes a right-associative applications of op, e.g., + #[#&& a, b, c & d#]# denotes a && (b && (c && d)) + The last_separator must be a non-operator token. Here we use &, | or =>; + our default is &, but we try to match the intended meaning of op. The + separator is a workaround for limitations of the parsing engine; the same + limitations mean the separator cannot be omitted even when last_arg can. + The Notation declarations are complicated by the separate treatment for + some fixed arities (binary for bool operators, and all arities for Prop + operators). + We also use the square brackets in comprehension-style notations + #[#type var separator expr#]# + where "type" is the type of the comprehension (e.g., pred) and "separator" + is | or => . It is important that in other notations a leading square + bracket #[# is always followed by an operator symbol or a fixed identifier. **) + +Reserved Notation "[ /\ P1 & P2 ]" (at level 0, only parsing). +Reserved Notation "[ /\ P1 , P2 & P3 ]" (at level 0, format + "'[hv' [ /\ '[' P1 , '/' P2 ']' '/ ' & P3 ] ']'"). +Reserved Notation "[ /\ P1 , P2 , P3 & P4 ]" (at level 0, format + "'[hv' [ /\ '[' P1 , '/' P2 , '/' P3 ']' '/ ' & P4 ] ']'"). +Reserved Notation "[ /\ P1 , P2 , P3 , P4 & P5 ]" (at level 0, format + "'[hv' [ /\ '[' P1 , '/' P2 , '/' P3 , '/' P4 ']' '/ ' & P5 ] ']'"). + +Reserved Notation "[ \/ P1 | P2 ]" (at level 0, only parsing). +Reserved Notation "[ \/ P1 , P2 | P3 ]" (at level 0, format + "'[hv' [ \/ '[' P1 , '/' P2 ']' '/ ' | P3 ] ']'"). +Reserved Notation "[ \/ P1 , P2 , P3 | P4 ]" (at level 0, format + "'[hv' [ \/ '[' P1 , '/' P2 , '/' P3 ']' '/ ' | P4 ] ']'"). + +Reserved Notation "[ && b1 & c ]" (at level 0, only parsing). +Reserved Notation "[ && b1 , b2 , .. , bn & c ]" (at level 0, format + "'[hv' [ && '[' b1 , '/' b2 , '/' .. , '/' bn ']' '/ ' & c ] ']'"). + +Reserved Notation "[ || b1 | c ]" (at level 0, only parsing). +Reserved Notation "[ || b1 , b2 , .. , bn | c ]" (at level 0, format + "'[hv' [ || '[' b1 , '/' b2 , '/' .. , '/' bn ']' '/ ' | c ] ']'"). + +Reserved Notation "[ ==> b1 => c ]" (at level 0, only parsing). +Reserved Notation "[ ==> b1 , b2 , .. , bn => c ]" (at level 0, format + "'[hv' [ ==> '[' b1 , '/' b2 , '/' .. , '/' bn ']' '/' => c ] ']'"). + +(** Shorter delimiter **) +Delimit Scope bool_scope with B. +Open Scope bool_scope. + +(** An alternative to xorb that behaves somewhat better wrt simplification. **) +Definition addb b := if b then negb else id. + +(** Notation for && and || is declared in Init.Datatypes. **) +Notation "~~ b" := (negb b) : bool_scope. +Notation "b ==> c" := (implb b c) : bool_scope. +Notation "b1 (+) b2" := (addb b1 b2) : bool_scope. + +(** Constant is_true b := b = true is defined in Init.Datatypes. **) +Coercion is_true : bool >-> Sortclass. (* Prop *) + +Lemma prop_congr : forall b b' : bool, b = b' -> b = b' :> Prop. +Proof. by move=> b b' ->. Qed. + +Ltac prop_congr := apply: prop_congr. + +(** Lemmas for trivial. **) +Lemma is_true_true : true. Proof. by []. Qed. +Lemma not_false_is_true : ~ false. Proof. by []. Qed. +Lemma is_true_locked_true : locked true. Proof. by unlock. Qed. +Hint Resolve is_true_true not_false_is_true is_true_locked_true : core. + +(** Shorter names. **) +Definition isT := is_true_true. +Definition notF := not_false_is_true. + +(** Negation lemmas. **) + +(** + We generally take NEGATION as the standard form of a false condition: + negative boolean hypotheses should be of the form ~~ b, rather than ~ b or + b = false, as much as possible. **) + +Lemma negbT b : b = false -> ~~ b. Proof. by case: b. Qed. +Lemma negbTE b : ~~ b -> b = false. Proof. by case: b. Qed. +Lemma negbF b : (b : bool) -> ~~ b = false. Proof. by case: b. Qed. +Lemma negbFE b : ~~ b = false -> b. Proof. by case: b. Qed. +Lemma negbK : involutive negb. Proof. by case. Qed. +Lemma negbNE b : ~~ ~~ b -> b. Proof. by case: b. Qed. + +Lemma negb_inj : injective negb. Proof. exact: can_inj negbK. Qed. +Lemma negbLR b c : b = ~~ c -> ~~ b = c. Proof. exact: canLR negbK. Qed. +Lemma negbRL b c : ~~ b = c -> b = ~~ c. Proof. exact: canRL negbK. Qed. + +Lemma contra (c b : bool) : (c -> b) -> ~~ b -> ~~ c. +Proof. by case: b => //; case: c. Qed. +Definition contraNN := contra. + +Lemma contraL (c b : bool) : (c -> ~~ b) -> b -> ~~ c. +Proof. by case: b => //; case: c. Qed. +Definition contraTN := contraL. + +Lemma contraR (c b : bool) : (~~ c -> b) -> ~~ b -> c. +Proof. by case: b => //; case: c. Qed. +Definition contraNT := contraR. + +Lemma contraLR (c b : bool) : (~~ c -> ~~ b) -> b -> c. +Proof. by case: b => //; case: c. Qed. +Definition contraTT := contraLR. + +Lemma contraT b : (~~ b -> false) -> b. Proof. by case: b => // ->. Qed. + +Lemma wlog_neg b : (~~ b -> b) -> b. Proof. by case: b => // ->. Qed. + +Lemma contraFT (c b : bool) : (~~ c -> b) -> b = false -> c. +Proof. by move/contraR=> notb_c /negbT. Qed. + +Lemma contraFN (c b : bool) : (c -> b) -> b = false -> ~~ c. +Proof. by move/contra=> notb_notc /negbT. Qed. + +Lemma contraTF (c b : bool) : (c -> ~~ b) -> b -> c = false. +Proof. by move/contraL=> b_notc /b_notc/negbTE. Qed. + +Lemma contraNF (c b : bool) : (c -> b) -> ~~ b -> c = false. +Proof. by move/contra=> notb_notc /notb_notc/negbTE. Qed. + +Lemma contraFF (c b : bool) : (c -> b) -> b = false -> c = false. +Proof. by move/contraFN=> bF_notc /bF_notc/negbTE. Qed. + +(** + Coercion of sum-style datatypes into bool, which makes it possible + to use ssr's boolean if rather than Coq's "generic" if. **) + +Coercion isSome T (u : option T) := if u is Some _ then true else false. + +Coercion is_inl A B (u : A + B) := if u is inl _ then true else false. + +Coercion is_left A B (u : {A} + {B}) := if u is left _ then true else false. + +Coercion is_inleft A B (u : A + {B}) := if u is inleft _ then true else false. + +Prenex Implicits isSome is_inl is_left is_inleft. + +Definition decidable P := {P} + {~ P}. + +(** + Lemmas for ifs with large conditions, which allow reasoning about the + condition without repeating it inside the proof (the latter IS + preferable when the condition is short). + Usage : + if the goal contains (if cond then ...) = ... + case: ifP => Hcond. + generates two subgoal, with the assumption Hcond : cond = true/false + Rewrite if_same eliminates redundant ifs + Rewrite (fun_if f) moves a function f inside an if + Rewrite if_arg moves an argument inside a function-valued if **) + +Section BoolIf. + +Variables (A B : Type) (x : A) (f : A -> B) (b : bool) (vT vF : A). + +Variant if_spec (not_b : Prop) : bool -> A -> Set := + | IfSpecTrue of b : if_spec not_b true vT + | IfSpecFalse of not_b : if_spec not_b false vF. + +Lemma ifP : if_spec (b = false) b (if b then vT else vF). +Proof. by case def_b: b; constructor. Qed. + +Lemma ifPn : if_spec (~~ b) b (if b then vT else vF). +Proof. by case def_b: b; constructor; rewrite ?def_b. Qed. + +Lemma ifT : b -> (if b then vT else vF) = vT. Proof. by move->. Qed. +Lemma ifF : b = false -> (if b then vT else vF) = vF. Proof. by move->. Qed. +Lemma ifN : ~~ b -> (if b then vT else vF) = vF. Proof. by move/negbTE->. Qed. + +Lemma if_same : (if b then vT else vT) = vT. +Proof. by case b. Qed. + +Lemma if_neg : (if ~~ b then vT else vF) = if b then vF else vT. +Proof. by case b. Qed. + +Lemma fun_if : f (if b then vT else vF) = if b then f vT else f vF. +Proof. by case b. Qed. + +Lemma if_arg (fT fF : A -> B) : + (if b then fT else fF) x = if b then fT x else fF x. +Proof. by case b. Qed. + +(** Turning a boolean "if" form into an application. **) +Definition if_expr := if b then vT else vF. +Lemma ifE : (if b then vT else vF) = if_expr. Proof. by []. Qed. + +End BoolIf. + +(** Core (internal) reflection lemmas, used for the three kinds of views. **) + +Section ReflectCore. + +Variables (P Q : Prop) (b c : bool). + +Hypothesis Hb : reflect P b. + +Lemma introNTF : (if c then ~ P else P) -> ~~ b = c. +Proof. by case c; case Hb. Qed. + +Lemma introTF : (if c then P else ~ P) -> b = c. +Proof. by case c; case Hb. Qed. + +Lemma elimNTF : ~~ b = c -> if c then ~ P else P. +Proof. by move <-; case Hb. Qed. + +Lemma elimTF : b = c -> if c then P else ~ P. +Proof. by move <-; case Hb. Qed. + +Lemma equivPif : (Q -> P) -> (P -> Q) -> if b then Q else ~ Q. +Proof. by case Hb; auto. Qed. + +Lemma xorPif : Q \/ P -> ~ (Q /\ P) -> if b then ~ Q else Q. +Proof. by case Hb => [? _ H ? | ? H _]; case: H. Qed. + +End ReflectCore. + +(** Internal negated reflection lemmas **) +Section ReflectNegCore. + +Variables (P Q : Prop) (b c : bool). +Hypothesis Hb : reflect P (~~ b). + +Lemma introTFn : (if c then ~ P else P) -> b = c. +Proof. by move/(introNTF Hb) <-; case b. Qed. + +Lemma elimTFn : b = c -> if c then ~ P else P. +Proof. by move <-; apply: (elimNTF Hb); case b. Qed. + +Lemma equivPifn : (Q -> P) -> (P -> Q) -> if b then ~ Q else Q. +Proof. by rewrite -if_neg; apply: equivPif. Qed. + +Lemma xorPifn : Q \/ P -> ~ (Q /\ P) -> if b then Q else ~ Q. +Proof. by rewrite -if_neg; apply: xorPif. Qed. + +End ReflectNegCore. + +(** User-oriented reflection lemmas **) +Section Reflect. + +Variables (P Q : Prop) (b b' c : bool). +Hypotheses (Pb : reflect P b) (Pb' : reflect P (~~ b')). + +Lemma introT : P -> b. Proof. exact: introTF true _. Qed. +Lemma introF : ~ P -> b = false. Proof. exact: introTF false _. Qed. +Lemma introN : ~ P -> ~~ b. Proof. exact: introNTF true _. Qed. +Lemma introNf : P -> ~~ b = false. Proof. exact: introNTF false _. Qed. +Lemma introTn : ~ P -> b'. Proof. exact: introTFn true _. Qed. +Lemma introFn : P -> b' = false. Proof. exact: introTFn false _. Qed. + +Lemma elimT : b -> P. Proof. exact: elimTF true _. Qed. +Lemma elimF : b = false -> ~ P. Proof. exact: elimTF false _. Qed. +Lemma elimN : ~~ b -> ~P. Proof. exact: elimNTF true _. Qed. +Lemma elimNf : ~~ b = false -> P. Proof. exact: elimNTF false _. Qed. +Lemma elimTn : b' -> ~ P. Proof. exact: elimTFn true _. Qed. +Lemma elimFn : b' = false -> P. Proof. exact: elimTFn false _. Qed. + +Lemma introP : (b -> Q) -> (~~ b -> ~ Q) -> reflect Q b. +Proof. by case b; constructor; auto. Qed. + +Lemma iffP : (P -> Q) -> (Q -> P) -> reflect Q b. +Proof. by case: Pb; constructor; auto. Qed. + +Lemma equivP : (P <-> Q) -> reflect Q b. +Proof. by case; apply: iffP. Qed. + +Lemma sumboolP (decQ : decidable Q) : reflect Q decQ. +Proof. by case: decQ; constructor. Qed. + +Lemma appP : reflect Q b -> P -> Q. +Proof. by move=> Qb; move/introT; case: Qb. Qed. + +Lemma sameP : reflect P c -> b = c. +Proof. by case; [apply: introT | apply: introF]. Qed. + +Lemma decPcases : if b then P else ~ P. Proof. by case Pb. Qed. + +Definition decP : decidable P. by case: b decPcases; [left | right]. Defined. + +Lemma rwP : P <-> b. Proof. by split; [apply: introT | apply: elimT]. Qed. + +Lemma rwP2 : reflect Q b -> (P <-> Q). +Proof. by move=> Qb; split=> ?; [apply: appP | apply: elimT; case: Qb]. Qed. + +(** Predicate family to reflect excluded middle in bool. **) +Variant alt_spec : bool -> Type := + | AltTrue of P : alt_spec true + | AltFalse of ~~ b : alt_spec false. + +Lemma altP : alt_spec b. +Proof. by case def_b: b / Pb; constructor; rewrite ?def_b. Qed. + +End Reflect. + +Hint View for move/ elimTF|3 elimNTF|3 elimTFn|3 introT|2 introTn|2 introN|2. + +Hint View for apply/ introTF|3 introNTF|3 introTFn|3 elimT|2 elimTn|2 elimN|2. + +Hint View for apply// equivPif|3 xorPif|3 equivPifn|3 xorPifn|3. + +(** Allow the direct application of a reflection lemma to a boolean assertion. **) +Coercion elimT : reflect >-> Funclass. + +#[universes(template)] +Variant implies P Q := Implies of P -> Q. +Lemma impliesP P Q : implies P Q -> P -> Q. Proof. by case. Qed. +Lemma impliesPn (P Q : Prop) : implies P Q -> ~ Q -> ~ P. +Proof. by case=> iP ? /iP. Qed. +Coercion impliesP : implies >-> Funclass. +Hint View for move/ impliesPn|2 impliesP|2. +Hint View for apply/ impliesPn|2 impliesP|2. + +(** Impredicative or, which can emulate a classical not-implies. **) +Definition unless condition property : Prop := + forall goal : Prop, (condition -> goal) -> (property -> goal) -> goal. + +Notation "\unless C , P" := (unless C P) : type_scope. + +Lemma unlessL C P : implies C (\unless C, P). +Proof. by split=> hC G /(_ hC). Qed. + +Lemma unlessR C P : implies P (\unless C, P). +Proof. by split=> hP G _ /(_ hP). Qed. + +Lemma unless_sym C P : implies (\unless C, P) (\unless P, C). +Proof. by split; apply; [apply/unlessR | apply/unlessL]. Qed. + +Lemma unlessP (C P : Prop) : (\unless C, P) <-> C \/ P. +Proof. by split=> [|[/unlessL | /unlessR]]; apply; [left | right]. Qed. + +Lemma bind_unless C P {Q} : implies (\unless C, P) (\unless (\unless C, Q), P). +Proof. by split; apply=> [hC|hP]; [apply/unlessL/unlessL | apply/unlessR]. Qed. + +Lemma unless_contra b C : implies (~~ b -> C) (\unless C, b). +Proof. by split; case: b => [_ | hC]; [apply/unlessR | apply/unlessL/hC]. Qed. + +(** + Classical reasoning becomes directly accessible for any bool subgoal. + Note that we cannot use "unless" here for lack of universe polymorphism. **) +Definition classically P : Prop := forall b : bool, (P -> b) -> b. + +Lemma classicP (P : Prop) : classically P <-> ~ ~ P. +Proof. +split=> [cP nP | nnP [] // nP]; last by case nnP; move/nP. +by have: P -> false; [move/nP | move/cP]. +Qed. + +Lemma classicW P : P -> classically P. Proof. by move=> hP _ ->. Qed. + +Lemma classic_bind P Q : (P -> classically Q) -> classically P -> classically Q. +Proof. by move=> iPQ cP b /iPQ-/cP. Qed. + +Lemma classic_EM P : classically (decidable P). +Proof. +by case=> // undecP; apply/undecP; right=> notP; apply/notF/undecP; left. +Qed. + +Lemma classic_pick T P : classically ({x : T | P x} + (forall x, ~ P x)). +Proof. +case=> // undecP; apply/undecP; right=> x Px. +by apply/notF/undecP; left; exists x. +Qed. + +Lemma classic_imply P Q : (P -> classically Q) -> classically (P -> Q). +Proof. +move=> iPQ []// notPQ; apply/notPQ=> /iPQ-cQ. +by case: notF; apply: cQ => hQ; apply: notPQ. +Qed. + +(** + List notations for wider connectives; the Prop connectives have a fixed + width so as to avoid iterated destruction (we go up to width 5 for /\, and + width 4 for or). The bool connectives have arbitrary widths, but denote + expressions that associate to the RIGHT. This is consistent with the right + associativity of list expressions and thus more convenient in most proofs. **) + +Inductive and3 (P1 P2 P3 : Prop) : Prop := And3 of P1 & P2 & P3. + +Inductive and4 (P1 P2 P3 P4 : Prop) : Prop := And4 of P1 & P2 & P3 & P4. + +Inductive and5 (P1 P2 P3 P4 P5 : Prop) : Prop := + And5 of P1 & P2 & P3 & P4 & P5. + +Inductive or3 (P1 P2 P3 : Prop) : Prop := Or31 of P1 | Or32 of P2 | Or33 of P3. + +Inductive or4 (P1 P2 P3 P4 : Prop) : Prop := + Or41 of P1 | Or42 of P2 | Or43 of P3 | Or44 of P4. + +Notation "[ /\ P1 & P2 ]" := (and P1 P2) (only parsing) : type_scope. +Notation "[ /\ P1 , P2 & P3 ]" := (and3 P1 P2 P3) : type_scope. +Notation "[ /\ P1 , P2 , P3 & P4 ]" := (and4 P1 P2 P3 P4) : type_scope. +Notation "[ /\ P1 , P2 , P3 , P4 & P5 ]" := (and5 P1 P2 P3 P4 P5) : type_scope. + +Notation "[ \/ P1 | P2 ]" := (or P1 P2) (only parsing) : type_scope. +Notation "[ \/ P1 , P2 | P3 ]" := (or3 P1 P2 P3) : type_scope. +Notation "[ \/ P1 , P2 , P3 | P4 ]" := (or4 P1 P2 P3 P4) : type_scope. + +Notation "[ && b1 & c ]" := (b1 && c) (only parsing) : bool_scope. +Notation "[ && b1 , b2 , .. , bn & c ]" := (b1 && (b2 && .. (bn && c) .. )) + : bool_scope. + +Notation "[ || b1 | c ]" := (b1 || c) (only parsing) : bool_scope. +Notation "[ || b1 , b2 , .. , bn | c ]" := (b1 || (b2 || .. (bn || c) .. )) + : bool_scope. + +Notation "[ ==> b1 , b2 , .. , bn => c ]" := + (b1 ==> (b2 ==> .. (bn ==> c) .. )) : bool_scope. +Notation "[ ==> b1 => c ]" := (b1 ==> c) (only parsing) : bool_scope. + +Section AllAnd. + +Variables (T : Type) (P1 P2 P3 P4 P5 : T -> Prop). +Local Notation a P := (forall x, P x). + +Lemma all_and2 : implies (forall x, [/\ P1 x & P2 x]) [/\ a P1 & a P2]. +Proof. by split=> haveP; split=> x; case: (haveP x). Qed. + +Lemma all_and3 : implies (forall x, [/\ P1 x, P2 x & P3 x]) + [/\ a P1, a P2 & a P3]. +Proof. by split=> haveP; split=> x; case: (haveP x). Qed. + +Lemma all_and4 : implies (forall x, [/\ P1 x, P2 x, P3 x & P4 x]) + [/\ a P1, a P2, a P3 & a P4]. +Proof. by split=> haveP; split=> x; case: (haveP x). Qed. + +Lemma all_and5 : implies (forall x, [/\ P1 x, P2 x, P3 x, P4 x & P5 x]) + [/\ a P1, a P2, a P3, a P4 & a P5]. +Proof. by split=> haveP; split=> x; case: (haveP x). Qed. + +End AllAnd. + +Arguments all_and2 {T P1 P2}. +Arguments all_and3 {T P1 P2 P3}. +Arguments all_and4 {T P1 P2 P3 P4}. +Arguments all_and5 {T P1 P2 P3 P4 P5}. + +Lemma pair_andP P Q : P /\ Q <-> P * Q. Proof. by split; case. Qed. + +Section ReflectConnectives. + +Variable b1 b2 b3 b4 b5 : bool. + +Lemma idP : reflect b1 b1. +Proof. by case b1; constructor. Qed. + +Lemma boolP : alt_spec b1 b1 b1. +Proof. exact: (altP idP). Qed. + +Lemma idPn : reflect (~~ b1) (~~ b1). +Proof. by case b1; constructor. Qed. + +Lemma negP : reflect (~ b1) (~~ b1). +Proof. by case b1; constructor; auto. Qed. + +Lemma negPn : reflect b1 (~~ ~~ b1). +Proof. by case b1; constructor. Qed. + +Lemma negPf : reflect (b1 = false) (~~ b1). +Proof. by case b1; constructor. Qed. + +Lemma andP : reflect (b1 /\ b2) (b1 && b2). +Proof. by case b1; case b2; constructor=> //; case. Qed. + +Lemma and3P : reflect [/\ b1, b2 & b3] [&& b1, b2 & b3]. +Proof. by case b1; case b2; case b3; constructor; try by case. Qed. + +Lemma and4P : reflect [/\ b1, b2, b3 & b4] [&& b1, b2, b3 & b4]. +Proof. by case b1; case b2; case b3; case b4; constructor; try by case. Qed. + +Lemma and5P : reflect [/\ b1, b2, b3, b4 & b5] [&& b1, b2, b3, b4 & b5]. +Proof. +by case b1; case b2; case b3; case b4; case b5; constructor; try by case. +Qed. + +Lemma orP : reflect (b1 \/ b2) (b1 || b2). +Proof. by case b1; case b2; constructor; auto; case. Qed. + +Lemma or3P : reflect [\/ b1, b2 | b3] [|| b1, b2 | b3]. +Proof. +case b1; first by constructor; constructor 1. +case b2; first by constructor; constructor 2. +case b3; first by constructor; constructor 3. +by constructor; case. +Qed. + +Lemma or4P : reflect [\/ b1, b2, b3 | b4] [|| b1, b2, b3 | b4]. +Proof. +case b1; first by constructor; constructor 1. +case b2; first by constructor; constructor 2. +case b3; first by constructor; constructor 3. +case b4; first by constructor; constructor 4. +by constructor; case. +Qed. + +Lemma nandP : reflect (~~ b1 \/ ~~ b2) (~~ (b1 && b2)). +Proof. by case b1; case b2; constructor; auto; case; auto. Qed. + +Lemma norP : reflect (~~ b1 /\ ~~ b2) (~~ (b1 || b2)). +Proof. by case b1; case b2; constructor; auto; case; auto. Qed. + +Lemma implyP : reflect (b1 -> b2) (b1 ==> b2). +Proof. by case b1; case b2; constructor; auto. Qed. + +End ReflectConnectives. + +Arguments idP {b1}. +Arguments idPn {b1}. +Arguments negP {b1}. +Arguments negPn {b1}. +Arguments negPf {b1}. +Arguments andP {b1 b2}. +Arguments and3P {b1 b2 b3}. +Arguments and4P {b1 b2 b3 b4}. +Arguments and5P {b1 b2 b3 b4 b5}. +Arguments orP {b1 b2}. +Arguments or3P {b1 b2 b3}. +Arguments or4P {b1 b2 b3 b4}. +Arguments nandP {b1 b2}. +Arguments norP {b1 b2}. +Arguments implyP {b1 b2}. +Prenex Implicits idP idPn negP negPn negPf. +Prenex Implicits andP and3P and4P and5P orP or3P or4P nandP norP implyP. + +(** Shorter, more systematic names for the boolean connectives laws. **) + +Lemma andTb : left_id true andb. Proof. by []. Qed. +Lemma andFb : left_zero false andb. Proof. by []. Qed. +Lemma andbT : right_id true andb. Proof. by case. Qed. +Lemma andbF : right_zero false andb. Proof. by case. Qed. +Lemma andbb : idempotent andb. Proof. by case. Qed. +Lemma andbC : commutative andb. Proof. by do 2!case. Qed. +Lemma andbA : associative andb. Proof. by do 3!case. Qed. +Lemma andbCA : left_commutative andb. Proof. by do 3!case. Qed. +Lemma andbAC : right_commutative andb. Proof. by do 3!case. Qed. +Lemma andbACA : interchange andb andb. Proof. by do 4!case. Qed. + +Lemma orTb : forall b, true || b. Proof. by []. Qed. +Lemma orFb : left_id false orb. Proof. by []. Qed. +Lemma orbT : forall b, b || true. Proof. by case. Qed. +Lemma orbF : right_id false orb. Proof. by case. Qed. +Lemma orbb : idempotent orb. Proof. by case. Qed. +Lemma orbC : commutative orb. Proof. by do 2!case. Qed. +Lemma orbA : associative orb. Proof. by do 3!case. Qed. +Lemma orbCA : left_commutative orb. Proof. by do 3!case. Qed. +Lemma orbAC : right_commutative orb. Proof. by do 3!case. Qed. +Lemma orbACA : interchange orb orb. Proof. by do 4!case. Qed. + +Lemma andbN b : b && ~~ b = false. Proof. by case: b. Qed. +Lemma andNb b : ~~ b && b = false. Proof. by case: b. Qed. +Lemma orbN b : b || ~~ b = true. Proof. by case: b. Qed. +Lemma orNb b : ~~ b || b = true. Proof. by case: b. Qed. + +Lemma andb_orl : left_distributive andb orb. Proof. by do 3!case. Qed. +Lemma andb_orr : right_distributive andb orb. Proof. by do 3!case. Qed. +Lemma orb_andl : left_distributive orb andb. Proof. by do 3!case. Qed. +Lemma orb_andr : right_distributive orb andb. Proof. by do 3!case. Qed. + +Lemma andb_idl (a b : bool) : (b -> a) -> a && b = b. +Proof. by case: a; case: b => // ->. Qed. +Lemma andb_idr (a b : bool) : (a -> b) -> a && b = a. +Proof. by case: a; case: b => // ->. Qed. +Lemma andb_id2l (a b c : bool) : (a -> b = c) -> a && b = a && c. +Proof. by case: a; case: b; case: c => // ->. Qed. +Lemma andb_id2r (a b c : bool) : (b -> a = c) -> a && b = c && b. +Proof. by case: a; case: b; case: c => // ->. Qed. + +Lemma orb_idl (a b : bool) : (a -> b) -> a || b = b. +Proof. by case: a; case: b => // ->. Qed. +Lemma orb_idr (a b : bool) : (b -> a) -> a || b = a. +Proof. by case: a; case: b => // ->. Qed. +Lemma orb_id2l (a b c : bool) : (~~ a -> b = c) -> a || b = a || c. +Proof. by case: a; case: b; case: c => // ->. Qed. +Lemma orb_id2r (a b c : bool) : (~~ b -> a = c) -> a || b = c || b. +Proof. by case: a; case: b; case: c => // ->. Qed. + +Lemma negb_and (a b : bool) : ~~ (a && b) = ~~ a || ~~ b. +Proof. by case: a; case: b. Qed. + +Lemma negb_or (a b : bool) : ~~ (a || b) = ~~ a && ~~ b. +Proof. by case: a; case: b. Qed. + +(** Pseudo-cancellation -- i.e, absorption **) + +Lemma andbK a b : a && b || a = a. Proof. by case: a; case: b. Qed. +Lemma andKb a b : a || b && a = a. Proof. by case: a; case: b. Qed. +Lemma orbK a b : (a || b) && a = a. Proof. by case: a; case: b. Qed. +Lemma orKb a b : a && (b || a) = a. Proof. by case: a; case: b. Qed. + +(** Imply **) + +Lemma implybT b : b ==> true. Proof. by case: b. Qed. +Lemma implybF b : (b ==> false) = ~~ b. Proof. by case: b. Qed. +Lemma implyFb b : false ==> b. Proof. by []. Qed. +Lemma implyTb b : (true ==> b) = b. Proof. by []. Qed. +Lemma implybb b : b ==> b. Proof. by case: b. Qed. + +Lemma negb_imply a b : ~~ (a ==> b) = a && ~~ b. +Proof. by case: a; case: b. Qed. + +Lemma implybE a b : (a ==> b) = ~~ a || b. +Proof. by case: a; case: b. Qed. + +Lemma implyNb a b : (~~ a ==> b) = a || b. +Proof. by case: a; case: b. Qed. + +Lemma implybN a b : (a ==> ~~ b) = (b ==> ~~ a). +Proof. by case: a; case: b. Qed. + +Lemma implybNN a b : (~~ a ==> ~~ b) = b ==> a. +Proof. by case: a; case: b. Qed. + +Lemma implyb_idl (a b : bool) : (~~ a -> b) -> (a ==> b) = b. +Proof. by case: a; case: b => // ->. Qed. +Lemma implyb_idr (a b : bool) : (b -> ~~ a) -> (a ==> b) = ~~ a. +Proof. by case: a; case: b => // ->. Qed. +Lemma implyb_id2l (a b c : bool) : (a -> b = c) -> (a ==> b) = (a ==> c). +Proof. by case: a; case: b; case: c => // ->. Qed. + +(** Addition (xor) **) + +Lemma addFb : left_id false addb. Proof. by []. Qed. +Lemma addbF : right_id false addb. Proof. by case. Qed. +Lemma addbb : self_inverse false addb. Proof. by case. Qed. +Lemma addbC : commutative addb. Proof. by do 2!case. Qed. +Lemma addbA : associative addb. Proof. by do 3!case. Qed. +Lemma addbCA : left_commutative addb. Proof. by do 3!case. Qed. +Lemma addbAC : right_commutative addb. Proof. by do 3!case. Qed. +Lemma addbACA : interchange addb addb. Proof. by do 4!case. Qed. +Lemma andb_addl : left_distributive andb addb. Proof. by do 3!case. Qed. +Lemma andb_addr : right_distributive andb addb. Proof. by do 3!case. Qed. +Lemma addKb : left_loop id addb. Proof. by do 2!case. Qed. +Lemma addbK : right_loop id addb. Proof. by do 2!case. Qed. +Lemma addIb : left_injective addb. Proof. by do 3!case. Qed. +Lemma addbI : right_injective addb. Proof. by do 3!case. Qed. + +Lemma addTb b : true (+) b = ~~ b. Proof. by []. Qed. +Lemma addbT b : b (+) true = ~~ b. Proof. by case: b. Qed. + +Lemma addbN a b : a (+) ~~ b = ~~ (a (+) b). +Proof. by case: a; case: b. Qed. +Lemma addNb a b : ~~ a (+) b = ~~ (a (+) b). +Proof. by case: a; case: b. Qed. + +Lemma addbP a b : reflect (~~ a = b) (a (+) b). +Proof. by case: a; case: b; constructor. Qed. +Arguments addbP {a b}. + +(** + Resolution tactic for blindly weeding out common terms from boolean + equalities. When faced with a goal of the form (andb/orb/addb b1 b2) = b3 + they will try to locate b1 in b3 and remove it. This can fail! **) + +Ltac bool_congr := + match goal with + | |- (?X1 && ?X2 = ?X3) => first + [ symmetry; rewrite -1?(andbC X1) -?(andbCA X1); congr 1 (andb X1); symmetry + | case: (X1); [ rewrite ?andTb ?andbT // | by rewrite ?andbF /= ] ] + | |- (?X1 || ?X2 = ?X3) => first + [ symmetry; rewrite -1?(orbC X1) -?(orbCA X1); congr 1 (orb X1); symmetry + | case: (X1); [ by rewrite ?orbT //= | rewrite ?orFb ?orbF ] ] + | |- (?X1 (+) ?X2 = ?X3) => + symmetry; rewrite -1?(addbC X1) -?(addbCA X1); congr 1 (addb X1); symmetry + | |- (~~ ?X1 = ?X2) => congr 1 negb + end. + + +(** + Predicates, i.e., packaged functions to bool. + - pred T, the basic type for predicates over a type T, is simply an alias + for T -> bool. + We actually distinguish two kinds of predicates, which we call applicative + and collective, based on the syntax used to test them at some x in T: + - For an applicative predicate P, one uses prefix syntax: + P x + Also, most operations on applicative predicates use prefix syntax as + well (e.g., predI P Q). + - For a collective predicate A, one uses infix syntax: + x \in A + and all operations on collective predicates use infix syntax as well + (e.g., #[#predI A & B#]#). + There are only two kinds of applicative predicates: + - pred T, the alias for T -> bool mentioned above + - simpl_pred T, an alias for simpl_fun T bool with a coercion to pred T + that auto-simplifies on application (see ssrfun). + On the other hand, the set of collective predicate types is open-ended via + - predType T, a Structure that can be used to put Canonical collective + predicate interpretation on other types, such as lists, tuples, + finite sets, etc. + Indeed, we define such interpretations for applicative predicate types, + which can therefore also be used with the infix syntax, e.g., + x \in predI P Q + Moreover these infix forms are convertible to their prefix counterpart + (e.g., predI P Q x which in turn simplifies to P x && Q x). The converse + is not true, however; collective predicate types cannot, in general, be + used applicatively, because of restrictions on implicit coercions. + However, we do define an explicit generic coercion + - mem : forall (pT : predType), pT -> mem_pred T + where mem_pred T is a variant of simpl_pred T that preserves the infix + syntax, i.e., mem A x auto-simplifies to x \in A. + Indeed, the infix "collective" operators are notation for a prefix + operator with arguments of type mem_pred T or pred T, applied to coerced + collective predicates, e.g., + Notation "x \in A" := (in_mem x (mem A)). + This prevents the variability in the predicate type from interfering with + the application of generic lemmas. Moreover this also makes it much easier + to define generic lemmas, because the simplest type -- pred T -- can be + used as the type of generic collective predicates, provided one takes care + not to use it applicatively; this avoids the burden of having to declare a + different predicate type for each predicate parameter of each section or + lemma. + In detail, we ensure that the head normal form of mem A is always of the + eta-long MemPred (fun x => pA x) form, where pA is the pred interpretation of + A following its predType pT, i.e., the _expansion_ of topred A. For a pred T + evar ?P, (mem ?P) converts MemPred (fun x => ?P x), whose argument is a Miller + pattern and therefore always unify: unifying (mem A) with (mem ?P) always + yields ?P = pA, because the rigid constant MemPred aligns the unification. + Furthermore, we ensure pA is always either A or toP .... A where toP ... is + the expansion of @topred T pT, and toP is declared as a Coercion, so pA will + _display_ as A in either case, and the instances of @mem T (predPredType T) pA + appearing in the premises or right-hand side of a generic lemma parametrized + by ?P will be indistinguishable from @mem T pT A. + Users should take care not to inadvertently "strip" (mem A) down to the + coerced A, since this will expose the internal toP coercion: Coq could then + display terms A x that cannot be typed as such. The topredE lemma can be used + to restore the x \in A syntax in this case. While -topredE can conversely be + used to change x \in P into P x for an applicative P, it is safer to use the + inE, unfold_in or and memE lemmas instead, as they do not run the risk of + exposing internal coercions. As a consequence it is better to explicitly + cast a generic applicative predicate to simpl_pred using the SimplPred + constructor when it is used as a collective predicate (see, e.g., + Lemma eq_big in bigop). + We also sometimes "instantiate" the predType structure by defining a + coercion to the sort of the predPredType structure, conveniently denoted + {pred T}. This works better for types such as {set T} that have subtypes that + coerce to them, since the same coercion will be inserted by the application + of mem, or of any lemma that expects a generic collective predicates with + type {pred T} := pred_sort (predPredType T) = pred T; thus {pred T} should be + the preferred type for generic collective predicate parameters. + This device also lets us turn any Type aT : predArgType into the total + predicate over that type, i.e., fun _: aT => true. This allows us to write, + e.g., ##|'I_n| for the cardinal of the (finite) type of integers less than n. + **) + +(** Boolean predicates. *) + +Definition pred T := T -> bool. +Identity Coercion fun_of_pred : pred >-> Funclass. + +Definition subpred T (p1 p2 : pred T) := forall x : T, p1 x -> p2 x. + +(* Notation for some manifest predicates. *) + +Notation xpred0 := (fun=> false). +Notation xpredT := (fun=> true). +Notation xpredI := (fun (p1 p2 : pred _) x => p1 x && p2 x). +Notation xpredU := (fun (p1 p2 : pred _) x => p1 x || p2 x). +Notation xpredC := (fun (p : pred _) x => ~~ p x). +Notation xpredD := (fun (p1 p2 : pred _) x => ~~ p2 x && p1 x). +Notation xpreim := (fun f (p : pred _) x => p (f x)). + +(** The packed class interface for pred-like types. **) + +Structure predType T := + PredType {pred_sort :> Type; topred : pred_sort -> pred T}. + +Definition clone_pred T U := + fun pT & @pred_sort T pT -> U => + fun toP (pT' := @PredType T U toP) & phant_id pT' pT => pT'. +Notation "[ 'predType' 'of' T ]" := (@clone_pred _ T _ id _ id) : form_scope. + +Canonical predPredType T := PredType (@id (pred T)). +Canonical boolfunPredType T := PredType (@id (T -> bool)). + +(** The type of abstract collective predicates. + While {pred T} is contertible to pred T, it presents the pred_sort coercion + class, which crucially does _not_ coerce to Funclass. Term whose type P coerces + to {pred T} cannot be applied to arguments, but they _can_ be used as if P + had a canonical predType instance, as the coercion will be inserted if the + unification P =~= pred_sort ?pT fails, changing the problem into the trivial + {pred T} =~= pred_sort ?pT (solution ?pT := predPredType P). + Additional benefits of this approach are that any type coercing to P will + also inherit this behaviour, and that the coercion will be apparent in the + elaborated expression. The latter may be important if the coercion is also + a canonical structure projector - see mathcomp/fingroup/fingroup.v. The + main drawback of implementing predType by coercion in this way is that the + type of the value must be known when the unification constraint is imposed: + if we only register the constraint and then later discover later that the + expression had type P it will be too late of insert a coercion, whereas a + canonical instance of predType fo P would have solved the deferred constraint. + Finally, definitions, lemmas and sections should use type {pred T} for + their generic collective type parameters, as this will make it possible to + apply such definitions and lemmas directly to values of types that implement + predType by coercion to {pred T} (values of types that implement predType + without coercing to {pred T} will have to be coerced explicitly using topred). +**) +Notation "{ 'pred' T }" := (pred_sort (predPredType T)) : type_scope. + +(** The type of self-simplifying collective predicates. **) +Definition simpl_pred T := simpl_fun T bool. +Definition SimplPred {T} (p : pred T) : simpl_pred T := SimplFun p. + +(** Some simpl_pred constructors. **) + +Definition pred0 {T} := @SimplPred T xpred0. +Definition predT {T} := @SimplPred T xpredT. +Definition predI {T} (p1 p2 : pred T) := SimplPred (xpredI p1 p2). +Definition predU {T} (p1 p2 : pred T) := SimplPred (xpredU p1 p2). +Definition predC {T} (p : pred T) := SimplPred (xpredC p). +Definition predD {T} (p1 p2 : pred T) := SimplPred (xpredD p1 p2). +Definition preim {aT rT} (f : aT -> rT) (d : pred rT) := SimplPred (xpreim f d). + +Notation "[ 'pred' : T | E ]" := (SimplPred (fun _ : T => E%B)) : fun_scope. +Notation "[ 'pred' x | E ]" := (SimplPred (fun x => E%B)) : fun_scope. +Notation "[ 'pred' x | E1 & E2 ]" := [pred x | E1 && E2 ] : fun_scope. +Notation "[ 'pred' x : T | E ]" := + (SimplPred (fun x : T => E%B)) (only parsing) : fun_scope. +Notation "[ 'pred' x : T | E1 & E2 ]" := + [pred x : T | E1 && E2 ] (only parsing) : fun_scope. + +(** Coercions for simpl_pred. + As simpl_pred T values are used both applicatively and collectively we + need simpl_pred to coerce to both pred T _and_ {pred T}. However it is + undesirable to have two distinct constants for what are essentially identical + coercion functions, as this confuses the SSReflect keyed matching algorithm. + While the Coq Coercion declarations appear to disallow such Coercion aliasing, + it is possible to work around this limitation with a combination of modules + and functors, which we do below. + In addition we also give a predType instance for simpl_pred, which will + be preferred to the {pred T} coercion to solve simpl_pred T =~= pred_sort ?pT + constraints; not however that the pred_of_simpl coercion _will_ be used + when a simpl_pred T is passed as a {pred T}, since the simplPredType T + structure for simpl_pred T is _not_ convertible to predPredType T. **) + +Module PredOfSimpl. +Definition coerce T (sp : simpl_pred T) : pred T := fun_of_simpl sp. +End PredOfSimpl. +Notation pred_of_simpl := PredOfSimpl.coerce. +Coercion pred_of_simpl : simpl_pred >-> pred. +Canonical simplPredType T := PredType (@pred_of_simpl T). + +Module Type PredSortOfSimplSignature. +Parameter coerce : forall T, simpl_pred T -> {pred T}. +End PredSortOfSimplSignature. +Module DeclarePredSortOfSimpl (PredSortOfSimpl : PredSortOfSimplSignature). +Coercion PredSortOfSimpl.coerce : simpl_pred >-> pred_sort. +End DeclarePredSortOfSimpl. +Module Export PredSortOfSimplCoercion := DeclarePredSortOfSimpl PredOfSimpl. + +(** Type to pred coercion. + This lets us use types of sort predArgType as a synonym for their universal + predicate. We define this predicate as a simpl_pred T rather than a pred T or + a {pred T} so that /= and inE reduce (T x) and x \in T to true, respectively. + Unfortunately, this can't be used for existing types like bool whose sort + is already fixed (at least, not without redefining bool, true, false and + all bool operations and lemmas); we provide syntax to recast a given type + in predArgType as a workaround. **) +Definition predArgType := Type. +Bind Scope type_scope with predArgType. +Identity Coercion sort_of_predArgType : predArgType >-> Sortclass. +Coercion pred_of_argType (T : predArgType) : simpl_pred T := predT. +Notation "{ : T }" := (T%type : predArgType) : type_scope. + +(** Boolean relations. + Simplifying relations follow the coding pattern of 2-argument simplifying + functions: the simplifying type constructor is applied to the _last_ + argument. This design choice will let the in_simpl componenent of inE expand + membership in simpl_rel as well. We provide an explicit coercion to rel T + to avoid eta-expansion during coercion; this coercion self-simplifies so it + should be invisible. + **) + +Definition rel T := T -> pred T. +Identity Coercion fun_of_rel : rel >-> Funclass. + +Definition subrel T (r1 r2 : rel T) := forall x y : T, r1 x y -> r2 x y. + +Definition simpl_rel T := T -> simpl_pred T. + +Coercion rel_of_simpl T (sr : simpl_rel T) : rel T := fun x : T => sr x. +Arguments rel_of_simpl {T} sr x /. + +Notation xrelU := (fun (r1 r2 : rel _) x y => r1 x y || r2 x y). +Notation xrelpre := (fun f (r : rel _) x y => r (f x) (f y)). + +Definition SimplRel {T} (r : rel T) : simpl_rel T := fun x => SimplPred (r x). +Definition relU {T} (r1 r2 : rel T) := SimplRel (xrelU r1 r2). +Definition relpre {aT rT} (f : aT -> rT) (r : rel rT) := SimplRel (xrelpre f r). + +Notation "[ 'rel' x y | E ]" := (SimplRel (fun x y => E%B)) : fun_scope. +Notation "[ 'rel' x y : T | E ]" := + (SimplRel (fun x y : T => E%B)) (only parsing) : fun_scope. + +Lemma subrelUl T (r1 r2 : rel T) : subrel r1 (relU r1 r2). +Proof. by move=> x y r1xy; apply/orP; left. Qed. + +Lemma subrelUr T (r1 r2 : rel T) : subrel r2 (relU r1 r2). +Proof. by move=> x y r2xy; apply/orP; right. Qed. + +(** Variant of simpl_pred specialised to the membership operator. **) + +Variant mem_pred T := Mem of pred T. + +(** + We mainly declare pred_of_mem as a coercion so that it is not displayed. + Similarly to pred_of_simpl, it will usually not be inserted by type + inference, as all mem_pred mp =~= pred_sort ?pT unification problems will + be solve by the memPredType instance below; pred_of_mem will however + be used if a mem_pred T is used as a {pred T}, which is desirable as it + will avoid a redundant mem in a collective, e.g., passing (mem A) to a lemma + exception a generic collective predicate p : {pred T} and premise x \in P + will display a subgoal x \in A rathere than x \in mem A. + Conversely, pred_of_mem will _not_ if it is used id (mem A) is used + applicatively or as a pred T; there the simpl_of_mem coercion defined below + will be used, resulting in a subgoal that displays as mem A x by simplifies + to x \in A. + **) +Coercion pred_of_mem {T} mp : {pred T} := let: Mem p := mp in [eta p]. +Canonical memPredType T := PredType (@pred_of_mem T). + +Definition in_mem {T} (x : T) mp := pred_of_mem mp x. +Definition eq_mem {T} mp1 mp2 := forall x : T, in_mem x mp1 = in_mem x mp2. +Definition sub_mem {T} mp1 mp2 := forall x : T, in_mem x mp1 -> in_mem x mp2. + +Arguments in_mem {T} x mp : simpl never. +Typeclasses Opaque eq_mem. +Typeclasses Opaque sub_mem. + +(** The [simpl_of_mem; pred_of_simpl] path provides a new mem_pred >-> pred + coercion, but does _not_ override the pred_of_mem : mem_pred >-> pred_sort + explicit coercion declaration above. + **) +Coercion simpl_of_mem {T} mp := SimplPred (fun x : T => in_mem x mp). + +Lemma sub_refl T (mp : mem_pred T) : sub_mem mp mp. Proof. by []. Qed. +Arguments sub_refl {T mp} [x] mp_x. + +(** + It is essential to interlock the production of the Mem constructor inside + the branch of the predType match, to ensure that unifying mem A with + Mem [eta ?p] sets ?p := toP A (or ?p := P if toP = id and A = [eta P]), + rather than topred pT A, had we put mem A := Mem (topred A). +**) +Definition mem T (pT : predType T) : pT -> mem_pred T := + let: PredType toP := pT in fun A => Mem [eta toP A]. +Arguments mem {T pT} A : rename, simpl never. + +Notation "x \in A" := (in_mem x (mem A)) : bool_scope. +Notation "x \in A" := (in_mem x (mem A)) : bool_scope. +Notation "x \notin A" := (~~ (x \in A)) : bool_scope. +Notation "A =i B" := (eq_mem (mem A) (mem B)) : type_scope. +Notation "{ 'subset' A <= B }" := (sub_mem (mem A) (mem B)) : type_scope. + +Notation "[ 'mem' A ]" := + (pred_of_simpl (simpl_of_mem (mem A))) (only parsing) : fun_scope. + +Notation "[ 'predI' A & B ]" := (predI [mem A] [mem B]) : fun_scope. +Notation "[ 'predU' A & B ]" := (predU [mem A] [mem B]) : fun_scope. +Notation "[ 'predD' A & B ]" := (predD [mem A] [mem B]) : fun_scope. +Notation "[ 'predC' A ]" := (predC [mem A]) : fun_scope. +Notation "[ 'preim' f 'of' A ]" := (preim f [mem A]) : fun_scope. +Notation "[ 'pred' x 'in' A ]" := [pred x | x \in A] : fun_scope. +Notation "[ 'pred' x 'in' A | E ]" := [pred x | x \in A & E] : fun_scope. +Notation "[ 'pred' x 'in' A | E1 & E2 ]" := + [pred x | x \in A & E1 && E2 ] : fun_scope. + +Notation "[ 'rel' x y 'in' A & B | E ]" := + [rel x y | (x \in A) && (y \in B) && E] : fun_scope. +Notation "[ 'rel' x y 'in' A & B ]" := + [rel x y | (x \in A) && (y \in B)] : fun_scope. +Notation "[ 'rel' x y 'in' A | E ]" := [rel x y in A & A | E] : fun_scope. +Notation "[ 'rel' x y 'in' A ]" := [rel x y in A & A] : fun_scope. + +(** Aliases of pred T that let us tag instances of simpl_pred as applicative + or collective, via bespoke coercions. This tagging will give control over + the simplification behaviour of inE and othe rewriting lemmas below. + For this control to work it is crucial that collective_of_simpl _not_ + be convertible to either applicative_of_simpl or pred_of_simpl. Indeed + they differ here by a commutattive conversion (of the match and lambda). + **) +Definition applicative_pred T := pred T. +Definition collective_pred T := pred T. +Coercion applicative_pred_of_simpl T (sp : simpl_pred T) : applicative_pred T := + fun_of_simpl sp. +Coercion collective_pred_of_simpl T (sp : simpl_pred T) : collective_pred T := + let: SimplFun p := sp in p. + +(** Explicit simplification rules for predicate application and membership. **) +Section PredicateSimplification. + +Variables T : Type. + +Implicit Types (p : pred T) (pT : predType T) (sp : simpl_pred T). +Implicit Types (mp : mem_pred T). + +(** + The following four bespoke structures provide fine-grained control over + matching the various predicate forms. While all four follow a common pattern + of using a canonical projection to match a particular form of predicate + (in pred T, simpl_pred, mem_pred and mem_pred, respectively), and display + the matched predicate in the structure type, each is in fact used for a + different, specific purpose: + - registered_applicative_pred: this user-facing structure is used to + declare values of type pred T meant to be used applicatively. The + structure parameter merely displays this same value, and is used to avoid + undesirable, visible occurrence of the structure in the right hand side + of rewrite rules such as app_predE. + There is a canonical instance of registered_applicative_pred for values + of the applicative_of_simpl coercion, which handles the + Definition Apred : applicative_pred T := [pred x | ...] idiom. + This instance is mainly intended for the in_applicative component of inE, + in conjunction with manifest_mem_pred and applicative_mem_pred. + - manifest_simpl_pred: the only instance of this structure matches manifest + simpl_pred values of the form SimplPred p, displaying p in the structure + type. This structure is used in in_simpl to detect and selectively expand + collective predicates of this form. An explicit SimplPred p pattern would + _NOT_ work for this purpose, as then the left-hand side of in_simpl would + reduce to in_mem ?x (Mem [eta ?p]) and would thus match _any_ instance + of \in, not just those arising from a manifest simpl_pred. + - manifest_mem_pred: similar to manifest_simpl_pred, the one instance of this + structure matches manifest mem_pred values of the form Mem [eta ?p]. The + purpose is different however: to match and display in ?p the actual + predicate appearing in an ... \in ... expression matched by the left hand + side of the in_applicative component of inE; then + - applicative_mem_pred is a telescope refinement of manifest_mem_pred p with + a default constructor that checks that the predicate p is the value of a + registered_applicative_pred; any unfolding occurring during this check + does _not_ affect the value of p passed to in_applicative, since that + has been fixed earlier by the manifest_mem_pred match. In particular the + definition of a predicate using the applicative_pred_of_simpl idiom above + will not be expanded - this very case is the reason in_applicative uses + a mem_pred telescope in its left hand side. The more straightforward + ?x \in applicative_pred_value ?ap (equivalent to in_mem ?x (Mem ?ap)) + with ?ap : registered_applicative_pred ?p would set ?p := [pred x | ...] + rather than ?p := Apred in the example above. + Also note that the in_applicative component of inE must be come before the + in_simpl one, as the latter also matches terms of the form x \in Apred. + Finally, no component of inE matches x \in Acoll, when + Definition Acoll : collective_pred T := [pred x | ...]. + as the collective_pred_of_simpl is _not_ convertible to pred_of_simpl. **) + +Structure registered_applicative_pred p := RegisteredApplicativePred { + applicative_pred_value :> pred T; + _ : applicative_pred_value = p +}. +Definition ApplicativePred p := RegisteredApplicativePred (erefl p). +Canonical applicative_pred_applicative sp := + ApplicativePred (applicative_pred_of_simpl sp). + +Structure manifest_simpl_pred p := ManifestSimplPred { + simpl_pred_value :> simpl_pred T; + _ : simpl_pred_value = SimplPred p +}. +Canonical expose_simpl_pred p := ManifestSimplPred (erefl (SimplPred p)). + +Structure manifest_mem_pred p := ManifestMemPred { + mem_pred_value :> mem_pred T; + _ : mem_pred_value = Mem [eta p] +}. +Canonical expose_mem_pred p := ManifestMemPred (erefl (Mem [eta p])). + +Structure applicative_mem_pred p := + ApplicativeMemPred {applicative_mem_pred_value :> manifest_mem_pred p}. +Canonical check_applicative_mem_pred p (ap : registered_applicative_pred p) := + [eta @ApplicativeMemPred ap]. + +Lemma mem_topred pT (pp : pT) : mem (topred pp) = mem pp. +Proof. by case: pT pp. Qed. + +Lemma topredE pT x (pp : pT) : topred pp x = (x \in pp). +Proof. by rewrite -mem_topred. Qed. + +Lemma app_predE x p (ap : registered_applicative_pred p) : ap x = (x \in p). +Proof. by case: ap => _ /= ->. Qed. + +Lemma in_applicative x p (amp : applicative_mem_pred p) : in_mem x amp = p x. +Proof. by case: amp => -[_ /= ->]. Qed. + +Lemma in_collective x p (msp : manifest_simpl_pred p) : + (x \in collective_pred_of_simpl msp) = p x. +Proof. by case: msp => _ /= ->. Qed. + +Lemma in_simpl x p (msp : manifest_simpl_pred p) : + in_mem x (Mem [eta pred_of_simpl msp]) = p x. +Proof. by case: msp => _ /= ->. Qed. + +(** + Because of the explicit eta expansion in the left-hand side, this lemma + should only be used in the left-to-right direction. + **) +Lemma unfold_in x p : (x \in ([eta p] : pred T)) = p x. +Proof. by []. Qed. + +Lemma simpl_predE p : SimplPred p =1 p. +Proof. by []. Qed. + +Definition inE := (in_applicative, in_simpl, simpl_predE). (* to be extended *) + +Lemma mem_simpl sp : mem sp = sp :> pred T. +Proof. by []. Qed. + +Definition memE := mem_simpl. (* could be extended *) + +Lemma mem_mem mp : + (mem mp = mp) * (mem (mp : simpl_pred T) = mp) * (mem (mp : pred T) = mp). +Proof. by case: mp. Qed. + +End PredicateSimplification. + +(** Qualifiers and keyed predicates. **) + +Variant qualifier (q : nat) T := Qualifier of {pred T}. + +Coercion has_quality n T (q : qualifier n T) : {pred T} := + fun x => let: Qualifier _ p := q in p x. +Arguments has_quality n {T}. + +Lemma qualifE n T p x : (x \in @Qualifier n T p) = p x. Proof. by []. Qed. + +Notation "x \is A" := (x \in has_quality 0 A) : bool_scope. +Notation "x \is 'a' A" := (x \in has_quality 1 A) : bool_scope. +Notation "x \is 'an' A" := (x \in has_quality 2 A) : bool_scope. +Notation "x \isn't A" := (x \notin has_quality 0 A) : bool_scope. +Notation "x \isn't 'a' A" := (x \notin has_quality 1 A) : bool_scope. +Notation "x \isn't 'an' A" := (x \notin has_quality 2 A) : bool_scope. +Notation "[ 'qualify' x | P ]" := (Qualifier 0 (fun x => P%B)) : form_scope. +Notation "[ 'qualify' x : T | P ]" := + (Qualifier 0 (fun x : T => P%B)) (only parsing) : form_scope. +Notation "[ 'qualify' 'a' x | P ]" := (Qualifier 1 (fun x => P%B)) : form_scope. +Notation "[ 'qualify' 'a' x : T | P ]" := + (Qualifier 1 (fun x : T => P%B)) (only parsing) : form_scope. +Notation "[ 'qualify' 'an' x | P ]" := + (Qualifier 2 (fun x => P%B)) : form_scope. +Notation "[ 'qualify' 'an' x : T | P ]" := + (Qualifier 2 (fun x : T => P%B)) (only parsing) : form_scope. + +(** Keyed predicates: support for property-bearing predicate interfaces. **) + +Section KeyPred. + +Variable T : Type. +#[universes(template)] +Variant pred_key (p : {pred T}) := DefaultPredKey. + +Variable p : {pred T}. +Structure keyed_pred (k : pred_key p) := + PackKeyedPred {unkey_pred :> {pred T}; _ : unkey_pred =i p}. + +Variable k : pred_key p. +Definition KeyedPred := @PackKeyedPred k p (frefl _). + +Variable k_p : keyed_pred k. +Lemma keyed_predE : k_p =i p. Proof. by case: k_p. Qed. + +(** + Instances that strip the mem cast; the first one has "pred_of_mem" as its + projection head value, while the second has "pred_of_simpl". The latter + has the side benefit of preempting accidental misdeclarations. + Note: pred_of_mem is the registered mem >-> pred_sort coercion, while + [simpl_of_mem; pred_of_simpl] is the mem >-> pred >=> Funclass coercion. We + must write down the coercions explicitly as the Canonical head constant + computation does not strip casts. **) +Canonical keyed_mem := + @PackKeyedPred k (pred_of_mem (mem k_p)) keyed_predE. +Canonical keyed_mem_simpl := + @PackKeyedPred k (pred_of_simpl (mem k_p)) keyed_predE. + +End KeyPred. + +Local Notation in_unkey x S := (x \in @unkey_pred _ S _ _) (only parsing). +Notation "x \in S" := (in_unkey x S) (only printing) : bool_scope. + +Section KeyedQualifier. + +Variables (T : Type) (n : nat) (q : qualifier n T). + +Structure keyed_qualifier (k : pred_key q) := + PackKeyedQualifier {unkey_qualifier; _ : unkey_qualifier = q}. +Definition KeyedQualifier k := PackKeyedQualifier k (erefl q). +Variables (k : pred_key q) (k_q : keyed_qualifier k). +Fact keyed_qualifier_suproof : unkey_qualifier k_q =i q. +Proof. by case: k_q => /= _ ->. Qed. +Canonical keyed_qualifier_keyed := PackKeyedPred k keyed_qualifier_suproof. + +End KeyedQualifier. + +Notation "x \is A" := + (in_unkey x (has_quality 0 A)) (only printing) : bool_scope. +Notation "x \is 'a' A" := + (in_unkey x (has_quality 1 A)) (only printing) : bool_scope. +Notation "x \is 'an' A" := + (in_unkey x (has_quality 2 A)) (only printing) : bool_scope. + +Module DefaultKeying. + +Canonical default_keyed_pred T p := KeyedPred (@DefaultPredKey T p). +Canonical default_keyed_qualifier T n (q : qualifier n T) := + KeyedQualifier (DefaultPredKey q). + +End DefaultKeying. + +(** Skolemizing with conditions. **) + +Lemma all_tag_cond_dep I T (C : pred I) U : + (forall x, T x) -> (forall x, C x -> {y : T x & U x y}) -> + {f : forall x, T x & forall x, C x -> U x (f x)}. +Proof. +move=> f0 fP; apply: all_tag (fun x y => C x -> U x y) _ => x. +by case Cx: (C x); [case/fP: Cx => y; exists y | exists (f0 x)]. +Qed. + +Lemma all_tag_cond I T (C : pred I) U : + T -> (forall x, C x -> {y : T & U x y}) -> + {f : I -> T & forall x, C x -> U x (f x)}. +Proof. by move=> y0; apply: all_tag_cond_dep. Qed. + +Lemma all_sig_cond_dep I T (C : pred I) P : + (forall x, T x) -> (forall x, C x -> {y : T x | P x y}) -> + {f : forall x, T x | forall x, C x -> P x (f x)}. +Proof. by move=> f0 /(all_tag_cond_dep f0)[f]; exists f. Qed. + +Lemma all_sig_cond I T (C : pred I) P : + T -> (forall x, C x -> {y : T | P x y}) -> + {f : I -> T | forall x, C x -> P x (f x)}. +Proof. by move=> y0; apply: all_sig_cond_dep. Qed. + +Section RelationProperties. + +(** + Caveat: reflexive should not be used to state lemmas, as auto and trivial + will not expand the constant. **) + +Variable T : Type. + +Variable R : rel T. + +Definition total := forall x y, R x y || R y x. +Definition transitive := forall y x z, R x y -> R y z -> R x z. + +Definition symmetric := forall x y, R x y = R y x. +Definition antisymmetric := forall x y, R x y && R y x -> x = y. +Definition pre_symmetric := forall x y, R x y -> R y x. + +Lemma symmetric_from_pre : pre_symmetric -> symmetric. +Proof. by move=> symR x y; apply/idP/idP; apply: symR. Qed. + +Definition reflexive := forall x, R x x. +Definition irreflexive := forall x, R x x = false. + +Definition left_transitive := forall x y, R x y -> R x =1 R y. +Definition right_transitive := forall x y, R x y -> R^~ x =1 R^~ y. + +Section PER. + +Hypotheses (symR : symmetric) (trR : transitive). + +Lemma sym_left_transitive : left_transitive. +Proof. by move=> x y Rxy z; apply/idP/idP; apply: trR; rewrite // symR. Qed. + +Lemma sym_right_transitive : right_transitive. +Proof. by move=> x y /sym_left_transitive Rxy z; rewrite !(symR z) Rxy. Qed. + +End PER. + +(** + We define the equivalence property with prenex quantification so that it + can be localized using the {in ..., ..} form defined below. **) + +Definition equivalence_rel := forall x y z, R z z * (R x y -> R x z = R y z). + +Lemma equivalence_relP : equivalence_rel <-> reflexive /\ left_transitive. +Proof. +split=> [eqiR | [Rxx trR] x y z]; last by split=> [|/trR->]. +by split=> [x | x y Rxy z]; [rewrite (eqiR x x x) | rewrite (eqiR x y z)]. +Qed. + +End RelationProperties. + +Lemma rev_trans T (R : rel T) : transitive R -> transitive (fun x y => R y x). +Proof. by move=> trR x y z Ryx Rzy; apply: trR Rzy Ryx. Qed. + +(** Property localization **) + +Local Notation "{ 'all1' P }" := (forall x, P x : Prop) (at level 0). +Local Notation "{ 'all2' P }" := (forall x y, P x y : Prop) (at level 0). +Local Notation "{ 'all3' P }" := (forall x y z, P x y z: Prop) (at level 0). +Local Notation ph := (phantom _). + +Section LocalProperties. + +Variables T1 T2 T3 : Type. + +Variables (d1 : mem_pred T1) (d2 : mem_pred T2) (d3 : mem_pred T3). +Local Notation ph := (phantom Prop). + +Definition prop_for (x : T1) P & ph {all1 P} := P x. + +Lemma forE x P phP : @prop_for x P phP = P x. Proof. by []. Qed. + +Definition prop_in1 P & ph {all1 P} := + forall x, in_mem x d1 -> P x. + +Definition prop_in11 P & ph {all2 P} := + forall x y, in_mem x d1 -> in_mem y d2 -> P x y. + +Definition prop_in2 P & ph {all2 P} := + forall x y, in_mem x d1 -> in_mem y d1 -> P x y. + +Definition prop_in111 P & ph {all3 P} := + forall x y z, in_mem x d1 -> in_mem y d2 -> in_mem z d3 -> P x y z. + +Definition prop_in12 P & ph {all3 P} := + forall x y z, in_mem x d1 -> in_mem y d2 -> in_mem z d2 -> P x y z. + +Definition prop_in21 P & ph {all3 P} := + forall x y z, in_mem x d1 -> in_mem y d1 -> in_mem z d2 -> P x y z. + +Definition prop_in3 P & ph {all3 P} := + forall x y z, in_mem x d1 -> in_mem y d1 -> in_mem z d1 -> P x y z. + +Variable f : T1 -> T2. + +Definition prop_on1 Pf P & phantom T3 (Pf f) & ph {all1 P} := + forall x, in_mem (f x) d2 -> P x. + +Definition prop_on2 Pf P & phantom T3 (Pf f) & ph {all2 P} := + forall x y, in_mem (f x) d2 -> in_mem (f y) d2 -> P x y. + +End LocalProperties. + +Definition inPhantom := Phantom Prop. +Definition onPhantom {T} P (x : T) := Phantom Prop (P x). + +Definition bijective_in aT rT (d : mem_pred aT) (f : aT -> rT) := + exists2 g, prop_in1 d (inPhantom (cancel f g)) + & prop_on1 d (Phantom _ (cancel g)) (onPhantom (cancel g) f). + +Definition bijective_on aT rT (cd : mem_pred rT) (f : aT -> rT) := + exists2 g, prop_on1 cd (Phantom _ (cancel f)) (onPhantom (cancel f) g) + & prop_in1 cd (inPhantom (cancel g f)). + +Notation "{ 'for' x , P }" := (prop_for x (inPhantom P)) : type_scope. +Notation "{ 'in' d , P }" := (prop_in1 (mem d) (inPhantom P)) : type_scope. +Notation "{ 'in' d1 & d2 , P }" := + (prop_in11 (mem d1) (mem d2) (inPhantom P)) : type_scope. +Notation "{ 'in' d & , P }" := (prop_in2 (mem d) (inPhantom P)) : type_scope. +Notation "{ 'in' d1 & d2 & d3 , P }" := + (prop_in111 (mem d1) (mem d2) (mem d3) (inPhantom P)) : type_scope. +Notation "{ 'in' d1 & & d3 , P }" := + (prop_in21 (mem d1) (mem d3) (inPhantom P)) : type_scope. +Notation "{ 'in' d1 & d2 & , P }" := + (prop_in12 (mem d1) (mem d2) (inPhantom P)) : type_scope. +Notation "{ 'in' d & & , P }" := (prop_in3 (mem d) (inPhantom P)) : type_scope. +Notation "{ 'on' cd , P }" := + (prop_on1 (mem cd) (inPhantom P) (inPhantom P)) : type_scope. + +Notation "{ 'on' cd & , P }" := + (prop_on2 (mem cd) (inPhantom P) (inPhantom P)) : type_scope. + +Local Arguments onPhantom : clear scopes. +Notation "{ 'on' cd , P & g }" := + (prop_on1 (mem cd) (Phantom (_ -> Prop) P) (onPhantom P g)) : type_scope. +Notation "{ 'in' d , 'bijective' f }" := (bijective_in (mem d) f) : type_scope. +Notation "{ 'on' cd , 'bijective' f }" := + (bijective_on (mem cd) f) : type_scope. + +(** + Weakening and monotonicity lemmas for localized predicates. + Note that using these lemmas in backward reasoning will force expansion of + the predicate definition, as Coq needs to expose the quantifier to apply + these lemmas. We define a few specialized variants to avoid this for some + of the ssrfun predicates. **) + +Section LocalGlobal. + +Variables T1 T2 T3 : predArgType. +Variables (D1 : {pred T1}) (D2 : {pred T2}) (D3 : {pred T3}). +Variables (d1 d1' : mem_pred T1) (d2 d2' : mem_pred T2) (d3 d3' : mem_pred T3). +Variables (f f' : T1 -> T2) (g : T2 -> T1) (h : T3). +Variables (P1 : T1 -> Prop) (P2 : T1 -> T2 -> Prop). +Variable P3 : T1 -> T2 -> T3 -> Prop. +Variable Q1 : (T1 -> T2) -> T1 -> Prop. +Variable Q1l : (T1 -> T2) -> T3 -> T1 -> Prop. +Variable Q2 : (T1 -> T2) -> T1 -> T1 -> Prop. + +Hypothesis sub1 : sub_mem d1 d1'. +Hypothesis sub2 : sub_mem d2 d2'. +Hypothesis sub3 : sub_mem d3 d3'. + +Lemma in1W : {all1 P1} -> {in D1, {all1 P1}}. +Proof. by move=> ? ?. Qed. +Lemma in2W : {all2 P2} -> {in D1 & D2, {all2 P2}}. +Proof. by move=> ? ?. Qed. +Lemma in3W : {all3 P3} -> {in D1 & D2 & D3, {all3 P3}}. +Proof. by move=> ? ?. Qed. + +Lemma in1T : {in T1, {all1 P1}} -> {all1 P1}. +Proof. by move=> ? ?; auto. Qed. +Lemma in2T : {in T1 & T2, {all2 P2}} -> {all2 P2}. +Proof. by move=> ? ?; auto. Qed. +Lemma in3T : {in T1 & T2 & T3, {all3 P3}} -> {all3 P3}. +Proof. by move=> ? ?; auto. Qed. + +Lemma sub_in1 (Ph : ph {all1 P1}) : prop_in1 d1' Ph -> prop_in1 d1 Ph. +Proof. by move=> allP x /sub1; apply: allP. Qed. + +Lemma sub_in11 (Ph : ph {all2 P2}) : prop_in11 d1' d2' Ph -> prop_in11 d1 d2 Ph. +Proof. by move=> allP x1 x2 /sub1 d1x1 /sub2; apply: allP. Qed. + +Lemma sub_in111 (Ph : ph {all3 P3}) : + prop_in111 d1' d2' d3' Ph -> prop_in111 d1 d2 d3 Ph. +Proof. by move=> allP x1 x2 x3 /sub1 d1x1 /sub2 d2x2 /sub3; apply: allP. Qed. + +Let allQ1 f'' := {all1 Q1 f''}. +Let allQ1l f'' h' := {all1 Q1l f'' h'}. +Let allQ2 f'' := {all2 Q2 f''}. + +Lemma on1W : allQ1 f -> {on D2, allQ1 f}. Proof. by move=> ? ?. Qed. + +Lemma on1lW : allQ1l f h -> {on D2, allQ1l f & h}. Proof. by move=> ? ?. Qed. + +Lemma on2W : allQ2 f -> {on D2 &, allQ2 f}. Proof. by move=> ? ?. Qed. + +Lemma on1T : {on T2, allQ1 f} -> allQ1 f. Proof. by move=> ? ?; auto. Qed. + +Lemma on1lT : {on T2, allQ1l f & h} -> allQ1l f h. +Proof. by move=> ? ?; auto. Qed. + +Lemma on2T : {on T2 &, allQ2 f} -> allQ2 f. +Proof. by move=> ? ?; auto. Qed. + +Lemma subon1 (Phf : ph (allQ1 f)) (Ph : ph (allQ1 f)) : + prop_on1 d2' Phf Ph -> prop_on1 d2 Phf Ph. +Proof. by move=> allQ x /sub2; apply: allQ. Qed. + +Lemma subon1l (Phf : ph (allQ1l f)) (Ph : ph (allQ1l f h)) : + prop_on1 d2' Phf Ph -> prop_on1 d2 Phf Ph. +Proof. by move=> allQ x /sub2; apply: allQ. Qed. + +Lemma subon2 (Phf : ph (allQ2 f)) (Ph : ph (allQ2 f)) : + prop_on2 d2' Phf Ph -> prop_on2 d2 Phf Ph. +Proof. by move=> allQ x y /sub2=> d2fx /sub2; apply: allQ. Qed. + +Lemma can_in_inj : {in D1, cancel f g} -> {in D1 &, injective f}. +Proof. by move=> fK x y /fK{2}<- /fK{2}<- ->. Qed. + +Lemma canLR_in x y : {in D1, cancel f g} -> y \in D1 -> x = f y -> g x = y. +Proof. by move=> fK D1y ->; rewrite fK. Qed. + +Lemma canRL_in x y : {in D1, cancel f g} -> x \in D1 -> f x = y -> x = g y. +Proof. by move=> fK D1x <-; rewrite fK. Qed. + +Lemma on_can_inj : {on D2, cancel f & g} -> {on D2 &, injective f}. +Proof. by move=> fK x y /fK{2}<- /fK{2}<- ->. Qed. + +Lemma canLR_on x y : {on D2, cancel f & g} -> f y \in D2 -> x = f y -> g x = y. +Proof. by move=> fK D2fy ->; rewrite fK. Qed. + +Lemma canRL_on x y : {on D2, cancel f & g} -> f x \in D2 -> f x = y -> x = g y. +Proof. by move=> fK D2fx <-; rewrite fK. Qed. + +Lemma inW_bij : bijective f -> {in D1, bijective f}. +Proof. by case=> g' fK g'K; exists g' => * ? *; auto. Qed. + +Lemma onW_bij : bijective f -> {on D2, bijective f}. +Proof. by case=> g' fK g'K; exists g' => * ? *; auto. Qed. + +Lemma inT_bij : {in T1, bijective f} -> bijective f. +Proof. by case=> g' fK g'K; exists g' => * ? *; auto. Qed. + +Lemma onT_bij : {on T2, bijective f} -> bijective f. +Proof. by case=> g' fK g'K; exists g' => * ? *; auto. Qed. + +Lemma sub_in_bij (D1' : pred T1) : + {subset D1 <= D1'} -> {in D1', bijective f} -> {in D1, bijective f}. +Proof. +by move=> subD [g' fK g'K]; exists g' => x; move/subD; [apply: fK | apply: g'K]. +Qed. + +Lemma subon_bij (D2' : pred T2) : + {subset D2 <= D2'} -> {on D2', bijective f} -> {on D2, bijective f}. +Proof. +by move=> subD [g' fK g'K]; exists g' => x; move/subD; [apply: fK | apply: g'K]. +Qed. + +End LocalGlobal. + +Lemma sub_in2 T d d' (P : T -> T -> Prop) : + sub_mem d d' -> forall Ph : ph {all2 P}, prop_in2 d' Ph -> prop_in2 d Ph. +Proof. by move=> /= sub_dd'; apply: sub_in11. Qed. + +Lemma sub_in3 T d d' (P : T -> T -> T -> Prop) : + sub_mem d d' -> forall Ph : ph {all3 P}, prop_in3 d' Ph -> prop_in3 d Ph. +Proof. by move=> /= sub_dd'; apply: sub_in111. Qed. + +Lemma sub_in12 T1 T d1 d1' d d' (P : T1 -> T -> T -> Prop) : + sub_mem d1 d1' -> sub_mem d d' -> + forall Ph : ph {all3 P}, prop_in12 d1' d' Ph -> prop_in12 d1 d Ph. +Proof. by move=> /= sub1 sub; apply: sub_in111. Qed. + +Lemma sub_in21 T T3 d d' d3 d3' (P : T -> T -> T3 -> Prop) : + sub_mem d d' -> sub_mem d3 d3' -> + forall Ph : ph {all3 P}, prop_in21 d' d3' Ph -> prop_in21 d d3 Ph. +Proof. by move=> /= sub sub3; apply: sub_in111. Qed. + +Lemma equivalence_relP_in T (R : rel T) (A : pred T) : + {in A & &, equivalence_rel R} + <-> {in A, reflexive R} /\ {in A &, forall x y, R x y -> {in A, R x =1 R y}}. +Proof. +split=> [eqiR | [Rxx trR] x y z *]; last by split=> [|/trR-> //]; apply: Rxx. +by split=> [x Ax|x y Ax Ay Rxy z Az]; [rewrite (eqiR x x) | rewrite (eqiR x y)]. +Qed. + +Section MonoHomoMorphismTheory. + +Variables (aT rT sT : Type) (f : aT -> rT) (g : rT -> aT). +Variables (aP : pred aT) (rP : pred rT) (aR : rel aT) (rR : rel rT). + +Lemma monoW : {mono f : x / aP x >-> rP x} -> {homo f : x / aP x >-> rP x}. +Proof. by move=> hf x ax; rewrite hf. Qed. + +Lemma mono2W : + {mono f : x y / aR x y >-> rR x y} -> {homo f : x y / aR x y >-> rR x y}. +Proof. by move=> hf x y axy; rewrite hf. Qed. + +Hypothesis fgK : cancel g f. + +Lemma homoRL : + {homo f : x y / aR x y >-> rR x y} -> forall x y, aR (g x) y -> rR x (f y). +Proof. by move=> Hf x y /Hf; rewrite fgK. Qed. + +Lemma homoLR : + {homo f : x y / aR x y >-> rR x y} -> forall x y, aR x (g y) -> rR (f x) y. +Proof. by move=> Hf x y /Hf; rewrite fgK. Qed. + +Lemma homo_mono : + {homo f : x y / aR x y >-> rR x y} -> {homo g : x y / rR x y >-> aR x y} -> + {mono g : x y / rR x y >-> aR x y}. +Proof. +move=> mf mg x y; case: (boolP (rR _ _))=> [/mg //|]. +by apply: contraNF=> /mf; rewrite !fgK. +Qed. + +Lemma monoLR : + {mono f : x y / aR x y >-> rR x y} -> forall x y, rR (f x) y = aR x (g y). +Proof. by move=> mf x y; rewrite -{1}[y]fgK mf. Qed. + +Lemma monoRL : + {mono f : x y / aR x y >-> rR x y} -> forall x y, rR x (f y) = aR (g x) y. +Proof. by move=> mf x y; rewrite -{1}[x]fgK mf. Qed. + +Lemma can_mono : + {mono f : x y / aR x y >-> rR x y} -> {mono g : x y / rR x y >-> aR x y}. +Proof. by move=> mf x y /=; rewrite -mf !fgK. Qed. + +End MonoHomoMorphismTheory. + +Section MonoHomoMorphismTheory_in. + +Variables (aT rT sT : predArgType) (f : aT -> rT) (g : rT -> aT). +Variable (aD : {pred aT}). +Variable (aP : pred aT) (rP : pred rT) (aR : rel aT) (rR : rel rT). + +Notation rD := [pred x | g x \in aD]. + +Lemma monoW_in : + {in aD &, {mono f : x y / aR x y >-> rR x y}} -> + {in aD &, {homo f : x y / aR x y >-> rR x y}}. +Proof. by move=> hf x y hx hy axy; rewrite hf. Qed. + +Lemma mono2W_in : + {in aD, {mono f : x / aP x >-> rP x}} -> + {in aD, {homo f : x / aP x >-> rP x}}. +Proof. by move=> hf x hx ax; rewrite hf. Qed. + +Hypothesis fgK_on : {on aD, cancel g & f}. + +Lemma homoRL_in : + {in aD &, {homo f : x y / aR x y >-> rR x y}} -> + {in rD & aD, forall x y, aR (g x) y -> rR x (f y)}. +Proof. by move=> Hf x y hx hy /Hf; rewrite fgK_on //; apply. Qed. + +Lemma homoLR_in : + {in aD &, {homo f : x y / aR x y >-> rR x y}} -> + {in aD & rD, forall x y, aR x (g y) -> rR (f x) y}. +Proof. by move=> Hf x y hx hy /Hf; rewrite fgK_on //; apply. Qed. + +Lemma homo_mono_in : + {in aD &, {homo f : x y / aR x y >-> rR x y}} -> + {in rD &, {homo g : x y / rR x y >-> aR x y}} -> + {in rD &, {mono g : x y / rR x y >-> aR x y}}. +Proof. +move=> mf mg x y hx hy; case: (boolP (rR _ _))=> [/mg //|]; first exact. +by apply: contraNF=> /mf; rewrite !fgK_on //; apply. +Qed. + +Lemma monoLR_in : + {in aD &, {mono f : x y / aR x y >-> rR x y}} -> + {in aD & rD, forall x y, rR (f x) y = aR x (g y)}. +Proof. by move=> mf x y hx hy; rewrite -{1}[y]fgK_on // mf. Qed. + +Lemma monoRL_in : + {in aD &, {mono f : x y / aR x y >-> rR x y}} -> + {in rD & aD, forall x y, rR x (f y) = aR (g x) y}. +Proof. by move=> mf x y hx hy; rewrite -{1}[x]fgK_on // mf. Qed. + +Lemma can_mono_in : + {in aD &, {mono f : x y / aR x y >-> rR x y}} -> + {in rD &, {mono g : x y / rR x y >-> aR x y}}. +Proof. by move=> mf x y hx hy /=; rewrite -mf // !fgK_on. Qed. + +End MonoHomoMorphismTheory_in. diff --git a/theories/ssr/ssrclasses.v b/theories/ssr/ssrclasses.v new file mode 100644 index 0000000000..0ae3f8c6a5 --- /dev/null +++ b/theories/ssr/ssrclasses.v @@ -0,0 +1,32 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +(** #<style> .doc { font-family: monospace; white-space: pre; } </style># **) + +(** Compatibility layer for [under] and [setoid_rewrite]. + + Note: this file does not require [ssreflect]; it is both required by + [ssrsetoid] and required by [ssrunder]. + + Redefine [Coq.Classes.RelationClasses.Reflexive] here, so that doing + [Require Import ssreflect] does not [Require Import RelationClasses], + and conversely. **) + +Section Defs. + Context {A : Type}. + Class Reflexive (R : A -> A -> Prop) := + reflexivity : forall x : A, R x x. +End Defs. + +Register Reflexive as plugins.ssreflect.reflexive_type. +Register reflexivity as plugins.ssreflect.reflexive_proof. + +Instance eq_Reflexive {A : Type} : Reflexive (@eq A) := @eq_refl A. +Instance iff_Reflexive : Reflexive iff := iff_refl. diff --git a/theories/ssr/ssreflect.v b/theories/ssr/ssreflect.v new file mode 100644 index 0000000000..bc4a57dedd --- /dev/null +++ b/theories/ssr/ssreflect.v @@ -0,0 +1,656 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +(* This file is (C) Copyright 2006-2015 Microsoft Corporation and Inria. *) + +(** #<style> .doc { font-family: monospace; white-space: pre; } </style># **) + +Require Import Bool. (* For bool_scope delimiter 'bool'. *) +Require Import ssrmatching. +Declare ML Module "ssreflect_plugin". + + +(** + This file is the Gallina part of the ssreflect plugin implementation. + Files that use the ssreflect plugin should always Require ssreflect and + either Import ssreflect or Import ssreflect.SsrSyntax. + Part of the contents of this file is technical and will only interest + advanced developers; in addition the following are defined: + #[#the str of v by f#]# == the Canonical s : str such that f s = v. + #[#the str of v#]# == the Canonical s : str that coerces to v. + argumentType c == the T such that c : forall x : T, P x. + returnType c == the R such that c : T -> R. + {type of c for s} == P s where c : forall x : T, P x. + nonPropType == an interface for non-Prop Types: a nonPropType coerces + to a Type, and only types that do _not_ have sort + Prop are canonical nonPropType instances. This is + useful for applied views (see mid-file comment). + notProp T == the nonPropType instance for type T. + phantom T v == singleton type with inhabitant Phantom T v. + phant T == singleton type with inhabitant Phant v. + =^~ r == the converse of rewriting rule r (e.g., in a + rewrite multirule). + unkeyed t == t, but treated as an unkeyed matching pattern by + the ssreflect matching algorithm. + nosimpl t == t, but on the right-hand side of Definition C := + nosimpl disables expansion of C by /=. + locked t == t, but locked t is not convertible to t. + locked_with k t == t, but not convertible to t or locked_with k' t + unless k = k' (with k : unit). Coq type-checking + will be much more efficient if locked_with with a + bespoke k is used for sealed definitions. + unlockable v == interface for sealed constant definitions of v. + Unlockable def == the unlockable that registers def : C = v. + #[#unlockable of C#]# == a clone for C of the canonical unlockable for the + definition of C (e.g., if it uses locked_with). + #[#unlockable fun C#]# == #[#unlockable of C#]# with the expansion forced to be + an explicit lambda expression. + -> The usage pattern for ADT operations is: + Definition foo_def x1 .. xn := big_foo_expression. + Fact foo_key : unit. Proof. by #[# #]#. Qed. + Definition foo := locked_with foo_key foo_def. + Canonical foo_unlockable := #[#unlockable fun foo#]#. + This minimizes the comparison overhead for foo, while still allowing + rewrite unlock to expose big_foo_expression. + More information about these definitions and their use can be found in the + ssreflect manual, and in specific comments below. **) + +Set Implicit Arguments. +Unset Strict Implicit. +Unset Printing Implicit Defensive. + +Module SsrSyntax. + +(** + Declare Ssr keywords: 'is' 'of' '//' '/=' and '//='. We also declare the + parsing level 8, as a workaround for a notation grammar factoring problem. + Arguments of application-style notations (at level 10) should be declared + at level 8 rather than 9 or the camlp5 grammar will not factor properly. **) + +Reserved Notation "(* x 'is' y 'of' z 'isn't' // /= //= *)" (at level 8). +Reserved Notation "(* 69 *)" (at level 69). + +(** Non ambiguous keyword to check if the SsrSyntax module is imported **) +Reserved Notation "(* Use to test if 'SsrSyntax_is_Imported' *)" (at level 8). + +Reserved Notation "<hidden n >" (at level 0, n at level 0, + format "<hidden n >"). +Reserved Notation "T (* n *)" (at level 200, format "T (* n *)"). + +End SsrSyntax. + +Export SsrMatchingSyntax. +Export SsrSyntax. + +(** Save primitive notation that will be overloaded. **) +Local Notation CoqGenericIf c vT vF := (if c then vT else vF) (only parsing). +Local Notation CoqGenericDependentIf c x R vT vF := + (if c as x return R then vT else vF) (only parsing). +Local Notation CoqCast x T := (x : T) (only parsing). + +(** Reserve notation that introduced in this file. **) +Reserved Notation "'if' c 'then' vT 'else' vF" (at level 200, + c, vT, vF at level 200, only parsing). +Reserved Notation "'if' c 'return' R 'then' vT 'else' vF" (at level 200, + c, R, vT, vF at level 200, only parsing). +Reserved Notation "'if' c 'as' x 'return' R 'then' vT 'else' vF" (at level 200, + c, R, vT, vF at level 200, x ident, only parsing). + +Reserved Notation "x : T" (at level 100, right associativity, + format "'[hv' x '/ ' : T ']'"). +Reserved Notation "T : 'Type'" (at level 100, format "T : 'Type'"). +Reserved Notation "P : 'Prop'" (at level 100, format "P : 'Prop'"). + +Reserved Notation "[ 'the' sT 'of' v 'by' f ]" (at level 0, + format "[ 'the' sT 'of' v 'by' f ]"). +Reserved Notation "[ 'the' sT 'of' v ]" (at level 0, + format "[ 'the' sT 'of' v ]"). +Reserved Notation "{ 'type' 'of' c 'for' s }" (at level 0, + format "{ 'type' 'of' c 'for' s }"). + +Reserved Notation "=^~ r" (at level 100, format "=^~ r"). + +Reserved Notation "[ 'unlockable' 'of' C ]" (at level 0, + format "[ 'unlockable' 'of' C ]"). +Reserved Notation "[ 'unlockable' 'fun' C ]" (at level 0, + format "[ 'unlockable' 'fun' C ]"). + +(** + To define notations for tactic in intro patterns. + When "=> /t" is parsed, "t:%ssripat" is actually interpreted. **) +Declare Scope ssripat_scope. +Delimit Scope ssripat_scope with ssripat. + +(** + Make the general "if" into a notation, so that we can override it below. + The notations are "only parsing" because the Coq decompiler will not + recognize the expansion of the boolean if; using the default printer + avoids a spurious trailing %%GEN_IF. **) + +Declare Scope general_if_scope. +Delimit Scope general_if_scope with GEN_IF. + +Notation "'if' c 'then' vT 'else' vF" := + (CoqGenericIf c vT vF) (only parsing) : general_if_scope. + +Notation "'if' c 'return' R 'then' vT 'else' vF" := + (CoqGenericDependentIf c c R vT vF) (only parsing) : general_if_scope. + +Notation "'if' c 'as' x 'return' R 'then' vT 'else' vF" := + (CoqGenericDependentIf c x R vT vF) (only parsing) : general_if_scope. + +(** Force boolean interpretation of simple if expressions. **) + +Declare Scope boolean_if_scope. +Delimit Scope boolean_if_scope with BOOL_IF. + +Notation "'if' c 'return' R 'then' vT 'else' vF" := + (if c is true as c in bool return R then vT else vF) : boolean_if_scope. + +Notation "'if' c 'then' vT 'else' vF" := + (if c%bool is true as _ in bool return _ then vT else vF) : boolean_if_scope. + +Notation "'if' c 'as' x 'return' R 'then' vT 'else' vF" := + (if c%bool is true as x in bool return R then vT else vF) : boolean_if_scope. + +Open Scope boolean_if_scope. + +(** + To allow a wider variety of notations without reserving a large number of + of identifiers, the ssreflect library systematically uses "forms" to + enclose complex mixfix syntax. A "form" is simply a mixfix expression + enclosed in square brackets and introduced by a keyword: + #[#keyword ... #]# + Because the keyword follows a bracket it does not need to be reserved. + Non-ssreflect libraries that do not respect the form syntax (e.g., the Coq + Lists library) should be loaded before ssreflect so that their notations + do not mask all ssreflect forms. **) +Declare Scope form_scope. +Delimit Scope form_scope with FORM. +Open Scope form_scope. + +(** + Allow overloading of the cast (x : T) syntax, put whitespace around the + ":" symbol to avoid lexical clashes (and for consistency with the parsing + precedence of the notation, which binds less tightly than application), + and put printing boxes that print the type of a long definition on a + separate line rather than force-fit it at the right margin. **) +Notation "x : T" := (CoqCast x T) : core_scope. + +(** + Allow the casual use of notations like nat * nat for explicit Type + declarations. Note that (nat * nat : Type) is NOT equivalent to + (nat * nat)%%type, whose inferred type is legacy type "Set". **) +Notation "T : 'Type'" := (CoqCast T%type Type) (only parsing) : core_scope. +(** Allow similarly Prop annotation for, e.g., rewrite multirules. **) +Notation "P : 'Prop'" := (CoqCast P%type Prop) (only parsing) : core_scope. + +(** Constants for abstract: and #[#: name #]# intro pattern **) +Definition abstract_lock := unit. +Definition abstract_key := tt. + +Definition abstract (statement : Type) (id : nat) (lock : abstract_lock) := + let: tt := lock in statement. + +Declare Scope ssr_scope. +Notation "<hidden n >" := (abstract _ n _) : ssr_scope. +Notation "T (* n *)" := (abstract T n abstract_key) : ssr_scope. +Open Scope ssr_scope. + +Register abstract_lock as plugins.ssreflect.abstract_lock. +Register abstract_key as plugins.ssreflect.abstract_key. +Register abstract as plugins.ssreflect.abstract. + +(** Constants for tactic-views **) +Inductive external_view : Type := tactic_view of Type. + +(** + Syntax for referring to canonical structures: + #[#the struct_type of proj_val by proj_fun#]# + This form denotes the Canonical instance s of the Structure type + struct_type whose proj_fun projection is proj_val, i.e., such that + proj_fun s = proj_val. + Typically proj_fun will be A record field accessors of struct_type, but + this need not be the case; it can be, for instance, a field of a record + type to which struct_type coerces; proj_val will likewise be coerced to + the return type of proj_fun. In all but the simplest cases, proj_fun + should be eta-expanded to allow for the insertion of implicit arguments. + In the common case where proj_fun itself is a coercion, the "by" part + can be omitted entirely; in this case it is inferred by casting s to the + inferred type of proj_val. Obviously the latter can be fixed by using an + explicit cast on proj_val, and it is highly recommended to do so when the + return type intended for proj_fun is "Type", as the type inferred for + proj_val may vary because of sort polymorphism (it could be Set or Prop). + Note when using the #[#the _ of _ #]# form to generate a substructure from a + telescopes-style canonical hierarchy (implementing inheritance with + coercions), one should always project or coerce the value to the BASE + structure, because Coq will only find a Canonical derived structure for + the Canonical base structure -- not for a base structure that is specific + to proj_value. **) + +Module TheCanonical. + +#[universes(template)] +Variant put vT sT (v1 v2 : vT) (s : sT) := Put. + +Definition get vT sT v s (p : @put vT sT v v s) := let: Put _ _ _ := p in s. + +Definition get_by vT sT of sT -> vT := @get vT sT. + +End TheCanonical. + +Import TheCanonical. (* Note: no export. *) + +Local Arguments get_by _%type_scope _%type_scope _ _ _ _. + +Notation "[ 'the' sT 'of' v 'by' f ]" := + (@get_by _ sT f _ _ ((fun v' (s : sT) => Put v' (f s) s) v _)) + (only parsing) : form_scope. + +Notation "[ 'the' sT 'of' v ]" := (get ((fun s : sT => Put v (*coerce*) s s) _)) + (only parsing) : form_scope. + +(** + The following are "format only" versions of the above notations. + We need to do this to prevent the formatter from being be thrown off by + application collapsing, coercion insertion and beta reduction in the right + hand side of the notations above. **) + +Notation "[ 'the' sT 'of' v 'by' f ]" := (@get_by _ sT f v _ _) + (only printing) : form_scope. + +Notation "[ 'the' sT 'of' v ]" := (@get _ sT v _ _) + (only printing) : form_scope. + +(** + We would like to recognize +Notation " #[# 'the' sT 'of' v : 'Type' #]#" := (@get Type sT v _ _) + (at level 0, format " #[# 'the' sT 'of' v : 'Type' #]#") : form_scope. + **) + +(** + Helper notation for canonical structure inheritance support. + This is a workaround for the poor interaction between delta reduction and + canonical projections in Coq's unification algorithm, by which transparent + definitions hide canonical instances, i.e., in + Canonical a_type_struct := @Struct a_type ... + Definition my_type := a_type. + my_type doesn't effectively inherit the struct structure from a_type. Our + solution is to redeclare the instance as follows + Canonical my_type_struct := Eval hnf in #[#struct of my_type#]#. + The special notation #[#str of _ #]# must be defined for each Strucure "str" + with constructor "Str", typically as follows + Definition clone_str s := + let: Str _ x y ... z := s return {type of Str for s} -> str in + fun k => k _ x y ... z. + Notation " #[# 'str' 'of' T 'for' s #]#" := (@clone_str s (@Str T)) + (at level 0, format " #[# 'str' 'of' T 'for' s #]#") : form_scope. + Notation " #[# 'str' 'of' T #]#" := (repack_str (fun x => @Str T x)) + (at level 0, format " #[# 'str' 'of' T #]#") : form_scope. + The notation for the match return predicate is defined below; the eta + expansion in the second form serves both to distinguish it from the first + and to avoid the delta reduction problem. + There are several variations on the notation and the definition of the + the "clone" function, for telescopes, mixin classes, and join (multiple + inheritance) classes. We describe a different idiom for clones in ssrfun; + it uses phantom types (see below) and static unification; see fintype and + ssralg for examples. **) + +Definition argumentType T P & forall x : T, P x := T. +Definition dependentReturnType T P & forall x : T, P x := P. +Definition returnType aT rT & aT -> rT := rT. + +Notation "{ 'type' 'of' c 'for' s }" := (dependentReturnType c s) : type_scope. + +(** + A generic "phantom" type (actually, a unit type with a phantom parameter). + This type can be used for type definitions that require some Structure + on one of their parameters, to allow Coq to infer said structure so it + does not have to be supplied explicitly or via the " #[#the _ of _ #]#" notation + (the latter interacts poorly with other Notation). + The definition of a (co)inductive type with a parameter p : p_type, that + needs to use the operations of a structure + Structure p_str : Type := p_Str {p_repr :> p_type; p_op : p_repr -> ...} + should be given as + Inductive indt_type (p : p_str) := Indt ... . + Definition indt_of (p : p_str) & phantom p_type p := indt_type p. + Notation "{ 'indt' p }" := (indt_of (Phantom p)). + Definition indt p x y ... z : {indt p} := @Indt p x y ... z. + Notation " #[# 'indt' x y ... z #]#" := (indt x y ... z). + That is, the concrete type and its constructor should be shadowed by + definitions that use a phantom argument to infer and display the true + value of p (in practice, the "indt" constructor often performs additional + functions, like "locking" the representation -- see below). + We also define a simpler version ("phant" / "Phant") of phantom for the + common case where p_type is Type. **) + +#[universes(template)] +Variant phantom T (p : T) := Phantom. +Arguments phantom : clear implicits. +Arguments Phantom : clear implicits. +#[universes(template)] +Variant phant (p : Type) := Phant. + +(** Internal tagging used by the implementation of the ssreflect elim. **) + +Definition protect_term (A : Type) (x : A) : A := x. + +Register protect_term as plugins.ssreflect.protect_term. + +(** + The ssreflect idiom for a non-keyed pattern: + - unkeyed t will match any subterm that unifies with t, regardless of + whether it displays the same head symbol as t. + - unkeyed t a b will match any application of a term f unifying with t, + to two arguments unifying with with a and b, respectively, regardless of + apparent head symbols. + - unkeyed x where x is a variable will match any subterm with the same + type as x (when x would raise the 'indeterminate pattern' error). **) + +Notation unkeyed x := (let flex := x in flex). + +(** Ssreflect converse rewrite rule rule idiom. **) +Definition ssr_converse R (r : R) := (Logic.I, r). +Notation "=^~ r" := (ssr_converse r) : form_scope. + +(** + Term tagging (user-level). + The ssreflect library uses four strengths of term tagging to restrict + convertibility during type checking: + nosimpl t simplifies to t EXCEPT in a definition; more precisely, given + Definition foo := nosimpl bar, foo (or foo t') will NOT be expanded by + the /= and //= switches unless it is in a forcing context (e.g., in + match foo t' with ... end, foo t' will be reduced if this allows the + match to be reduced). Note that nosimpl bar is simply notation for a + a term that beta-iota reduces to bar; hence rewrite /foo will replace + foo by bar, and rewrite -/foo will replace bar by foo. + CAVEAT: nosimpl should not be used inside a Section, because the end of + section "cooking" removes the iota redex. + locked t is provably equal to t, but is not convertible to t; 'locked' + provides support for selective rewriting, via the lock t : t = locked t + Lemma, and the ssreflect unlock tactic. + locked_with k t is equal but not convertible to t, much like locked t, + but supports explicit tagging with a value k : unit. This is used to + mitigate a flaw in the term comparison heuristic of the Coq kernel, + which treats all terms of the form locked t as equal and compares their + arguments recursively, leading to an exponential blowup of comparison. + For this reason locked_with should be used rather than locked when + defining ADT operations. The unlock tactic does not support locked_with + but the unlock rewrite rule does, via the unlockable interface. + we also use Module Type ascription to create truly opaque constants, + because simple expansion of constants to reveal an unreducible term + doubles the time complexity of a negative comparison. Such opaque + constants can be expanded generically with the unlock rewrite rule. + See the definition of card and subset in fintype for examples of this. **) + +Notation nosimpl t := (let: tt := tt in t). + +Lemma master_key : unit. Proof. exact tt. Qed. +Definition locked A := let: tt := master_key in fun x : A => x. + +Register master_key as plugins.ssreflect.master_key. +Register locked as plugins.ssreflect.locked. + +Lemma lock A x : x = locked x :> A. Proof. unlock; reflexivity. Qed. + +(** Needed for locked predicates, in particular for eqType's. **) +Lemma not_locked_false_eq_true : locked false <> true. +Proof. unlock; discriminate. Qed. + +(** The basic closing tactic "done". **) +Ltac done := + trivial; hnf; intros; solve + [ do ![solve [trivial | apply: sym_equal; trivial] + | discriminate | contradiction | split] + | case not_locked_false_eq_true; assumption + | match goal with H : ~ _ |- _ => solve [case H; trivial] end ]. + +(** Quicker done tactic not including split, syntax: /0/ **) +Ltac ssrdone0 := + trivial; hnf; intros; solve + [ do ![solve [trivial | apply: sym_equal; trivial] + | discriminate | contradiction ] + | case not_locked_false_eq_true; assumption + | match goal with H : ~ _ |- _ => solve [case H; trivial] end ]. + +(** To unlock opaque constants. **) +#[universes(template)] +Structure unlockable T v := Unlockable {unlocked : T; _ : unlocked = v}. +Lemma unlock T x C : @unlocked T x C = x. Proof. by case: C. Qed. + +Notation "[ 'unlockable' 'of' C ]" := + (@Unlockable _ _ C (unlock _)) : form_scope. + +Notation "[ 'unlockable' 'fun' C ]" := + (@Unlockable _ (fun _ => _) C (unlock _)) : form_scope. + +(** Generic keyed constant locking. **) + +(** The argument order ensures that k is always compared before T. **) +Definition locked_with k := let: tt := k in fun T x => x : T. + +(** + This can be used as a cheap alternative to cloning the unlockable instance + below, but with caution as unkeyed matching can be expensive. **) +Lemma locked_withE T k x : unkeyed (locked_with k x) = x :> T. +Proof. by case: k. Qed. + +(** Intensionaly, this instance will not apply to locked u. **) +Canonical locked_with_unlockable T k x := + @Unlockable T x (locked_with k x) (locked_withE k x). + +(** More accurate variant of unlock, and safer alternative to locked_withE. **) +Lemma unlock_with T k x : unlocked (locked_with_unlockable k x) = x :> T. +Proof. exact: unlock. Qed. + +(** The internal lemmas for the have tactics. **) + +Definition ssr_have Plemma Pgoal (step : Plemma) rest : Pgoal := rest step. +Arguments ssr_have Plemma [Pgoal]. + +Definition ssr_have_let Pgoal Plemma step + (rest : let x : Plemma := step in Pgoal) : Pgoal := rest. +Arguments ssr_have_let [Pgoal]. + +Register ssr_have as plugins.ssreflect.ssr_have. +Register ssr_have_let as plugins.ssreflect.ssr_have_let. + +Definition ssr_suff Plemma Pgoal step (rest : Plemma) : Pgoal := step rest. +Arguments ssr_suff Plemma [Pgoal]. + +Definition ssr_wlog := ssr_suff. +Arguments ssr_wlog Plemma [Pgoal]. + +Register ssr_suff as plugins.ssreflect.ssr_suff. +Register ssr_wlog as plugins.ssreflect.ssr_wlog. + +(** Internal N-ary congruence lemmas for the congr tactic. **) + +Fixpoint nary_congruence_statement (n : nat) + : (forall B, (B -> B -> Prop) -> Prop) -> Prop := + match n with + | O => fun k => forall B, k B (fun x1 x2 : B => x1 = x2) + | S n' => + let k' A B e (f1 f2 : A -> B) := + forall x1 x2, x1 = x2 -> (e (f1 x1) (f2 x2) : Prop) in + fun k => forall A, nary_congruence_statement n' (fun B e => k _ (k' A B e)) + end. + +Lemma nary_congruence n (k := fun B e => forall y : B, (e y y : Prop)) : + nary_congruence_statement n k. +Proof. +have: k _ _ := _; rewrite {1}/k. +elim: n k => [|n IHn] k k_P /= A; first exact: k_P. +by apply: IHn => B e He; apply: k_P => f x1 x2 <-. +Qed. + +Lemma ssr_congr_arrow Plemma Pgoal : Plemma = Pgoal -> Plemma -> Pgoal. +Proof. by move->. Qed. +Arguments ssr_congr_arrow : clear implicits. + +Register nary_congruence as plugins.ssreflect.nary_congruence. +Register ssr_congr_arrow as plugins.ssreflect.ssr_congr_arrow. + +(** View lemmas that don't use reflection. **) + +Section ApplyIff. + +Variables P Q : Prop. +Hypothesis eqPQ : P <-> Q. + +Lemma iffLR : P -> Q. Proof. by case: eqPQ. Qed. +Lemma iffRL : Q -> P. Proof. by case: eqPQ. Qed. + +Lemma iffLRn : ~P -> ~Q. Proof. by move=> nP tQ; case: nP; case: eqPQ tQ. Qed. +Lemma iffRLn : ~Q -> ~P. Proof. by move=> nQ tP; case: nQ; case: eqPQ tP. Qed. + +End ApplyIff. + +Hint View for move/ iffLRn|2 iffRLn|2 iffLR|2 iffRL|2. +Hint View for apply/ iffRLn|2 iffLRn|2 iffRL|2 iffLR|2. + +(** + To focus non-ssreflect tactics on a subterm, eg vm_compute. + Usage: + elim/abstract_context: (pattern) => G defG. + vm_compute; rewrite {}defG {G}. + Note that vm_cast are not stored in the proof term + for reductions occurring in the context, hence + set here := pattern; vm_compute in (value of here) + blows up at Qed time. **) +Lemma abstract_context T (P : T -> Type) x : + (forall Q, Q = P -> Q x) -> P x. +Proof. by move=> /(_ P); apply. Qed. + +(*****************************************************************************) +(* Material for under/over (to rewrite under binders using "context lemmas") *) + +Require Export ssrunder. + +Hint Extern 0 (@Under_rel.Over_rel _ _ _ _) => + solve [ apply: Under_rel.over_rel_done ] : core. +Hint Resolve Under_rel.over_rel_done : core. + +Register Under_rel.Under_rel as plugins.ssreflect.Under_rel. +Register Under_rel.Under_rel_from_rel as plugins.ssreflect.Under_rel_from_rel. + +(** Closing rewrite rule *) +Definition over := over_rel. + +(** Closing tactic *) +Ltac over := + by [ apply: Under_rel.under_rel_done + | rewrite over + ]. + +(** Convenience rewrite rule to unprotect evars, e.g., to instantiate + them in another way than with reflexivity. *) +Definition UnderE := Under_relE. + +(*****************************************************************************) + +(** An interface for non-Prop types; used to avoid improper instantiation + of polymorphic lemmas with on-demand implicits when they are used as views. + For example: Some_inj {T} : forall x y : T, Some x = Some y -> x = y. + Using move/Some_inj on a goal of the form Some n = Some 0 will fail: + SSReflect will interpret the view as @Some_inj ?T _top_assumption_ + since this is the well-typed application of the view with the minimal + number of inserted evars (taking ?T := Some n = Some 0), and then will + later complain that it cannot erase _top_assumption_ after having + abstracted the viewed assumption. Making x and y maximal implicits + would avoid this and force the intended @Some_inj nat x y _top_assumption_ + interpretation, but is undesirable as it makes it harder to use Some_inj + with the many SSReflect and MathComp lemmas that have an injectivity + premise. Specifying {T : nonPropType} solves this more elegantly, as then + (?T : Type) no longer unifies with (Some n = Some 0), which has sort Prop. + **) + +Module NonPropType. + +(** Implementation notes: + We rely on three interface Structures: + - test_of r, the middle structure, performs the actual check: it has two + canonical instances whose 'condition' projection are maybeProj (?P : Prop) + and tt, and which set r := true and r := false, respectively. Unifying + condition (?t : test_of ?r) with maybeProj T will thus set ?r to true if + T is in Prop as the test_Prop T instance will apply, and otherwise simplify + maybeProp T to tt and use the test_negative instance and set ?r to false. + - call_of c r sets up a call to test_of on condition c with expected result r. + It has a default instance for its 'callee' projection to Type, which + sets c := maybeProj T and r := false when unifying with a type T. + - type is a telescope on call_of c r, which checks that unifying test_of ?r1 + with c indeed sets ?r1 := r; the type structure bundles the 'test' instance + and its 'result' value along with its call_of c r projection. The default + instance essentially provides eta-expansion for 'type'. This is only + essential for the first 'result' projection to bool; using the instance + for other projection merely avoids spurious delta expansions that would + spoil the notProp T notation. + In detail, unifying T =~= ?S with ?S : nonPropType, i.e., + (1) T =~= @callee (@condition (result ?S) (test ?S)) (result ?S) (frame ?S) + first uses the default call instance with ?T := T to reduce (1) to + (2a) @condition (result ?S) (test ?S) =~= maybeProp T + (3) result ?S =~= false + (4) frame ?S =~= call T + along with some trivial universe-related checks which are irrelevant here. + Then the unification tries to use the test_Prop instance to reduce (2a) to + (6a) result ?S =~= true + (7a) ?P =~= T with ?P : Prop + (8a) test ?S =~= test_Prop ?P + Now the default 'check' instance with ?result := true resolves (6a) as + (9a) ?S := @check true ?test ?frame + Then (7a) can be solved precisely if T has sort at most (hence exactly) Prop, + and then (8a) is solved by the check instance, yielding ?test := test_Prop T, + and completing the solution of (2a), and _committing_ to it. But now (3) is + inconsistent with (9a), and this makes the entire problem (1) fails. + If on the othe hand T does not have sort Prop then (7a) fails and the + unification resorts to delta expanding (2a), which gives + (2b) @condition (result ?S) (test ?S) =~= tt + which is then reduced, using the test_negative instance, to + (6b) result ?S =~= false + (8b) test ?S =~= test_negative + Both are solved using the check default instance, as in the (2a) branch, giving + (9b) ?S := @check false test_negative ?frame + Then (3) and (4) are similarly soved using check, giving the final assignment + (9) ?S := notProp T + Observe that we _must_ perform the actual test unification on the arguments + of the initial canonical instance, and not on the instance itself as we do + in mathcomp/matrix and mathcomp/vector, because we want the unification to + fail when T has sort Prop. If both the test_of _and_ the result check + unifications were done as part of the structure telescope then the latter + would be a sub-problem of the former, and thus failing the check would merely + make the test_of unification backtrack and delta-expand and we would not get + failure. + **) + +Structure call_of (condition : unit) (result : bool) := Call {callee : Type}. +Definition maybeProp (T : Type) := tt. +Definition call T := Call (maybeProp T) false T. + +Structure test_of (result : bool) := Test {condition :> unit}. +Definition test_Prop (P : Prop) := Test true (maybeProp P). +Definition test_negative := Test false tt. + +Structure type := + Check {result : bool; test : test_of result; frame : call_of test result}. +Definition check result test frame := @Check result test frame. + +Module Exports. +Canonical call. +Canonical test_Prop. +Canonical test_negative. +Canonical check. +Notation nonPropType := type. +Coercion callee : call_of >-> Sortclass. +Coercion frame : type >-> call_of. +Notation notProp T := (@check false test_negative (call T)). +End Exports. + +End NonPropType. +Export NonPropType.Exports. diff --git a/theories/ssr/ssrfun.v b/theories/ssr/ssrfun.v new file mode 100644 index 0000000000..dd847169b9 --- /dev/null +++ b/theories/ssr/ssrfun.v @@ -0,0 +1,812 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +(* This file is (C) Copyright 2006-2015 Microsoft Corporation and Inria. *) + +(** #<style> .doc { font-family: monospace; white-space: pre; } </style># **) + +Require Import ssreflect. + + +(** + This file contains the basic definitions and notations for working with + functions. The definitions provide for: + + - Pair projections: + p.1 == first element of a pair + p.2 == second element of a pair + These notations also apply to p : P /\ Q, via an and >-> pair coercion. + + - Simplifying functions, beta-reduced by /= and simpl: + #[#fun : T => E#]# == constant function from type T that returns E + #[#fun x => E#]# == unary function + #[#fun x : T => E#]# == unary function with explicit domain type + #[#fun x y => E#]# == binary function + #[#fun x y : T => E#]# == binary function with common domain type + #[#fun (x : T) y => E#]# \ + #[#fun (x : xT) (y : yT) => E#]# | == binary function with (some) explicit, + #[#fun x (y : T) => E#]# / independent domain types for each argument + + - Partial functions using option type: + oapp f d ox == if ox is Some x returns f x, d otherwise + odflt d ox == if ox is Some x returns x, d otherwise + obind f ox == if ox is Some x returns f x, None otherwise + omap f ox == if ox is Some x returns Some (f x), None otherwise + + - Singleton types: + all_equal_to x0 == x0 is the only value in its type, so any such value + can be rewritten to x0. + + - A generic wrapper type: + wrapped T == the inductive type with values Wrap x for x : T. + unwrap w == the projection of w : wrapped T on T. + wrap x == the canonical injection of x : T into wrapped T; it is + equivalent to Wrap x, but is declared as a (default) + Canonical Structure, which lets the Coq HO unification + automatically expand x into unwrap (wrap x). The delta + reduction of wrap x to Wrap can be exploited to + introduce controlled nondeterminism in Canonical + Structure inference, as in the implementation of + the mxdirect predicate in matrix.v. + + - The empty type: + void == a notation for the Empty_set type of the standard library. + of_void T == the canonical injection void -> T. + + - Sigma types: + tag w == the i of w : {i : I & T i}. + tagged w == the T i component of w : {i : I & T i}. + Tagged T x == the {i : I & T i} with component x : T i. + tag2 w == the i of w : {i : I & T i & U i}. + tagged2 w == the T i component of w : {i : I & T i & U i}. + tagged2' w == the U i component of w : {i : I & T i & U i}. + Tagged2 T U x y == the {i : I & T i} with components x : T i and y : U i. + sval u == the x of u : {x : T | P x}. + s2val u == the x of u : {x : T | P x & Q x}. + The properties of sval u, s2val u are given by lemmas svalP, s2valP, and + s2valP'. We provide coercions sigT2 >-> sigT and sig2 >-> sig >-> sigT. + A suite of lemmas (all_sig, ...) let us skolemize sig, sig2, sigT, sigT2 + and pair, e.g., + have /all_sig#[#f fP#]# (x : T): {y : U | P y} by ... + yields an f : T -> U such that fP : forall x, P (f x). + - Identity functions: + id == NOTATION for the explicit identity function fun x => x. + @id T == notation for the explicit identity at type T. + idfun == an expression with a head constant, convertible to id; + idfun x simplifies to x. + @idfun T == the expression above, specialized to type T. + phant_id x y == the function type phantom _ x -> phantom _ y. + *** In addition to their casual use in functional programming, identity + functions are often used to trigger static unification as part of the + construction of dependent Records and Structures. For example, if we need + a structure sT over a type T, we take as arguments T, sT, and a "dummy" + function T -> sort sT: + Definition foo T sT & T -> sort sT := ... + We can avoid specifying sT directly by calling foo (@id T), or specify + the call completely while still ensuring the consistency of T and sT, by + calling @foo T sT idfun. The phant_id type allows us to extend this trick + to non-Type canonical projections. It also allows us to sidestep + dependent type constraints when building explicit records, e.g., given + Record r := R {x; y : T(x)}. + if we need to build an r from a given y0 while inferring some x0, such + that y0 : T(x0), we pose + Definition mk_r .. y .. (x := ...) y' & phant_id y y' := R x y'. + Calling @mk_r .. y0 .. id will cause Coq to use y' := y0, while checking + the dependent type constraint y0 : T(x0). + + - Extensional equality for functions and relations (i.e. functions of two + arguments): + f1 =1 f2 == f1 x is equal to f2 x for all x. + f1 =1 f2 :> A == ... and f2 is explicitly typed. + f1 =2 f2 == f1 x y is equal to f2 x y for all x y. + f1 =2 f2 :> A == ... and f2 is explicitly typed. + + - Composition for total and partial functions: + f^~ y == function f with second argument specialised to y, + i.e., fun x => f x y + CAVEAT: conditional (non-maximal) implicit arguments + of f are NOT inserted in this context + @^~ x == application at x, i.e., fun f => f x + #[#eta f#]# == the explicit eta-expansion of f, i.e., fun x => f x + CAVEAT: conditional (non-maximal) implicit arguments + of f are NOT inserted in this context. + fun=> v := the constant function fun _ => v. + f1 \o f2 == composition of f1 and f2. + Note: (f1 \o f2) x simplifies to f1 (f2 x). + f1 \; f2 == categorical composition of f1 and f2. This expands to + to f2 \o f1 and (f1 \; f2) x simplifies to f2 (f1 x). + pcomp f1 f2 == composition of partial functions f1 and f2. + + + - Properties of functions: + injective f <-> f is injective. + cancel f g <-> g is a left inverse of f / f is a right inverse of g. + pcancel f g <-> g is a left inverse of f where g is partial. + ocancel f g <-> g is a left inverse of f where f is partial. + bijective f <-> f is bijective (has a left and right inverse). + involutive f <-> f is involutive. + + - Properties for operations. + left_id e op <-> e is a left identity for op (e op x = x). + right_id e op <-> e is a right identity for op (x op e = x). + left_inverse e inv op <-> inv is a left inverse for op wrt identity e, + i.e., (inv x) op x = e. + right_inverse e inv op <-> inv is a right inverse for op wrt identity e + i.e., x op (i x) = e. + self_inverse e op <-> each x is its own op-inverse (x op x = e). + idempotent op <-> op is idempotent for op (x op x = x). + associative op <-> op is associative, i.e., + x op (y op z) = (x op y) op z. + commutative op <-> op is commutative (x op y = y op x). + left_commutative op <-> op is left commutative, i.e., + x op (y op z) = y op (x op z). + right_commutative op <-> op is right commutative, i.e., + (x op y) op z = (x op z) op y. + left_zero z op <-> z is a left zero for op (z op x = z). + right_zero z op <-> z is a right zero for op (x op z = z). + left_distributive op1 op2 <-> op1 distributes over op2 to the left: + (x op2 y) op1 z = (x op1 z) op2 (y op1 z). + right_distributive op1 op2 <-> op distributes over add to the right: + x op1 (y op2 z) = (x op1 z) op2 (x op1 z). + interchange op1 op2 <-> op1 and op2 satisfy an interchange law: + (x op2 y) op1 (z op2 t) = (x op1 z) op2 (y op1 t). + Note that interchange op op is a commutativity property. + left_injective op <-> op is injective in its left argument: + x op y = z op y -> x = z. + right_injective op <-> op is injective in its right argument: + x op y = x op z -> y = z. + left_loop inv op <-> op, inv obey the inverse loop left axiom: + (inv x) op (x op y) = y for all x, y, i.e., + op (inv x) is always a left inverse of op x + rev_left_loop inv op <-> op, inv obey the inverse loop reverse left + axiom: x op ((inv x) op y) = y, for all x, y. + right_loop inv op <-> op, inv obey the inverse loop right axiom: + (x op y) op (inv y) = x for all x, y. + rev_right_loop inv op <-> op, inv obey the inverse loop reverse right + axiom: (x op (inv y)) op y = x for all x, y. + Note that familiar "cancellation" identities like x + y - y = x or + x - y + y = x are respectively instances of right_loop and rev_right_loop + The corresponding lemmas will use the K and NK/VK suffixes, respectively. + + - Morphisms for functions and relations: + {morph f : x / a >-> r} <-> f is a morphism with respect to functions + (fun x => a) and (fun x => r); if r == R#[#x#]#, + this states that f a = R#[#f x#]# for all x. + {morph f : x / a} <-> f is a morphism with respect to the + function expression (fun x => a). This is + shorthand for {morph f : x / a >-> a}; note + that the two instances of a are often + interpreted at different types. + {morph f : x y / a >-> r} <-> f is a morphism with respect to functions + (fun x y => a) and (fun x y => r). + {morph f : x y / a} <-> f is a morphism with respect to the + function expression (fun x y => a). + {homo f : x / a >-> r} <-> f is a homomorphism with respect to the + predicates (fun x => a) and (fun x => r); + if r == R#[#x#]#, this states that a -> R#[#f x#]# + for all x. + {homo f : x / a} <-> f is a homomorphism with respect to the + predicate expression (fun x => a). + {homo f : x y / a >-> r} <-> f is a homomorphism with respect to the + relations (fun x y => a) and (fun x y => r). + {homo f : x y / a} <-> f is a homomorphism with respect to the + relation expression (fun x y => a). + {mono f : x / a >-> r} <-> f is monotone with respect to projectors + (fun x => a) and (fun x => r); if r == R#[#x#]#, + this states that R#[#f x#]# = a for all x. + {mono f : x / a} <-> f is monotone with respect to the projector + expression (fun x => a). + {mono f : x y / a >-> r} <-> f is monotone with respect to relators + (fun x y => a) and (fun x y => r). + {mono f : x y / a} <-> f is monotone with respect to the relator + expression (fun x y => a). + + The file also contains some basic lemmas for the above concepts. + Lemmas relative to cancellation laws use some abbreviated suffixes: + K - a cancellation rule like esymK : cancel (@esym T x y) (@esym T y x). + LR - a lemma moving an operation from the left hand side of a relation to + the right hand side, like canLR: cancel g f -> x = g y -> f x = y. + RL - a lemma moving an operation from the right to the left, e.g., canRL. + Beware that the LR and RL orientations refer to an "apply" (back chaining) + usage; when using the same lemmas with "have" or "move" (forward chaining) + the directions will be reversed!. **) + + +Set Implicit Arguments. +Unset Strict Implicit. +Unset Printing Implicit Defensive. + +(** Parsing / printing declarations. *) +Reserved Notation "p .1" (at level 2, left associativity, format "p .1"). +Reserved Notation "p .2" (at level 2, left associativity, format "p .2"). +Reserved Notation "f ^~ y" (at level 10, y at level 8, no associativity, + format "f ^~ y"). +Reserved Notation "@^~ x" (at level 10, x at level 8, no associativity, + format "@^~ x"). +Reserved Notation "[ 'eta' f ]" (at level 0, format "[ 'eta' f ]"). +Reserved Notation "'fun' => E" (at level 200, format "'fun' => E"). + +Reserved Notation "[ 'fun' : T => E ]" (at level 0, + format "'[hv' [ 'fun' : T => '/ ' E ] ']'"). +Reserved Notation "[ 'fun' x => E ]" (at level 0, + x ident, format "'[hv' [ 'fun' x => '/ ' E ] ']'"). +Reserved Notation "[ 'fun' x : T => E ]" (at level 0, + x ident, format "'[hv' [ 'fun' x : T => '/ ' E ] ']'"). +Reserved Notation "[ 'fun' x y => E ]" (at level 0, + x ident, y ident, format "'[hv' [ 'fun' x y => '/ ' E ] ']'"). +Reserved Notation "[ 'fun' x y : T => E ]" (at level 0, + x ident, y ident, format "'[hv' [ 'fun' x y : T => '/ ' E ] ']'"). +Reserved Notation "[ 'fun' ( x : T ) y => E ]" (at level 0, + x ident, y ident, format "'[hv' [ 'fun' ( x : T ) y => '/ ' E ] ']'"). +Reserved Notation "[ 'fun' x ( y : T ) => E ]" (at level 0, + x ident, y ident, format "'[hv' [ 'fun' x ( y : T ) => '/ ' E ] ']'"). +Reserved Notation "[ 'fun' ( x : T ) ( y : U ) => E ]" (at level 0, + x ident, y ident, format "[ 'fun' ( x : T ) ( y : U ) => E ]" ). + +Reserved Notation "f =1 g" (at level 70, no associativity). +Reserved Notation "f =1 g :> A" (at level 70, g at next level, A at level 90). +Reserved Notation "f =2 g" (at level 70, no associativity). +Reserved Notation "f =2 g :> A" (at level 70, g at next level, A at level 90). +Reserved Notation "f \o g" (at level 50, format "f \o '/ ' g"). +Reserved Notation "f \; g" (at level 60, right associativity, + format "f \; '/ ' g"). + +Reserved Notation "{ 'morph' f : x / a >-> r }" (at level 0, f at level 99, + x ident, format "{ 'morph' f : x / a >-> r }"). +Reserved Notation "{ 'morph' f : x / a }" (at level 0, f at level 99, + x ident, format "{ 'morph' f : x / a }"). +Reserved Notation "{ 'morph' f : x y / a >-> r }" (at level 0, f at level 99, + x ident, y ident, format "{ 'morph' f : x y / a >-> r }"). +Reserved Notation "{ 'morph' f : x y / a }" (at level 0, f at level 99, + x ident, y ident, format "{ 'morph' f : x y / a }"). +Reserved Notation "{ 'homo' f : x / a >-> r }" (at level 0, f at level 99, + x ident, format "{ 'homo' f : x / a >-> r }"). +Reserved Notation "{ 'homo' f : x / a }" (at level 0, f at level 99, + x ident, format "{ 'homo' f : x / a }"). +Reserved Notation "{ 'homo' f : x y / a >-> r }" (at level 0, f at level 99, + x ident, y ident, format "{ 'homo' f : x y / a >-> r }"). +Reserved Notation "{ 'homo' f : x y / a }" (at level 0, f at level 99, + x ident, y ident, format "{ 'homo' f : x y / a }"). +Reserved Notation "{ 'homo' f : x y /~ a }" (at level 0, f at level 99, + x ident, y ident, format "{ 'homo' f : x y /~ a }"). +Reserved Notation "{ 'mono' f : x / a >-> r }" (at level 0, f at level 99, + x ident, format "{ 'mono' f : x / a >-> r }"). +Reserved Notation "{ 'mono' f : x / a }" (at level 0, f at level 99, + x ident, format "{ 'mono' f : x / a }"). +Reserved Notation "{ 'mono' f : x y / a >-> r }" (at level 0, f at level 99, + x ident, y ident, format "{ 'mono' f : x y / a >-> r }"). +Reserved Notation "{ 'mono' f : x y / a }" (at level 0, f at level 99, + x ident, y ident, format "{ 'mono' f : x y / a }"). +Reserved Notation "{ 'mono' f : x y /~ a }" (at level 0, f at level 99, + x ident, y ident, format "{ 'mono' f : x y /~ a }"). + +Reserved Notation "@ 'id' T" (at level 10, T at level 8, format "@ 'id' T"). +Reserved Notation "@ 'sval'" (at level 10, format "@ 'sval'"). + +(** + Syntax for defining auxiliary recursive function. + Usage: + Section FooDefinition. + Variables (g1 : T1) (g2 : T2). (globals) + Fixoint foo_auxiliary (a3 : T3) ... := + body, using #[#rec e3, ... #]# for recursive calls + where " #[# 'rec' a3 , a4 , ... #]#" := foo_auxiliary. + Definition foo x y .. := #[#rec e1, ... #]#. + + proofs about foo + End FooDefinition. **) + +Reserved Notation "[ 'rec' a ]" (at level 0, + format "[ 'rec' a ]"). +Reserved Notation "[ 'rec' a , b ]" (at level 0, + format "[ 'rec' a , b ]"). +Reserved Notation "[ 'rec' a , b , c ]" (at level 0, + format "[ 'rec' a , b , c ]"). +Reserved Notation "[ 'rec' a , b , c , d ]" (at level 0, + format "[ 'rec' a , b , c , d ]"). +Reserved Notation "[ 'rec' a , b , c , d , e ]" (at level 0, + format "[ 'rec' a , b , c , d , e ]"). +Reserved Notation "[ 'rec' a , b , c , d , e , f ]" (at level 0, + format "[ 'rec' a , b , c , d , e , f ]"). +Reserved Notation "[ 'rec' a , b , c , d , e , f , g ]" (at level 0, + format "[ 'rec' a , b , c , d , e , f , g ]"). +Reserved Notation "[ 'rec' a , b , c , d , e , f , g , h ]" (at level 0, + format "[ 'rec' a , b , c , d , e , f , g , h ]"). +Reserved Notation "[ 'rec' a , b , c , d , e , f , g , h , i ]" (at level 0, + format "[ 'rec' a , b , c , d , e , f , g , h , i ]"). +Reserved Notation "[ 'rec' a , b , c , d , e , f , g , h , i , j ]" (at level 0, + format "[ 'rec' a , b , c , d , e , f , g , h , i , j ]"). + +Declare Scope pair_scope. +Delimit Scope pair_scope with PAIR. +Open Scope pair_scope. + +(** Notations for pair/conjunction projections **) +Notation "p .1" := (fst p) : pair_scope. +Notation "p .2" := (snd p) : pair_scope. + +Coercion pair_of_and P Q (PandQ : P /\ Q) := (proj1 PandQ, proj2 PandQ). + +Definition all_pair I T U (w : forall i : I, T i * U i) := + (fun i => (w i).1, fun i => (w i).2). + +(** + Complements on the option type constructor, used below to + encode partial functions. **) + +Module Option. + +Definition apply aT rT (f : aT -> rT) x u := if u is Some y then f y else x. + +Definition default T := apply (fun x : T => x). + +Definition bind aT rT (f : aT -> option rT) := apply f None. + +Definition map aT rT (f : aT -> rT) := bind (fun x => Some (f x)). + +End Option. + +Notation oapp := Option.apply. +Notation odflt := Option.default. +Notation obind := Option.bind. +Notation omap := Option.map. +Notation some := (@Some _) (only parsing). + +(** Shorthand for some basic equality lemmas. **) + +Notation erefl := refl_equal. +Notation ecast i T e x := (let: erefl in _ = i := e return T in x). +Definition esym := sym_eq. +Definition nesym := sym_not_eq. +Definition etrans := trans_eq. +Definition congr1 := f_equal. +Definition congr2 := f_equal2. +(** Force at least one implicit when used as a view. **) +Prenex Implicits esym nesym. + +(** A predicate for singleton types. **) +Definition all_equal_to T (x0 : T) := forall x, unkeyed x = x0. + +Lemma unitE : all_equal_to tt. Proof. by case. Qed. + +(** A generic wrapper type **) + +#[universes(template)] +Structure wrapped T := Wrap {unwrap : T}. +Canonical wrap T x := @Wrap T x. + +Prenex Implicits unwrap wrap Wrap. + +Declare Scope fun_scope. +Delimit Scope fun_scope with FUN. +Open Scope fun_scope. + +(** Notations for argument transpose **) +Notation "f ^~ y" := (fun x => f x y) : fun_scope. +Notation "@^~ x" := (fun f => f x) : fun_scope. + +(** + Definitions and notation for explicit functions with simplification, + i.e., which simpl and /= beta expand (this is complementary to nosimpl). **) + +#[universes(template)] +Variant simpl_fun (aT rT : Type) := SimplFun of aT -> rT. + +Section SimplFun. + +Variables aT rT : Type. + +Definition fun_of_simpl (f : simpl_fun aT rT) := fun x => let: SimplFun lam := f in lam x. + +End SimplFun. + +Coercion fun_of_simpl : simpl_fun >-> Funclass. + +Notation "[ 'fun' : T => E ]" := (SimplFun (fun _ : T => E)) : fun_scope. +Notation "[ 'fun' x => E ]" := (SimplFun (fun x => E)) : fun_scope. +Notation "[ 'fun' x y => E ]" := (fun x => [fun y => E]) : fun_scope. +Notation "[ 'fun' x : T => E ]" := (SimplFun (fun x : T => E)) + (only parsing) : fun_scope. +Notation "[ 'fun' x y : T => E ]" := (fun x : T => [fun y : T => E]) + (only parsing) : fun_scope. +Notation "[ 'fun' ( x : T ) y => E ]" := (fun x : T => [fun y => E]) + (only parsing) : fun_scope. +Notation "[ 'fun' x ( y : T ) => E ]" := (fun x => [fun y : T => E]) + (only parsing) : fun_scope. +Notation "[ 'fun' ( x : T ) ( y : U ) => E ]" := (fun x : T => [fun y : U => E]) + (only parsing) : fun_scope. + +(** For delta functions in eqtype.v. **) +Definition SimplFunDelta aT rT (f : aT -> aT -> rT) := [fun z => f z z]. + +(** + Extensional equality, for unary and binary functions, including syntactic + sugar. **) + +Section ExtensionalEquality. + +Variables A B C : Type. + +Definition eqfun (f g : B -> A) : Prop := forall x, f x = g x. + +Definition eqrel (r s : C -> B -> A) : Prop := forall x y, r x y = s x y. + +Lemma frefl f : eqfun f f. Proof. by []. Qed. +Lemma fsym f g : eqfun f g -> eqfun g f. Proof. by move=> eq_fg x. Qed. + +Lemma ftrans f g h : eqfun f g -> eqfun g h -> eqfun f h. +Proof. by move=> eq_fg eq_gh x; rewrite eq_fg. Qed. + +Lemma rrefl r : eqrel r r. Proof. by []. Qed. + +End ExtensionalEquality. + +Typeclasses Opaque eqfun. +Typeclasses Opaque eqrel. + +Hint Resolve frefl rrefl : core. + +Notation "f1 =1 f2" := (eqfun f1 f2) : fun_scope. +Notation "f1 =1 f2 :> A" := (f1 =1 (f2 : A)) : fun_scope. +Notation "f1 =2 f2" := (eqrel f1 f2) : fun_scope. +Notation "f1 =2 f2 :> A" := (f1 =2 (f2 : A)) : fun_scope. + +Section Composition. + +Variables A B C : Type. + +Definition comp (f : B -> A) (g : C -> B) x := f (g x). +Definition catcomp g f := comp f g. +Definition pcomp (f : B -> option A) (g : C -> option B) x := obind f (g x). + +Lemma eq_comp f f' g g' : f =1 f' -> g =1 g' -> comp f g =1 comp f' g'. +Proof. by move=> eq_ff' eq_gg' x; rewrite /comp eq_gg' eq_ff'. Qed. + +End Composition. + +Arguments comp {A B C} f g x /. +Arguments catcomp {A B C} g f x /. +Notation "f1 \o f2" := (comp f1 f2) : fun_scope. +Notation "f1 \; f2" := (catcomp f1 f2) : fun_scope. + +Notation "[ 'eta' f ]" := (fun x => f x) : fun_scope. + +Notation "'fun' => E" := (fun _ => E) : fun_scope. + +Notation id := (fun x => x). +Notation "@ 'id' T" := (fun x : T => x) (only parsing) : fun_scope. + +Definition idfun T x : T := x. +Arguments idfun {T} x /. + +Definition phant_id T1 T2 v1 v2 := phantom T1 v1 -> phantom T2 v2. + +(** The empty type. **) + +Notation void := Empty_set. + +Definition of_void T (x : void) : T := match x with end. + +(** Strong sigma types. **) + +Section Tag. + +Variables (I : Type) (i : I) (T_ U_ : I -> Type). + +Definition tag := projT1. +Definition tagged : forall w, T_(tag w) := @projT2 I [eta T_]. +Definition Tagged x := @existT I [eta T_] i x. + +Definition tag2 (w : @sigT2 I T_ U_) := let: existT2 _ _ i _ _ := w in i. +Definition tagged2 w : T_(tag2 w) := let: existT2 _ _ _ x _ := w in x. +Definition tagged2' w : U_(tag2 w) := let: existT2 _ _ _ _ y := w in y. +Definition Tagged2 x y := @existT2 I [eta T_] [eta U_] i x y. + +End Tag. + +Arguments Tagged [I i]. +Arguments Tagged2 [I i]. +Prenex Implicits tag tagged Tagged tag2 tagged2 tagged2' Tagged2. + +Coercion tag_of_tag2 I T_ U_ (w : @sigT2 I T_ U_) := + Tagged (fun i => T_ i * U_ i)%type (tagged2 w, tagged2' w). + +Lemma all_tag I T U : + (forall x : I, {y : T x & U x y}) -> + {f : forall x, T x & forall x, U x (f x)}. +Proof. by move=> fP; exists (fun x => tag (fP x)) => x; case: (fP x). Qed. + +Lemma all_tag2 I T U V : + (forall i : I, {y : T i & U i y & V i y}) -> + {f : forall i, T i & forall i, U i (f i) & forall i, V i (f i)}. +Proof. by case/all_tag=> f /all_pair[]; exists f. Qed. + +(** Refinement types. **) + +(** Prenex Implicits and renaming. **) +Notation sval := (@proj1_sig _ _). +Notation "@ 'sval'" := (@proj1_sig) (at level 10, format "@ 'sval'"). + +Section Sig. + +Variables (T : Type) (P Q : T -> Prop). + +Lemma svalP (u : sig P) : P (sval u). Proof. by case: u. Qed. + +Definition s2val (u : sig2 P Q) := let: exist2 _ _ x _ _ := u in x. + +Lemma s2valP u : P (s2val u). Proof. by case: u. Qed. + +Lemma s2valP' u : Q (s2val u). Proof. by case: u. Qed. + +End Sig. + +Prenex Implicits svalP s2val s2valP s2valP'. + +Coercion tag_of_sig I P (u : @sig I P) := Tagged P (svalP u). + +Coercion sig_of_sig2 I P Q (u : @sig2 I P Q) := + exist (fun i => P i /\ Q i) (s2val u) (conj (s2valP u) (s2valP' u)). + +Lemma all_sig I T P : + (forall x : I, {y : T x | P x y}) -> + {f : forall x, T x | forall x, P x (f x)}. +Proof. by case/all_tag=> f; exists f. Qed. + +Lemma all_sig2 I T P Q : + (forall x : I, {y : T x | P x y & Q x y}) -> + {f : forall x, T x | forall x, P x (f x) & forall x, Q x (f x)}. +Proof. by case/all_sig=> f /all_pair[]; exists f. Qed. + +Section Morphism. + +Variables (aT rT sT : Type) (f : aT -> rT). + +(** Morphism property for unary and binary functions **) +Definition morphism_1 aF rF := forall x, f (aF x) = rF (f x). +Definition morphism_2 aOp rOp := forall x y, f (aOp x y) = rOp (f x) (f y). + +(** Homomorphism property for unary and binary relations **) +Definition homomorphism_1 (aP rP : _ -> Prop) := forall x, aP x -> rP (f x). +Definition homomorphism_2 (aR rR : _ -> _ -> Prop) := + forall x y, aR x y -> rR (f x) (f y). + +(** Stability property for unary and binary relations **) +Definition monomorphism_1 (aP rP : _ -> sT) := forall x, rP (f x) = aP x. +Definition monomorphism_2 (aR rR : _ -> _ -> sT) := + forall x y, rR (f x) (f y) = aR x y. + +End Morphism. + +Notation "{ 'morph' f : x / a >-> r }" := + (morphism_1 f (fun x => a) (fun x => r)) : type_scope. +Notation "{ 'morph' f : x / a }" := + (morphism_1 f (fun x => a) (fun x => a)) : type_scope. +Notation "{ 'morph' f : x y / a >-> r }" := + (morphism_2 f (fun x y => a) (fun x y => r)) : type_scope. +Notation "{ 'morph' f : x y / a }" := + (morphism_2 f (fun x y => a) (fun x y => a)) : type_scope. +Notation "{ 'homo' f : x / a >-> r }" := + (homomorphism_1 f (fun x => a) (fun x => r)) : type_scope. +Notation "{ 'homo' f : x / a }" := + (homomorphism_1 f (fun x => a) (fun x => a)) : type_scope. +Notation "{ 'homo' f : x y / a >-> r }" := + (homomorphism_2 f (fun x y => a) (fun x y => r)) : type_scope. +Notation "{ 'homo' f : x y / a }" := + (homomorphism_2 f (fun x y => a) (fun x y => a)) : type_scope. +Notation "{ 'homo' f : x y /~ a }" := + (homomorphism_2 f (fun y x => a) (fun x y => a)) : type_scope. +Notation "{ 'mono' f : x / a >-> r }" := + (monomorphism_1 f (fun x => a) (fun x => r)) : type_scope. +Notation "{ 'mono' f : x / a }" := + (monomorphism_1 f (fun x => a) (fun x => a)) : type_scope. +Notation "{ 'mono' f : x y / a >-> r }" := + (monomorphism_2 f (fun x y => a) (fun x y => r)) : type_scope. +Notation "{ 'mono' f : x y / a }" := + (monomorphism_2 f (fun x y => a) (fun x y => a)) : type_scope. +Notation "{ 'mono' f : x y /~ a }" := + (monomorphism_2 f (fun y x => a) (fun x y => a)) : type_scope. + +(** + In an intuitionistic setting, we have two degrees of injectivity. The + weaker one gives only simplification, and the strong one provides a left + inverse (we show in `fintype' that they coincide for finite types). + We also define an intermediate version where the left inverse is only a + partial function. **) + +Section Injections. + +Variables (rT aT : Type) (f : aT -> rT). + +Definition injective := forall x1 x2, f x1 = f x2 -> x1 = x2. + +Definition cancel g := forall x, g (f x) = x. + +Definition pcancel g := forall x, g (f x) = Some x. + +Definition ocancel (g : aT -> option rT) h := forall x, oapp h x (g x) = x. + +Lemma can_pcan g : cancel g -> pcancel (fun y => Some (g y)). +Proof. by move=> fK x; congr (Some _). Qed. + +Lemma pcan_inj g : pcancel g -> injective. +Proof. by move=> fK x y /(congr1 g); rewrite !fK => [[]]. Qed. + +Lemma can_inj g : cancel g -> injective. +Proof. by move/can_pcan; apply: pcan_inj. Qed. + +Lemma canLR g x y : cancel g -> x = f y -> g x = y. +Proof. by move=> fK ->. Qed. + +Lemma canRL g x y : cancel g -> f x = y -> x = g y. +Proof. by move=> fK <-. Qed. + +End Injections. + +Lemma Some_inj {T : nonPropType} : injective (@Some T). +Proof. by move=> x y []. Qed. + +Lemma of_voidK T : pcancel (of_void T) [fun _ => None]. +Proof. by case. Qed. + +(** cancellation lemmas for dependent type casts. **) +Lemma esymK T x y : cancel (@esym T x y) (@esym T y x). +Proof. by case: y /. Qed. + +Lemma etrans_id T x y (eqxy : x = y :> T) : etrans (erefl x) eqxy = eqxy. +Proof. by case: y / eqxy. Qed. + +Section InjectionsTheory. + +Variables (A B C : Type) (f g : B -> A) (h : C -> B). + +Lemma inj_id : injective (@id A). +Proof. by []. Qed. + +Lemma inj_can_sym f' : cancel f f' -> injective f' -> cancel f' f. +Proof. by move=> fK injf' x; apply: injf'. Qed. + +Lemma inj_comp : injective f -> injective h -> injective (f \o h). +Proof. by move=> injf injh x y /injf; apply: injh. Qed. + +Lemma inj_compr : injective (f \o h) -> injective h. +Proof. by move=> injfh x y /(congr1 f) /injfh. Qed. + +Lemma can_comp f' h' : cancel f f' -> cancel h h' -> cancel (f \o h) (h' \o f'). +Proof. by move=> fK hK x; rewrite /= fK hK. Qed. + +Lemma pcan_pcomp f' h' : + pcancel f f' -> pcancel h h' -> pcancel (f \o h) (pcomp h' f'). +Proof. by move=> fK hK x; rewrite /pcomp fK /= hK. Qed. + +Lemma eq_inj : injective f -> f =1 g -> injective g. +Proof. by move=> injf eqfg x y; rewrite -2!eqfg; apply: injf. Qed. + +Lemma eq_can f' g' : cancel f f' -> f =1 g -> f' =1 g' -> cancel g g'. +Proof. by move=> fK eqfg eqfg' x; rewrite -eqfg -eqfg'. Qed. + +Lemma inj_can_eq f' : cancel f f' -> injective f' -> cancel g f' -> f =1 g. +Proof. by move=> fK injf' gK x; apply: injf'; rewrite fK. Qed. + +End InjectionsTheory. + +Section Bijections. + +Variables (A B : Type) (f : B -> A). + +Variant bijective : Prop := Bijective g of cancel f g & cancel g f. + +Hypothesis bijf : bijective. + +Lemma bij_inj : injective f. +Proof. by case: bijf => g fK _; apply: can_inj fK. Qed. + +Lemma bij_can_sym f' : cancel f' f <-> cancel f f'. +Proof. +split=> fK; first exact: inj_can_sym fK bij_inj. +by case: bijf => h _ hK x; rewrite -[x]hK fK. +Qed. + +Lemma bij_can_eq f' f'' : cancel f f' -> cancel f f'' -> f' =1 f''. +Proof. +by move=> fK fK'; apply: (inj_can_eq _ bij_inj); apply/bij_can_sym. +Qed. + +End Bijections. + +Section BijectionsTheory. + +Variables (A B C : Type) (f : B -> A) (h : C -> B). + +Lemma eq_bij : bijective f -> forall g, f =1 g -> bijective g. +Proof. by case=> f' fK f'K g eqfg; exists f'; eapply eq_can; eauto. Qed. + +Lemma bij_comp : bijective f -> bijective h -> bijective (f \o h). +Proof. +by move=> [f' fK f'K] [h' hK h'K]; exists (h' \o f'); apply: can_comp; auto. +Qed. + +Lemma bij_can_bij : bijective f -> forall f', cancel f f' -> bijective f'. +Proof. by move=> bijf; exists f; first by apply/(bij_can_sym bijf). Qed. + +End BijectionsTheory. + +Section Involutions. + +Variables (A : Type) (f : A -> A). + +Definition involutive := cancel f f. + +Hypothesis Hf : involutive. + +Lemma inv_inj : injective f. Proof. exact: can_inj Hf. Qed. +Lemma inv_bij : bijective f. Proof. by exists f. Qed. + +End Involutions. + +Section OperationProperties. + +Variables S T R : Type. + +Section SopTisR. +Implicit Type op : S -> T -> R. +Definition left_inverse e inv op := forall x, op (inv x) x = e. +Definition right_inverse e inv op := forall x, op x (inv x) = e. +Definition left_injective op := forall x, injective (op^~ x). +Definition right_injective op := forall y, injective (op y). +End SopTisR. + + +Section SopTisS. +Implicit Type op : S -> T -> S. +Definition right_id e op := forall x, op x e = x. +Definition left_zero z op := forall x, op z x = z. +Definition right_commutative op := forall x y z, op (op x y) z = op (op x z) y. +Definition left_distributive op add := + forall x y z, op (add x y) z = add (op x z) (op y z). +Definition right_loop inv op := forall y, cancel (op^~ y) (op^~ (inv y)). +Definition rev_right_loop inv op := forall y, cancel (op^~ (inv y)) (op^~ y). +End SopTisS. + +Section SopTisT. +Implicit Type op : S -> T -> T. +Definition left_id e op := forall x, op e x = x. +Definition right_zero z op := forall x, op x z = z. +Definition left_commutative op := forall x y z, op x (op y z) = op y (op x z). +Definition right_distributive op add := + forall x y z, op x (add y z) = add (op x y) (op x z). +Definition left_loop inv op := forall x, cancel (op x) (op (inv x)). +Definition rev_left_loop inv op := forall x, cancel (op (inv x)) (op x). +End SopTisT. + +Section SopSisT. +Implicit Type op : S -> S -> T. +Definition self_inverse e op := forall x, op x x = e. +Definition commutative op := forall x y, op x y = op y x. +End SopSisT. + +Section SopSisS. +Implicit Type op : S -> S -> S. +Definition idempotent op := forall x, op x x = x. +Definition associative op := forall x y z, op x (op y z) = op (op x y) z. +Definition interchange op1 op2 := + forall x y z t, op1 (op2 x y) (op2 z t) = op2 (op1 x z) (op1 y t). +End SopSisS. + +End OperationProperties. + + + + + + + + + + diff --git a/theories/ssr/ssrsetoid.v b/theories/ssr/ssrsetoid.v new file mode 100644 index 0000000000..7c5cd135fe --- /dev/null +++ b/theories/ssr/ssrsetoid.v @@ -0,0 +1,38 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +(** #<style> .doc { font-family: monospace; white-space: pre; } </style># **) + +(** Compatibility layer for [under] and [setoid_rewrite]. + + This file is intended to be required by [Require Import Setoid]. + + In particular, we can use the [under] tactic with other relations + than [eq] or [iff], e.g. a [RewriteRelation], by doing: + [Require Import ssreflect. Require Setoid.] + + This file's instances have priority 12 > other stdlib instances. + + (Note: this file could be skipped when porting [under] to stdlib2.) + *) + +Require Import ssrclasses. +Require Import ssrunder. +Require Import RelationClasses. +Require Import Relation_Definitions. + +(** Reconcile [Coq.Classes.RelationClasses.Reflexive] with + [Coq.ssr.ssrclasses.Reflexive] *) + +Instance compat_Reflexive : + forall {A} {R : relation A}, + RelationClasses.Reflexive R -> + ssrclasses.Reflexive R | 12. +Proof. now trivial. Qed. diff --git a/theories/ssr/ssrunder.v b/theories/ssr/ssrunder.v new file mode 100644 index 0000000000..7c529a6133 --- /dev/null +++ b/theories/ssr/ssrunder.v @@ -0,0 +1,75 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +(** #<style> .doc { font-family: monospace; white-space: pre; } </style># **) + +(** Constants for under/over, to rewrite under binders using "context lemmas" + + Note: this file does not require [ssreflect]; it is both required by + [ssrsetoid] and *exported* by [ssrunder]. + + This preserves the following feature: we can use [Setoid] without + requiring [ssreflect] and use [ssreflect] without requiring [Setoid]. +*) + +Require Import ssrclasses. + +Module Type UNDER_REL. +Parameter Under_rel : + forall (A : Type) (eqA : A -> A -> Prop), A -> A -> Prop. +Parameter Under_rel_from_rel : + forall (A : Type) (eqA : A -> A -> Prop) (x y : A), + @Under_rel A eqA x y -> eqA x y. +Parameter Under_relE : + forall (A : Type) (eqA : A -> A -> Prop), + @Under_rel A eqA = eqA. + +(** [Over_rel, over_rel, over_rel_done]: for "by rewrite over_rel" *) +Parameter Over_rel : + forall (A : Type) (eqA : A -> A -> Prop), A -> A -> Prop. +Parameter over_rel : + forall (A : Type) (eqA : A -> A -> Prop) (x y : A), + @Under_rel A eqA x y = @Over_rel A eqA x y. +Parameter over_rel_done : + forall (A : Type) (eqA : A -> A -> Prop) (EeqA : Reflexive eqA) (x : A), + @Over_rel A eqA x x. + +(** [under_rel_done]: for Ltac-style over *) +Parameter under_rel_done : + forall (A : Type) (eqA : A -> A -> Prop) (EeqA : Reflexive eqA) (x : A), + @Under_rel A eqA x x. +Notation "''Under[' x ]" := (@Under_rel _ _ x _) + (at level 8, format "''Under[' x ]", only printing). +End UNDER_REL. + +Module Export Under_rel : UNDER_REL. +Definition Under_rel (A : Type) (eqA : A -> A -> Prop) := + eqA. +Lemma Under_rel_from_rel : + forall (A : Type) (eqA : A -> A -> Prop) (x y : A), + @Under_rel A eqA x y -> eqA x y. +Proof. now trivial. Qed. +Lemma Under_relE (A : Type) (eqA : A -> A -> Prop) : + @Under_rel A eqA = eqA. +Proof. now trivial. Qed. +Definition Over_rel := Under_rel. +Lemma over_rel : + forall (A : Type) (eqA : A -> A -> Prop) (x y : A), + @Under_rel A eqA x y = @Over_rel A eqA x y. +Proof. now trivial. Qed. +Lemma over_rel_done : + forall (A : Type) (eqA : A -> A -> Prop) (EeqA : Reflexive eqA) (x : A), + @Over_rel A eqA x x. +Proof. now unfold Over_rel. Qed. +Lemma under_rel_done : + forall (A : Type) (eqA : A -> A -> Prop) (EeqA : Reflexive eqA) (x : A), + @Under_rel A eqA x x. +Proof. now trivial. Qed. +End Under_rel. |
